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Abstract
We seek to estimate the causes and magnitudes of network externalities for the automated
clearinghouse (ACH) electronic payments system, using a panel data set on individual bank
usage of ACH. We construct an equilibrium model of consumer and bank adoption of ACH in
the presence of a network. The model identifies network externalities from correlations of
changes in usage levels for banks within a network, from changes in usage following changes in
market concentration or sizes of competitors and from adoption decisions of banks outside the
network with small branches in the network, and can separately identify consumer and bank
network effects. We structurally estimate the parameters of the model by matching equilibrium
behavior to the data, using simulated maximum likelihood and a data set of localized networks,
and use a bootstrap to recover confidence intervals. The parameters are estimated with high
precision and fit various moments of the data reasonably well. We find that most of the
impediment to ACH adoption is due to large consumer fixed costs of adoption. The deadweight
loss from the network externality is moderate: the optimal number of ACH transactions is about
16% higher than the equilibrium level.

                                                
1 We acknowledge funding from the NET Institute, and thank Steve Berry, Jinyong Hahn, Andrea Moro, Klaas van’t
Veld and seminar participants at numerous institutions for helpful comments.
.
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1. Introduction

The goal of this paper is to estimate the size and importance of network externalities for

the automated clearinghouse (ACH) banking industry using an equilibrium model of ACH usage.

ACH is an electronic payment mechanism developed by the Federal Reserve and used by banks.

ACH is a network: banks on both sides of a transaction must adopt ACH technology for an ACH

transaction to occur. Network externalities are thought to exist in many high-technology

industries. Examples include fax machines, where network effects may exist because two

separate parties must communicate for a transaction to occur and computers, where network

effects may exist because information on how to use new technology is costly. ACH shares the

network features of fax machines, computers and other technological goods, and hence network

externalities may exist for ACH.

If present, network externalities typically cause underutilization of the network good.

When the network externality is positive, Nash equilibria can be Pareto ranked, and it is possible

that the industry is stuck in a Pareto inferior equilibrium, characterized by even less usage than

the Pareto best equilibrium. The underutilization is particularly relevant for the case of ACH. In

an age when computers and technology have become prevalent, most payments continue to be

performed with checks and cash. By estimating the magnitude of network externalities, we can

further understand the causes of such externalities, uncover how much the usage of ACH differs

from the socially optimal level, and find out whether markets are stuck in Pareto inferior

equilibria. Moreover, by estimating an equilibrium model, we can evaluate the welfare and usage

consequences of policies such as government subsidies of the network good.

This work extends previous research on estimating network externalities for ACH

(Gowrisankaran and Stavins, 2002). That study postulated a simple game which resulted in bank

adoption of ACH being a function of the adoption decisions of other banks in the network, as

well as of a bank’s characteristics, such as its size. The interdependence of preferences for ACH

adoption leads to a simultaneity in the equilibrium adoption decisions of banks, making

identification of the network externalities potentially difficult. Thus, the study proposed three
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methods to identify network externalities: examining whether adoption is clustered (after

controlling for bank fixed effects), using excluded exogenous variables based on bank size to

control for endogenous adoption decisions, and exploiting the quasi-experimental variation from

the adoption decisions of small, remote branches of banks. Each of the three strategies revealed

significant and positive network externalities, even after controlling for factors such as

economies of scale and market power.

This paper builds on the previous research, by specifying and structurally estimating an

equilibrium model of technology adoption for ACH in the presence of network externalities. The

estimation uses similar data to the earlier work, and hence is identified from the same sources.

However, our use of structural estimation has several advantages. First, we estimate a functional

form for the network model that is directly consistent with the underlying theory of consumer

utility maximization. Most importantly, this allows us to identify whether the network effects are

arising at the consumer or bank level. Additionally, this allows us to efficiently combine data on

bank adoption of ACH and volume conditional on adoption, and to handle networks with one

bank in a logical way.2 Second, we can recover the magnitudes of the network externalities, in a

way that uses the power from the combination of all three methods of identification.3 Third, the

structural model leads very naturally to welfare and policy analysis. Note that the empirical

distinction between consumer and bank level network externalities is very important here. With a

subsidy to promote adoption, for example, one would want to know whom to subsidize, banks or

consumers. Lastly, the structural estimation methods that we develop here are novel and

                                                
2 In contrast, the earlier work could either model adoption or bank volume as dependent variables. There were
measurement issues in using the adoption variable, but it is difficult to model the quantity choice outside of a
structural model. Moreover, the previous work had to exclude networks with one bank, because the network
variables, which are based on the fraction of other banks adopting ACH, were not defined for this case.
3 The earlier work was able to recover magnitudes of the network externalities for some of the individual
specifications. However, these specifications were somewhat limited and problematic. For instance, the quasi-
experimental source of variation identified the magnitudes of network externalities, but only for a very small data set
(0.2% of the total observations) of rural banks. The instrumental variables specification identified the network
externalities but at the cost of imposing a linear functional form for the discrete adoption variable. The work on
treatment effects (e.g. Heckman and Robb (1987) and Angrist and Imbens (1994)) suggests that linear probability
models (and their associated heteroskedasticity) cause significant problems identifying causal effects using IV. The
correlation source of variation could not be used at all to identify the magnitude of the network externalities without
structural methods. All of the identification of the magnitudes used a reduced-form profit function for banks that
was not consistent with the underlying consumer preferences.
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contribute to the literature on structural estimation of simultaneous games and network games in

particular.4

Our model of technology adoption is as follows. We consider a localized, repeated static

market with a given set of banks and consumers that are tied to the bank. Each consumer must

make a fixed number of transactions to other consumers evenly distributed throughout the

network; transactions can be made using either checks or ACH. While all banks and consumers

accept checks, some may not have adopted ACH. Some banks are local to the market while

others are branches of big banks based outside the network. In each time period, local banks

decide whether to adopt ACH capabilities, based on whether the marginal profits from ACH

transactions conditional on adoption are greater than the fixed costs of adoption; the decisions of

non-local banks are made exogenously and known to the local banks. Following bank adoption,

each consumer at each bank that has adopted ACH chooses whether or not to adopt ACH. If the

consumer adopts ACH, she must pay a fixed cost of adoption, but then can, and by assumption

will, use ACH for her transactions to those consumers that have also adopted ACH. We model

the consumer fixed costs of adoption with random effects to control for correlated preferences.

The fact that ACH transactions can only be made to other individuals who have adopted implies

that, in equilibrium, consumers are more likely to adopt if more consumers have adopted ACH.

Similarly, banks are more likely to adopt ACH if more consumers and banks are expected to

adopt. There may be multiple equilibria, and the model would not be valid without an

assumption on the observed selection of equilibrium.5 Because the network game is

supermodular, there exist Pareto-best and -worst equilibria.6 We assume that the world is

characterized by some frequency of best and worst equilibria.

Our model is straightforward to solve for a given vector of parameters and draws on

econometric unobservables, but it is not possible to solve the likelihood function analytically.

                                                
4 For instance, Brock and Durlauf (2001) discusses identification for social interaction games, which are
conceptually identical to network externality games. Topa (2001) structurally estimates a social interaction model
using a GMM procedure. We develop a simulated maximum likelihood (SML) estimation procedure for our model,
that can be used to estimate these types of games.
5 See Heckman (1978).
6 See Milgrom and Shannon (1994).
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Thus, we estimate the model using simulated maximum likelihood. To estimate the model, we

solve for the subgame perfect equilibrium of the model for each market conditional on random

effects and evaluate the likelihood of the simulated equilibrium predictions. We then numerically

search for the parameter vector whose simulated equilibrium predictions maximize the

likelihood. We recover confidence intervals for the parameters using the bootstrap. As our

endogenous variable, the number of ACH transactions at each bank, is a truncated continuous

variable, we need to smooth the simulated likelihood, which we do by postulating a measurement

error in the reported quantities.7

In our model, the network effects are captured by four parameters: the consumer and

bank fixed costs of adoption, and the consumer and bank per-transaction benefits from adoption.

For both banks and consumers, the fixed costs and benefits are only identified up to a common

proportion. Our data identifies these two ratios via three separate mechanisms, similar to

Gowrisankaran and Stavins (2003). The first source of identification is covariance restrictions.

We assume that after controlling for bank and market characteristics with random effects,

unobservables affecting adoption are independently distributed across banks in a given market.

Thus, the estimation will find network externalities from this source if, after controlling for the

random effects, the pattern of adoption within a network displays correlations consistent with

network externalities. The second source is exclusion restrictions, based on the fact that the sizes

of other banks do not enter into a bank’s adoption decision. The estimation will find network

externalities from this source if, for example, concentrated markets experience more ACH

adoption. The third source of identification is the variation in adoption decisions by large, non-

local banks. We assume that the adoption decisions of these banks are exogenous, and not made

in response to equilibrium conditions in the market, but allow the customers at that bank to make

their usage decisions in equilibrium.

By using data on both bank adoption and the proportion of transactions completed with

ACH, our model can separately identify the bank network effect from the consumer network

                                                
7 Keane and Wolpin (2000) use a similar technique.
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effect. To see this, note that if there were no consumer fixed cost, then the proportion of

transactions completed with ACH would simply be the square of the transaction-weighted

fraction of banks adopting. As the consumer fixed cost grows, this proportion will fall,

conditional on bank adoption, indicating a more important role to the consumer externality

relative to the bank externality.

The remainder of this paper is divided as follows. Section 2 describes the model. Section

3 describes the data. In Section 4, we detail our estimation procedure, including the computation

of the equilibrium and identification of the parameters. Section 5 contains results and Section 6

concludes.

2. The Model

We propose a simple static model of network externalities at a geographically local level.

Consider a localized network of J banks in market m at time t, each with a given number of

customers. The timing of our game is as follows. In the first stage, banks simultaneously decide

whether or not to adopt the ACH technology. Let mt 1mt JmtA A , ,A  be a set of indicator

functions representing these adoption decisions. In the second stage, consumers decide whether

to adopt ACH for their individual transactions. For a particular transaction (between two

consumers) to be made through ACH, both consumers’ banks must have adopted ACH, and both

consumers themselves must have adopted the technology. Assume that all econometric

unobservables are common knowledge to all firms and are unobservable only to the

econometrician. Lastly, we assume that a consumer at bank j only knows the adoption decision

of bank j, when making her adoption decision. However, in equilibrium, the consumer will have

conjectures about the decisions of other banks. We proceed by first analyzing consumer

decisions conditional on mtA . Then we move to the first stage and analyze equilibrium bank

decisions.
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Since ACH transactions are a small percentage of a bank’s total business, we assume that

the bank’s consumer base and deposits are exogenous to our model of ACH usage. Denote the

deposits under bank j’s control as jmtx . Assume that the number of total (both ACH and check)

transactions that bank j’s consumers engage in at time t is proportional to these deposits jmtx ,

i.e.,

(1) jmt jmtT x .

We assume that the demand for transactions is perfectly inelastic, and hence that prices of

transactions do not enter into (1). We feel that this is a reasonable assumption because the

demand for transactions is in fact likely to be fairly inelastic and because ACH is a small

proportion of transactions.

While we assume that the total number of transactions that consumers make is a constant

fraction of deposits, we do model the proportion of these transactions that are made through

ACH, which we denote as ACH
jmtT . We assume that each bank j has a set of consumers each of

whom needs to make N transactions in period t.8 By definition, if bank j has not adopted ACH

technology, these N transactions must be made through paper checks. If bank j has adopted

ACH, the consumer does have the option of using ACH.

Consider consumer i’s adoption decision conditional on her bank having adopted ACH.

We assume that the consumer obtains net utility:

(2) ACH CHK
ACH CHK 1 2 t tV V (p p )

                                                
8 There are a number of dimensions in which this is a stylized model of consumer behavior – in particular the fact
that consumers all make an identical number of transactions. This is necessary as we have no consumer level data on
behavior.
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from making an ACH (versus check) transaction, where ACH
tp  and CHK

tp  represent the prices of

ACH and check transactions respectively. Note that prices do not vary cross-sectionally, as they

are set nationally by the Federal Reserve.

We assume that the consumer’s transaction partners are allocated randomly among

consumers of banks in the network, that the number of consumers is large enough to treat

consumers as atoms, and that the net utility from an ACH transaction is positive. An ACH

transaction can only occur if both the originating and receiving consumers have adopted ACH.

Since the net utility from using ACH is assumed positive, any pair of consumers who have both

adopted ACH will use ACH to process their transaction. Thus, if mtu  denotes the equilibrium

fraction of consumers who adopt ACH, then the equilibrium probability that a transaction is

made with ACH must satisfy:

(3)

ACH
jmt

j2
mt

jmt
j

T
u

T
.

Thus, mtu  is the square root of the total proportion of ACH (vs. check) transactions in the entire

market.

Using the above definitions, we can write consumer i’s net expected utility from adopting

ACH (vs. not adopting) as

(4) ijmt mt ACH CHK ijmtEU N u (V V ) F
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where ijmtF  denotes the negative of the fixed costs of adopting. From (4), expected utility is the

number of transactions that the consumer will make (N) times the probability that each

transaction will be with another consumer who has adopted ACH ( mtu ), times the utility gain

from those ACH transactions ( ACH CHKV V ) minus the fixed costs of adopting.

In our empirical work, we want to allow for very general unobserved correlation in ACH

transactions across markets, firms, and time, to separately identify the network benefits of ACH

from differences in consumer fixed costs. To allow for this, we specify ijmtF  as:

(5) ijmt 0 3 jmt ijmtF t ,

where t is a time trend, 0  and 3  are parameters to estimate, jmt  is a normally distributed bank

level econometric unobservable, and ijmt  is an iid consumer level logit error. We then allow

jmt  to be both correlated across time for consumers of a given firm and to be correlated among

all consumers in a given network - specifically, we let

(6) A B C D
jmt jmt jm m mt ,

where A
jmt ~ iid N 0,1 ,9 B

B 2
jm ~ iid N 0, , C

C 2
m ~ iid N 0, , D

D 2
mt ~ iid N 0,  and

where A , B , C  and D  are all independent of each other.10

Substituting from (5) into (4), we obtain:

                                                
9 As adoption is a discrete decision, the variance of 1 is a normalization.
10 As we detail the rest of the model, one might note that there are a number of places in the model where one might
include a flexible unobservable structure like jmt in (6). This includes consumers’ marginal benefits, in consumers’
fixed costs, in banks’ marginal profits, in banks’ fixed costs). Because we essentially have one dependent variable in
our analysis (number of ACH transactions), we felt that from an identification perspective it was only prudent to
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(7)
ACH CHK

ijmt 0 mt 1 2 t t 3 jmt ijmt

ACH
0 1 mt 2 t mt 3 jmt ijmt

EU N u ( (p p )) t

u p u t ,

where 1  and 2  are newly defined parameters, defined by CHK
1 1 2 tN p  and

2 2N .11 By integrating out over the logit error ijmt ,12 we get the probability that a

consumer at bank j in market m in time t adopts ACH as:

(8)
ACH

0 1 mt 2 t mt 3 jmt
jmt ACH

0 1 mt 2 t mt 3 jmt

exp u p u t
P

1 exp u p u t
.

Using again the assumption that there are a large number of consumers at each bank, jmtP

is the exact proportion of consumers who adopt ACH. Then, the equilibrium number of ACH

transactions at bank j must satisfy:

(9) ACH
jmt mt jmt jmt jmt mt mt mtT A A T P A u A .

Note that if bank j does not adopt ACH, jmtA 0  and ACH
jmtT 0 . If bank j does adopt, the

number of ACH transactions is equal to the total number of transactions ( jmtT ) times the

proportion of the banks’ customers who adopt ACH ( jmtP ) times the proportion of those

customers’ transactions that are with other customers in the market who have adopted ACH

( mtu ).

We next turn to optimal bank adoption decisions conditional on the above model of

transaction choice. Recall that in the first stage, banks simultaneously decide whether to adopt

ACH technology. Denote the marginal cost to the bank of an ACH and a check transaction as

ACH
tmc  and CHK

tmc , respectively. Assume that there is a per-period fixed cost FC of adopting

                                                                                                                                                            
include one set of flexible unobservables. The reason we put them in consumer fixed costs is because this was the
specification that appears to fit the data best.
11 We fold CHK

tp  into mtu  in (7) because we do not have data on the price of checks.
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ACH technology. Importantly, this is a per-period cost, not a one time sunk cost of adoption. As

such, there are no dynamic optimization issues and firms simply maximize per-period profits.13

Banks compare profits from adopting ACH to profits from not adopting ACH. The

increment in profits from adopting is the number of ACH transactions times the difference in

margins, minus the fixed cost of adoption. This increment is:

(10)
ACH ACH ACH ACH CHK CHK

jmt jmt jmt jmt jmt jmt jmt

ACH E
jmt jmt

T T p mc p mc FC

T markup FC

where fixed costs are divided into a common component ( FC ) and an idiosyncratic component

( E
jmt ). As with the consumer fixed cost ijmt , we normalize E

jmt  to have a standard logistic

distribution. We estimate both FC  and markup.

Bank j will adopt ACH at time t if and only if ACH
jmt jmtT 0 . We can see that adoption

will depend on other banks’ decisions through ACH
jmtT , which is a function of the equilibrium

network adoption mtu . An equilibrium ACH
Jmt

ACH
mt1JmTmt1 T,,T,A,A  requires that all banks’

adoption decisions are optimal conditional on all other banks adoption decisions, i.e.

(11) ACH
jmt jmt jmt 1mt j 1m,t j 1,mt JmtA T A ,...A ,1,A ....,A 0 , j ,

where ACH
jmtT  satisfies (3), (8) and (9).

Some customers in our model will have accounts at branches of banks whose

headquarters are outside the network. We assume that these banks make their adoption decisions

without considering the conditions in the network; i.e. their adoption decisions are exogenous to

                                                                                                                                                            
12 Note that since we do not have consumer level data and include a flexible jmt, the assumption that the logit errors
are iid is essentially WLOG.
13 There is some evidence of this nature of fixed costs in our data as we see a number of banks switching from
adoption to non-adoption between periods. See Gowrisankaran and Stavins (2001) for details.
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the unobservables in the market. However, conditional on adoption, customers at those banks

choose their adoption decisions using the same criteria as banks whose headquarters are in the

network. Thus, if a bank with headquarters outside the network chooses to adopt ACH, the

probability of its customer adopting ACH will be given by (8). As in Gowrisankaran and Stavins

(2003), the non-local banks will provide an important source of identification.

There are often multiple equilibria of this network adoption game. To see this, note that

on one hand, if every customer is using the network good, then any one customer is likely to

want to use it. On the other hand, if no customer is using it, then any one customer is likely to not

want to use it. This same logic is also true at the bank level. Because the value from another bank

or customer adopting ACH is higher if the bank is itself adopting ACH, the adoption game is

supermodular. Several properties follow from supermodularity.14 These properties can easily be

proved directly,15 and do not depend on continuity but only on this monotonicity property. First,

there exists at least one pure strategy subgame perfect equilibrium. Second, there exist one

subgame perfect equilibrium that Pareto dominates all others and one (not necessarily distinct)

subgame perfect equilibrium that is Pareto inferior to all others. Third, the proof of the second

property is constructive, and it provides a very quick way to compute the Pareto-best and -worst

subgame perfect equilibria. This last property is particularly important for estimation purposes.

To ensure an internally consistent specification, we need to specify the selection of

equilibrium.16 We want to estimate a specification that is consistent with the presence of multiple

equilibria, and that can allow us to estimate whether markets tend to be in good or bad equilibria.

Since we observe several separate networks, we want to allow for the possibility that some networks

are in a good equilibrium while others are in a bad equilibrium. Hence, we assume that there is some

frequency that any given network is in the Pareto-best equilibrium, with a corresponding frequency

of being in the Pareto-worst equilibrium. We estimate the frequency as a parameter. Formally, let

                                                
14 See Milgrom and Shannon (1994).
15 See Gowrisankaran and Stavins (2003).
16 Heckman (1978) shows that this type of simultaneous equations model is not well-specified without some such
assumption.
17 Our method of estimating models with multiple equilibria is similar to the method used by Moro (2000) who
treats the equilibrium choice as a parameter.
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m ~ iid U 0,1 . We assume that the market will be in the Pareto-best equilibrium if and only if

m exp 1 exp , where , the probability of being in the Pareto-best equilibrium, is

a parameter that we estimate.18 Note that we do not allow for the equilibrium to vary within a

network across time.

3. Data

Our principal data set is the Federal Reserve’s billing data that provides information on

individual financial institutions that processed their ACH payments through Federal Reserve

Banks.19 We observe quarterly data on the number of transaction originations by bank for the

period of 1995 Q2 through 1997 Q4. ACH transactions can be one of two types: credit or debit.

A credit transaction is initiated by the payer; for instance, direct deposit of payroll is originated

by the employer’s bank, which transfers the money to the employee’s bank account. A debit

transaction is originated by the payee; for example, utility bill payments are originated by the

utility’s bank, which initiates the payment from the customer’s bank account. For each financial

institution in the data set, we have the ACH volume processed through the Federal Reserve each

month and the total amount that the Federal Reserve charged for processing that volume. We

also have the American Banking Association (ABA) number that allows us to link this data with

other publicly available banking data.

The Federal Reserve is currently the dominant provider of ACH services. The Federal

Reserve handled approximately 75 percent of the roughly 3.3 billion on-others commercial ACH

transactions processed in 1996 and approximately 70 percent in 1998.20 The remaining share of

the on-others market was handled by three private sector ACH providers: Visa, New York

                                                
18 Our method of estimating models with multiple equilibria is a generalization of the method used by Moro (2002)
who estimates the equilibrium as a parameter. The difference is that we estimate the frequency of being in either
equilibrium as a parameter, since we observe several regional markets, while Moro (2002) only has one market per
year.
19 We thank the Federal Reserve’s Retail Payments Product Office for making this data set available to us.
20 NACHA and Federal Reserve estimates. Government transactions constituted another 600 million.
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Automated Clearing House (now called Electronic Payments Network), and American Clearing

House (formerly Arizona Clearing House). There are some network linkages between the

different ACH providers. For instance, the Federal Reserve processes ACH items originated by

members of the private networks and vice versa. However, for lack of data, we deal only with

ACH transactions that are billed through the Federal Reserve, and treat Federal Reserve ACH as

the relevant network for the good.

In addition to the ACH billing data, we use a number of publicly available databases to

augment our data. First, we linked the Federal Reserve data with the quarterly Call Reports

database. The Call Reports database provides information on bank assets, deposits, name, and

the zip code of the headquarters for all banks that are registered with the Federal Deposit

Insurance Corporation (FDIC). Several banks opened and closed during our sample period. We

kept these banks in the sample for the quarters in which they were open.

One data problem that we encountered is that a large fraction of the American Bankers’

Association (ABA) numbers—an identifier in the ACH billing data collected by the Federal

Reserve—were not in the Call Reports database. Most of the ABA numbers that did not match

are credit unions or thrifts.

The Call Reports data on assets and deposits are reported by FDIC certificate number.

Banks with a given FDIC certificate number may use one or more ABA identifiers when billing

the Federal Reserve for ACH services. Thus, we aggregated the Federal Reserve ACH volume

up to the FDIC number level. We then excluded all banks with deposits of less than $10 million

for all months in the sample and all remaining credit unions. We were left with approximately

11,000 banks over the 11-quarter sample period.

In our model, we define a network to be a set of banks that are geographically close.

Thus, we needed to find the distance between zip codes. We used Census information to find the

latitude and longitude of zip code centroids, and used the standard great circle formula to find the

distance between centroids.

Our estimation procedure is based on the assumption that a bank’s network is

geographically local. Our basic definition of a network is the set of banks whose headquarters are
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within 30 kilometers of the headquarters of a given bank. Because we are solving for an

equilibrium of the adoption game, we need to also include all the banks that are within 30

kilometers of the banks that are within 30 kilometers, and all the banks that are near these banks,

etc. We performed this process in order to separate our data set of 11,000 banks into mutually

exclusive networks. Each network is self-contained, in the sense that every bank headquarters

that is within 30 kilometers of any bank headquarters in the network is also in the network, and

no bank headquarters in the network is within 30 kilometers of any bank headquarters outside the

network.

One significant data problem is that many banks have become national in scope. As the

relevant network for these banks is likely to be national, our model would not be particularly

meaningful for these banks. Thus, we kept in our sample only banks that are in small markets.

Specifically, we kept all networks with 10 or less bank headquarters total during every time

period of our sample. From this set, we excluded networks where any one bank had more than 20

percent of its deposits outside the network, or where in aggregate, 10 percent of deposits for local

banks were outside the network. We were left with a sample of 456 mutually exclusive networks

comprising 878 local banks, observed over 11 time periods.

Figure 1 displays a map of New England with the networks from this region marked with

asterisks, in order to give some idea about typical networks. One can see that these networks are

comprised of small, isolated towns, such as Lewiston, ME and Nantucket, MA.

As described in Section 2, we use information from banks with branches in the network

but headquarters outside the network, but model them separately from banks with headquarters

in the network. We include in our sample 661 bank branches from banks outside the network.

Table 1 gives some specifics on the networks at every time period, broken down by the

number of banks with headquarters in the networks. Approximately half of the network time-

periods in our sample – 2730 in all – are composed of only one local bank. Another quarter of

the network time-periods have two banks. However, there are large numbers of network time-

periods with up to 10 local banks. Banks in our sample tend to be small banks, with assets of
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around $100 million. The percentage of firms using ACH appears to be quite consistent across

network size, although banks in smaller networks have fewer ACH transactions.

Table 2 examines the non-local banks in these markets. Of note is the large number of

outside banks. For instance, in markets with one local bank, the average number of outside banks

is 2.74. Although the sizes of non-local bank branches and local banks are similar in terms of

deposits, non-local banks adopt ACH much more frequently. This is due to the fact that the non-

local banks are, on average, much larger than the local banks, and than their local branches.

Table 3 gives some specifics on the changes in ACH usage over our sample period. We

can see that the fraction of banks using ACH increased during our sample period. Moreover,

there appears to be a large fraction of networks where every bank uses ACH – more than one

would expect without correlations in usage.

One factor that can affect usage of ACH is its price. Prices that the Federal Reserve

charges banks for ACH processing are set at a fixed rate and adjusted periodically. Figure 2

displays a time series of these prices. Note that the intraregional per-item prices (that is, prices

for ACH items exchanged between banks located within the same Federal Reserve District) did

not change throughout our sample period. At the same time, the interregional prices declined

from $0.014 in 1995 to $0.01 in 1997. In May 1997, the Federal Reserve implemented a two-tier

price system of $0.009 for banks with less than 2500 transactions per file and $0.007 for banks

with more than 2500 transactions per file. We ignore the $0.007 price because we do not have

data on the number of transactions per file (only monthly totals) and because most of the banks

in our sample are sufficiently small as to only pay the higher rate. Because prices are set by fiat

and do not respond to changes in local demand, they may be viewed as exogenous. We do not

have any information on the prices that banks charge to their customers. In addition to per-

transaction costs, banks must file fees of $1.75 per small file and $6.75 per file per large file and

pay an ACH participation fee of $25 per month. Also, banks that offer ACH generally maintain a

Fedline connection for ACH as well as other electronic payment services.
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4. Estimation

Our model is based on a vector of unknown parameters , , ,FC,markup,  and

econometric unobservables , .21 For ease of notation, let us group the unknown parameters

together as . Our estimation algorithm seeks to recover  from the data. In this section, we

describe our estimation algorithm, including the computation of equilibria, and explain how the

parameters of the model are identified.

4.1 Estimation Algorithm

Let us start by defining the data for one network in a given time period. For each bank,

our data contain observed predetermined variables, namely its local deposits jmtx , price tp , time

t, and its local/non-local status. For branches of non-local banks, our data also contain their

observed ACH adoption decisions jmtA , that we assume to be pre-determined. Our data also

contain the observed endogenous variable ACH
jmtT , for local banks only.

Now consider a given parameter vector , , ,FC ,markup , . For this

parameter vector, densities for fixed-cost unobservables  are defined and it is thus possible to

simulate them for a given vector over time. Given a vector of simulation draws on  and

exogenous data, we can easily compute the Pareto-worst and -best subgame perfect equilibrium

of the industry.22 Conceptually, we can then match the weighted sum of the two predicted

equilibria to the data, where the weights depend on the equilibrium selection parameter .

We estimate the model by using simulated maximum likelihood. To understand the

estimation procedure, consider the likelihood for market m for a market with J banks of which

                                                
21 Note that the consumer level unobservables  are aggregated up in the model.
22 In Section 4.2, we provide details on the computation of the Nash equilibrium.
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the first Ĵ  are local and the remaining are branches of non-local banks. Defining

T
ˆm 1mt Jmt Jmt tJ 1mt t 1

X x , ,x ,A , ,A , t,p  to be the exogenous data for this market, the

likelihood is:

(12)
TACH ACH

ˆm 1mt mJmt t 1
L P T , ,T X , ,

where “P” indicates the probability density function. The likelihood specifies the joint

probability of the actions of banks and consumers in market m. Note that this is the joint

probability for the banks and consumers in market m over all time periods, which is necessary

because the unobservables are potentially correlated across time.

As noted above, it is quite easy to simulate data from our model. However, it would be

virtually impossible to evaluate (12) analytically. This suggests the use of simulation estimation.

One approach to simulation estimation would be to use GMM, simulating data from the model

and finding parameters that make moments of this simulated data as close as possible to

moments of the observed data. However, the complicated correlation structure of the model

(correlation within banks across time, within markets across time, and across banks in a given

market) makes it hard to write down a concise set of moments to match. For instance, we would

need a large number of covariance moments. Therefore, we use simulated maximum likelihood

(SML).

Many recent papers use SML to estimate structural models.23 SML is attractive to use

with fully-specified structural models, because one does not have to worry that the specification

of the estimator is influencing the estimated parameters. However, there is a significant technical

problem in using SML to estimate our model: our dependent variables have a continuous

component to them, namely the number of ACH transactions. Therefore, straightforward

                                                
23 See Keane and Wolpin (1997) or Rust (1987) for instance.
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simulation will necessarily result in likelihood zero events, as our simulated transactions will

never match the observed transactions.

To solve this problem, we add measurement error to the outcome variables of the model

as in Keane and Wolpin (2000). This gives the observed data a non-zero likelihood, which makes

it feasible to estimate.24 There are several issues that determined our functional form choice for

the measurement error. First, it is conceptually difficult to define an appropriate measurement

error process because 0 transactions is a common outcome (accounting for 33.5% of local bank

observations), but the number of transactions can be large. We want a log functional form of the

measurement error (i.e. proportional measurement error) to account for the observations with

many transactions but a linear functional form to account for measurement error in the

observations with few transactions. Moreover, there are a number of banks with a positive but

very small number of transactions (21.7% of local bank observations have one or more but less

than ten transactions during a quarter). Many of these observations are likely due to banks that

have not adopted ACH, but are processing a return item, or initiating a transaction as a one-time

favor to a specific customer. Lastly, it is difficult to separately identify the measurement error

process from the structural parameters.

To account for these different factors, we add two probabilities to our data generating

process – first, a probability that the bank reports positive transactions when the bank has not

adopted ACH, and second the reverse, i.e. a probability that the bank reports zero transactions

when the bank has in fact adopted. After a careful look at the number of transactions data for

evidence on the degree of the spurious adoption story above, we set the first probability (i.e. the

probability of reporting positive transactions when a bank hasn’t adopted) to 20%. Again in a

specification motivated by examining the data, we assume that in this 20% case, then the

reported number of transactions follows an exponential decay process, with a decay factor of

0.7.25 In a more arbitrary way, we set the second probability (the probability of reporting zero

                                                
24 Note that this is analogous to kernel smoothing a simulated likelihood.
25 We arrived at the 20% figure by examining the number of banks reporting strangely low numbers of transactions
relative to the banks that had clearly adopted. We then chose the 0.7 figure to match the distribution of these
spurious observations.
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transactions when there are in fact a positive number of transactions) to 5%. We intend to check

our model for robustness with respect to this parameter. When there are positive transactions, we

assume a log normal measurement error process for the case when positive transactions are

actually reported, which happens 95% of the time. We normalize the log normal to a minimum

of 1000, to get proportional measurement error for high numbers of transactions and more than

proportional measurement error for low numbers of transactions. Mathematically, then, if

ACH
jmtT 0 , then

(13)
ACH ACH
jmt jmt jmt

ACH
jmt

log observed T 1000 log actual T 1000 e , with p r ob. 0.95,

observed T 0, with p r ob. 0.05,

while if ACH
jmtT 0 , then

(14)
ACH
jmt

ACH n 1
jmt

observed T 0, with p r ob. 0.8,

observed T n 0, with p r ob. 0.2 1 0.7 0.7 .

We assume that 2
jmt ee ~ N 0, . The only measurement error parameter that we estimate is 2

e .

The simulated likelihood function that we maximize now has ACH
jmtobserved T , and not ACH

jmtT , as

the dependent variable. Formally, the simulated log likelihood for the market m with NS

simulation draws can be written as:

(15)

m

TACH ACH
ˆ1mt mJmt t 1

Ĵ,T
exp ACH ACH

jmt jmt,s m m m,s1 exp
j,t

Ĵ
exp ACH ACH

jmt jmt,s m m m,s1 exp
j,t

log L

log P observed T , ,observed T X ,

P observed T simulated T X , , 1,
1log

NS
1 P observed T simulated T X , , 0,

NS

,Ts 1
,
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where the formulas for the conditional densities of observed ACH
jmtT  in (15) can be evaluated using

(13) and (14), and ACH
jmt,ssimulated T  is computed by solving for the appropriate subgame perfect

equilibrium of the model. Note that since there are only two equilibria, we do not simulate m ,

but instead integrate over the two equilibria, weighting the Pareto-best equilibrium with

probability exp 1 exp .

Recall that a number of our local markets contain bank branches of large banks from

outside the market. As adoption decisions of these banks are likely at a regional or national level,

we treat them as exogenous to our model. However, we do model the adoption decisions of local

consumers of those branches. As we do not observe the number of ACH transactions at these

branches, these consumer decisions do not directly enter the likelihood function (15).

Nonetheless, these decisions do indirectly enter the likelihood function through their effects on

the adoption decisions of local banks and the consumers of these local banks.

4.2 Computation of Equilibrium

In order to compute the likelihood function (15), we need to evaluate

ACH
jmt,s m m m,ssimulated T X , , 0, , which involves solving for the Pareto-best or -worst

subgame perfect equilibrium of the model conditional on a vector of pre-determined variables

and econometric unobservables.

In general, estimation of Nash equilibria can be very computationally intensive. This

computational intensity is a large part of the reason why structural models are notoriously

difficult to estimate. In our case, it is computationally simple to solve for both subgame perfect

equilibria. The underlying reason for this is that the network externality is assumed to always be

positive, which makes the game supermodular. Because of this, the optimal reaction functions

will always be a monotone mapping of the previous stage reaction functions. This is also the
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basis of the proof that there is a Pareto-best subgame perfect equilibrium given in Gowrisankaran

and Stavins (2003), Proposition 1.

Thus, we solve for the Pareto-best subgame perfect equilibrium by using the following

iterative process on adoption of banks and consumers. We start the first iteration by assuming

that all banks and consumers use ACH, i.e. 1 1
1mt JmtA 1, ,A 1  and 1 1

1mt JmtP 1, ,P 1 . In

the second iteration we consider each bank in turn. For bank j, we find the consumer adoption

decisions given the adoption decisions in the first iteration, except with the assumption that bank

j has adopted ACH.26 We then determine whether bank j would find it profitable to adopt given

this level of usage, and enter this as the new strategy. We repeat this process for each bank. This

results in a vector 2
Jmt

2
mt1

2
Jmt

2
mt1 P,,P,A,,A  where each level is weakly less than in the first

iteration. We repeat this process until convergence; convergence is guaranteed by this

monotonicity property. As in Gowrisankaran and Stavins (2003), we can show that the limiting

values N
Jmt

N
mt1

N
Jmt

N
mt1 P,,P,A,,A  form a Pareto-best subgame perfect equilibrium.

Correspondingly, if we start the first iteration by assuming that no one is using ACH, i.e.

0A,,0A 1
Jmt

1
mt1  and 0P,,0P 1

Jmt
1
mt1  and then iterate to convergence, the algorithm

will converge to the Pareto-worst Nash equilibrium.

We can also use variants of this algorithm to solve for the outcomes when local banks

internalize the network externality and when consumers internalize the externality, both of which

we report. For the case of banks internalizing the externality, we solve for the bank adoption

decisions differently, assuming that banks value the difference in profits from all banks resulting

from their adoption decision. For the case of the consumers internalizing the externality, we need

to solve for the optimal cutoff fixed cost for each consumer, which differs from the non-

cooperative case, even conditional on other agents’ actions.

Because of the monotonicity of the reaction functions, our algorithm converges to the

appropriate Nash equilibrium very quickly. For instance, to evaluate one parameter iteration with

10 simulation draws, we require computing a Nash equilibrium for the roughly 500 markets over



23

11 time periods with 10 different simulation draws and 2 equilibria. It takes about 3 seconds to

solve for these 100,000 equilibria on a modern workstation.

To compute confidence intervals for the parameter estimates, we use bootstrap methods,

which are robust to most misspecification, given that observations are iid. For our bootstrap

method, we resample the data with replacement from the original data set, treating a network

over time as the unit of observation. We then recompute the maximum likelihood estimates using

the new data set, and repeat this 50 times to obtain accurate confidence intervals for the

parameters.

4.3 Identification

We now explain what identifies the important parameters of our model. We focus on the

fixed costs and marginal benefits of ACH adoption at both the bank and consumer level. These

are the parameters that govern the extent of the externalities associated with ACH. As noted in

the motivation, we have three sources of identification. Our formal model of equilibrium allows

us to combine all the sources of identification into one estimation procedure that uses all these

assumptions.

If we knew the marginal benefits of ACH adoption (for banks the relative markup for

ACH, for consumers the relative utility from an ACH transaction), the levels of adoption

decisions would identify the fixed costs of adoption. In other words, the observed proportion of

bank adoption would identify FC , and the observed proportion of consumer decisions would

identify 0.27 Thus we focus on identification of the marginal benefits of adoption.

A first source of identification comes from the (assumed exogenous) adoption decisions

of large, non-local banks. Consider a local bank j and its consumers. As the adoption of non-

local banks exogenously increases, the equilibrium adoption rate of bank j’s consumers will

                                                                                                                                                            
26 Recall that consumers of bank j observe the decisions of bank j before making their adoption decisions.
27 Note that there is a selection issue here, since we do not observe the proportion of consumers adopting for banks
that do not adopt.
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increase. The extent of this increase will identify the relative utility that consumers gain from an

ACH transaction. The exogenous increase in adoption of non-local banks will also increase the

probability that bank j adopts ACH. Note that this comes from two sources – first the fact that

bank j’s consumers are more apt to adopt, and second that the number of transactions each of

those consumers would make conditional on adoption would increase. Put another way, even if

the adoption decisions of bank j’s consumers were not affected by the increase in non-local

adoption, bank j would still be more likely to adopt (due to the increase in transactions for

existing adopters). The extent of the increase in bank j’s adoption (or adoption probability across

banks in different markets) will identify the relative markup from an ACH transaction.

A second source of identification comes from the assumption that market structure (i.e.

the deposit sizes of banks) is exogenous. Consider banks in two sets of markets – the first set (A)

consists of monopolies, the second (B) duopolies. With network externalities, note that banks in

the A markets should be more likely to adopt, as the bank level externality is completely

internalized. As the relative markup banks obtain from ACH transactions increases, we should

see bigger differences in adoption probabilities between the two sets of markets. Thus,

differences in adoption probabilities across different types of markets should identify the relative

markup. A last source of identification of network externalities we examine comes from

correlation in adoption decisions, both at the bank and consumer level. We can test for the

robustness of both of these sources of identification. The second source can be eliminated by

allowing the relative markup of ACH to checks to differ based on market power. The third

source is only used if we set D
mt 0 ; thus, our base model does not allow for this source of

identification.

All of these sources of identification will yield different effects depending on whether the

network externality is at the consumer or bank level. To see this, note that if there are no

consumer fixed costs of adoption, we can precisely predict the ACH volume conditional on bank

decisions: it is the square of the fraction of banks that adopt. As consumer fixed costs increase,

there will be less transactions conditional on a set of bank adopters, particularly when the set is
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small. Thus, the extent to which numbers of ACH transactions increase moving from markets

with different numbers of bank adopters will identify the consumer level parameters, while the

extent to which bank adoption changes will identify the bank level parameters.

Lastly, the equilibrium selection parameter  will be identified by differences in usage

given different industry structures. For instance, as the number of firms increases, the increasing

externality should make it more likely that there is a Pareto-worst equilibrium that is distinct

from the Pareto-best equilibrium. Thus, we can identify the equilibrium selection parameters by

examining whether there is increased unexplained variance in behavior for networks with more

than one bank that does not exist for networks with one bank. Note that if we saw a high variance

in the usage levels in all markets, this could be evidence of high variances of the random effects

, not necessarily multiple equilibria.

5. Results and Implications

Using the simulated maximum likelihood developed in Section 4, we have estimated

structural parameters for our base model and various specifications. We first present the results

and then present policy experiments.

5.1 Base results

Table 4 gives base parameter values. For the base specification, we allow for market-

specific time-varying random effects. Thus, we are only using our first two sources of

identification.

Most of the parameters listed in Table 4 appear to be reasonable. For instance, the

coefficient on time trend is positive, suggesting that there is increased acceptance of

technological goods and that a portion of the network externality is from outside the 30 kilometer

area of our model. The ACH price coefficient is negative. On the consumer side, both consumer
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fixed costs and marginal benefits are positive and the ratio appears reasonable. On the other

hand, for banks, the estimated mean fixed costs of adoption seems very small in comparison to

the normalized net markup.

The correlation parameters are interesting in that the firm specific (constant over time)

and market specific (constant over time) random effects appear to be considerably more

important than the time varying effects A
jmt  and D

mt . This appears to suggest that there is not

much varying over time in these markets, at least with regard to unobservables. The last

important parameter is the equilibrium selection parameter . The estimated value of the

parameter, -0.461, suggests that approximately 39% of markets are in the Pareto best

equilibrium.

Virtually all of the parameters in Table 4 are precisely estimated. Only one of the thirteen

parameters, D , is not significantly different from zero at the 1% level. The high precision of

the estimates is characteristic of structural estimation models.

Table 5 examines the fit of the model. Since we assume that the data is characterized by

measurement error, we compare the predictions of the model with measurement error to the data.

The model matches the percentage of banks adopting in the data very precisely. The model

predicts somewhat more ACH transactions than we observe in the data, and predicts a somewhat

lower standard deviation of the number of ACH transactions across banks. However, the relative

increase in the number of transactions between the start and end of our sample period mirrors the

data.

We also report various correlations as generated by the model and the data. The model

captures the correlations between bank deposits and the number of ACH transactions quite well.

The model does fairly well at capturing the cross-time correlation in bank adoption decisions and

in the number of ACH transactions. However, the model somewhat overpredicts the correlation

between adoption decisions and number of ACH transactions for banks in a network at a given

time.
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Although the parameter estimates are interesting in of themselves, it is much more

valuable to examine the impact of the parameters on the estimated equilibrium. This is done in

Table 6. We look at 3 statistics of the estimated equilibrium – the percentage of banks adopting

ACH, the percentage of consumers adopting, and percentage of overall transactions done through

ACH. At the estimated parameters, 79.4% of banks are adopting, 24.6% of consumers are

adopting, and 8.3% of all transactions are ACH. Note that according to our model, in a given

market the percentage of ACH transactions should equal the percentage of consumers adopting

squared. The reason that this is not true in the data as a whole is due to the convexity of this

function – there are some markets where lots of consumers adopt and some where very few do.

The second row of Table 6 examines what our model predicts if there were no mean bank

fixed costs of adoption. The difference between this and the first row is indicative of the level of

the network externalities at the bank level. Although many more banks adopt ACH, the

differences in transactions processed with ACH are small. This is due to our small estimated

bank fixed cost of adoption, which implies that the holdup from consumers not using ACH is not

due to their banks. On the other hand, when we eliminate the consumer mean fixed cost of

adoption, there are big changes in the equilibrium proportion of consumers that adopt ACH.

Consumer adoption increases to 54.5%, a number that is still far less than 100% due to the

random component of fixed costs. In response to this expected adoption by consumers, banks

also increase adoption, to 98.2%. In this equilibrium, 33.1% of all transactions are done using

ACH. These estimates suggest that consumer fixed costs are the primary impediments to ACH

adoption.

The next two rows of Table 6 examine the existence of multiple equilibria at our

estimated parameter values by forcing either the Pareto-worst or the Pareto-best equilibria. The

results across the two equilibria are very similar, though not identical. This suggests that at our

estimated parameters, multiple equilibria are not a significant issue.

Lastly, we investigate what would happen if some of these externalities could be

internalized. There is no natural way to compare consumer utility to firm profits. As a result, we

cannot solve for the first best outcome, i.e. if a social planner controlled all agents in the
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economy. However, we can investigate what happens if all the local banks coordinated decisions

to maximize joint profits, or if all consumers coordinate to maximize joint utility. Results are in

the last two columns of Table 6. As might be expected, joint profit maximization of all the local

banks does not change matters much. On the other hand, joint utility maximization of consumers

does increase adoption, causing the number of ACH transactions to rise by about 16 percent,

from 8.3% of all transactions to 9.6% of all transactions. While it is difficult to assess the

tradeoff between consumer and bank utility, these two results taken together suggest that

complete joint surplus maximization would also yield about 16 percent more transactions than

the equilibrium outcome. Thus, while the world is not at the first-best usage level, even with

complete surplus maximization most transactions are completed with checks.

5.2 Policy Experiments

The above discussion suggests that network externalities are really biting at the consumer

level rather than the firm level. It appears to be consumer fixed costs which are limiting the

adoption of ACH. In contrast, bank fixed costs are small and not significantly preventing ACH

use. This suggests that government policy, particularly at the consumer level, might increase

welfare. We examine this possibility in Table 7.

The first column of Table 7 again examines properties of the estimated equilibrium. In

addition to statistics on consumer and bank adoption, we report welfare measures – the sum of

firm profits and the sum of consumer utilities. We have no way of converting these measures

into dollars, so it is important to realize that these measures are not comparable to each other.

Consumer utility is measured in “utils”, and profits are measured in “profit units.”

The second two columns essentially repeat two of the experiments of the prior section.

We remove, sequentially, consumer and bank mean fixed costs through a government subsidy.

Rows 6 and 7 of the table report the cost to the government (in profit units and utils respectively)

of these policies. Rows 8 and 9 report the total profit units (bank profits – government cost in

profit units) and total utils (consumer utils – government cost in utils) resulting from these
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policies respectively. Again, the consumer subsidy is far more effective at increasing ACH

usage. Bank fixed costs are simply not large enough to prevent adoption. Also note the extremely

large benefits to banks from this consumer subsidy, as they are able to make considerably more

variable profits.

Considering a subsidy of mean fixed costs is rather arbitrary, as there are distributions of

these fixed costs at both the bank and consumer level. Columns 4 and 5 consider very large

subsidies to banks and consumers, subsidies large enough to get virtually everyone to adopt (note

that since there are some non-local banks who do not adopt, we cannot get all consumers to

adopt). Even in this case, there are extremely limited changes with the bank subsidies.

We cannot make any conclusive evaluations of the above policies. This is because in all

cases, either total utils or total profits go down as a result of the policy. Since we have no way of

relating the increases in profits to the decrease in utils (or vice-versa), we cannot conclude a

policy is welfare improving. Note why, for example, with the mean consumer fixed cost subsidy,

total utils go down. This is because this subsidy is too large, generating inefficient adoption

decisions by consumers. With a smaller, more efficient, consumer subsidy, we might hope to

keep even or increase total utility, as well as total profits. Column 7 exhibits results from the

smallest consumer subsidy (approximately) that does this, 25% of their mean fixed cost. With

this subsidy, total utils are unchanged, but firm (and total) profits increase by more than 50%.

This subsidy therefore unambiguously increases welfare in the market. Note that this is likely not

an optimal policy - to determine that we would need to devise a way to compare profits to utility.

6. Conclusions

In this paper, we have estimated a structural equilibrium model of network externalities

in the ACH banking industry in order to estimate the causes and magnitudes of network

externalities for this industry. Our parameter estimates are precisely estimated and fit the data

reasonably well.
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We find that bank fixed costs from ACH adoption are low and do not explain why ACH

is not more widely used. In contrast, consumer fixed costs of ACH adoption are substantial, and

are a major explanation for the lack of ACH usage. Thus, changes that lower the consumer fixed

cost of ACH adoption will encourage adoption and usage of ACH. As electronic payment

technologies become more widely accepted and used at the consumer level, we will expect to use

vastly more ACH transactions.

Although we estimate that the Pareto-worst equilibrium is not identical to the Pareto-best

equilibrium, we find that the two equilibria are very similar to each other in their implied ACH

adoption decisions. Because the bank fixed costs are so low, the equilibrium bank ACH adoption

is very close to the first best adoption level. In contrast, the first-best consumer adoption level

implies about 16% more ACH transactions than the observed equilibrium. Policies that subsidize

a portion of consumer fixed costs can unambiguously increase welfare.
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Table 1: Characteristics of Banks in Network

Number of
banks based in

network

Number of
networks/time

periods
Mean deposits

Mean percent of
banks using

ACH

Mean ACH
transactions by

bank

1 2730 $45.8 Mil. 64.3% 457.7

2 1310 $49.5 Mil. 64.5% 452.0

3 367 $59.4 Mil. 67.8% 1217

4 172 $73.0 Mil. 74.4% 1348

5 83 $50.1 Mil. 74.2% 912.5

6 51 $125 Mil. 70.3% 3485

7 31 $139 Mil. 73.7% 2155

8 41 $57.5 Mil. 66.2% 991.5

9 39 $79.9 Mil. 69.5% 897.9

10 25 $81.6 Mil. 57.6% 732.2
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Table 2: Characteristics of Branches of Non-Local Banks

Number of
banks

based in
network

Mean
number of
non-local

banks

Std. dev. of
number of
non-local

banks

Mean
deposits
within

network by
non-local

banks

Mean total
deposits by
non-local

banks

Percent of
non-local

banks
using ACH

1 3.43 2.74 $59.8 Mil. $10.4 Bil. 88.5%

2 2.50 2.38 $60.2 Mil. $6.8 Bil. 85.8%

3 4.05 3.21 $96.0 Mil. $9.2 Bil. 89.0%

4 4.34 3.32 $92.0 Mil. $8.6 Bil. 88.5%

5 6.15 5.16 $187 Mil. $4.8 Bil. 83.3%

6 5.67 5.20 $96.9 Mil. $8.5 Bil. 84.1%

7 9.13 4.26 $78.6 Mil. $5.0 Bil. 91.9%

8 6.80 4.65 $95.2 Mil. $7.9 Bil. 86.0%

9 8.72 5.80 $104 Mil. $6.9 Bil. 87.4%

10 6.56 3.80 $120 Mil. $4.9 Bil. 81.1%

Note: Table based on observations kept in sample.
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Table 3: Usage Over Time by Banks in Network

Time Period # of networks with no
firm using ACH

# of networks with
some, but not all,
firms using ACH

# of networks with all
firms using ACH

1995: Q2 14.3% 57.1% 28.6%

1995: Q3 16.8% 57.4% 25.7%

1995: Q4 17.3% 55.8% 26.9%

1996: Q1 14.3% 55.6% 30.1%

1996: Q2 10.9% 51.6% 37.5%

1996: Q3 12.5% 51.0% 36.5%

1996: Q4 8.4% 50.3% 41.4%

1997: Q1 7.3% 46.1% 46.6%

1997: Q2 5.8% 41.3% 52.9%

1997: Q3 7.1% 42.9% 50.0%

1997: Q4 6.1% 42.2% 51.7%

Note: Table includes networks with 2 or more banks kept in sample.
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Table 4: Parameter Estimates

Parameter Value Standard Error

 (transactions coefficient) 20.43*** 0.3609

0 (consumer fixed benefit) -2.174*** 0.0597

1 (consumer marginal benefit) 0.556*** 0.0946

2 (price coefficient) -0.235*** 0.0603

3 (time coefficient) 0.063*** 0.0033

Markup 338.9*** 0.0888

FC  (bank fixed costs) 7.942*** 0.2732

equilibrium selection parameter) -0.461*** 0.0242

A (std. dev. of random effect A
jmt ) -0.0642*** 0.0218

B (std. dev. of random effect B
jm ) 1.939*** 0.0757

C (std. dev. of random effect C
m ) 0.485*** 0.2000

D (std. dev. of random effect D
mt ) 0.0096 0.0159

e  (std. dev. of measurement error jmte ) 0.270*** 0.0136

*** Significant at 1% level.
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Table 5: Goodness of Fit

Moment Data

Model
(with

measurement
error)

% of banks adopting 0.665 0.678

Mean # of transactions 826 1,172

Standard deviation of # of transactions 3.95 3.02

Mean # of transactions, Q2:95 517 727

Mean # of transactions, Q4:97 1,253 1,627

Correlation between deposits
and bank adoption 0.182 0.150

Correlation between deposits and
# of transactions 0.424 0.375

Correlation between bank adoption decisions
for a given bank at Q2:95 and Q4:97 0.427 0.310

Correlation between # of transactions
for a given bank at Q2:95 and Q4:97 0.652 0.782

Correlation between bank adoption decisions
within a network / quarter 0.083 0.301

Correlation between # of transactions within a
network / quarter 0.112 0.209

Sample includes local banks only.



37

Table 6: Economic Significance of Parameters

Change % of banks
adopting

% of consumers
adopting

% of transactions
completed with

ACH

Estimates 79.4% 24.6% 8.3%

No mean bank fixed costs 96.5% 24.6% 8.3%

No mean consumer fixed
costs 98.2% 54.5% 33.1%

Always in bad equilibrium 79.3% 24.5% 8.3%

Always in good equilibrium 79.5% 24.5% 8.3%

Local banks internalize
externality 81.0% 24.6% 8.3%

All consumers internalize
externality 80.3% 26.4% 9.6%
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Table 7: Policy Experiments

Policy None
Subsidize
Consumer
Mean FC

Subsidize
Bank

Mean FC

Very
Large

Consumer
Subsidy

Very
Large
Bank

Subsidy

Subsidize
0.25 Cons.
Mean FC

% of Local
Banks

Adopting
79.56 97.94 96.44 99.98 100 87.53

% of
Consumers
Adopting

23.64 53.66 23.73 93.83 23.73 30.41

% ACH
transactions 7.69 32.13 7.70 89.57 7.70 11.84

Firm Profits 7.25e6 30.66e6 7.31e6 85.76e6 10.81e6 11.22e6

Consumer
Utility 2.56e5 5.09e5 2.63e5 286.07e5 2.64e5 3.03e5

Cost to Govt.
(in profit units) 0 0 0.07e6 0 3.5e6 0

Cost to Govt.
(in utils) 0 3.30e5 0 288.72e5 0 0.47e5

Total Profits 7.25e6 30.66e6 7.24e6 85.76e6 7.23e6 11.22e6

Total Utility 2.56e5 1.78e5 2.63e5 -2.65e5 2.64e5 2.56e5
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 Figure 2: Per-item origination fees for Federal Reserve ACH Processing

Note: In May 1997, volume-based pricing was introduced, with price set to 0.9 cents per item for
files with less than 2500 items and 0.7 cents per item for files with 2500 or more items.
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