

NET Institute*

www.NETinst.org

Working Paper #03-14

October 2003

Orchestrating Web Services for Networked Enterprise Collaboration

Ananth Srinivasan and David Sundaram

Center of Digital Enterprise
Department of Management Science and Information Systems

University of Auckland Business School
Auckland, New Zealand

* The Networks, Electronic Commerce, and Telecommunications (“NET”) Institute,
http://www.NETinst.org, is a non-profit institution devoted to research on network
industries, electronic commerce, telecommunications, the Internet, “virtual networks”
comprised of computers that share the same technical standard or operating system, and
on network issues in general.

http://www.netinst.org/
http://www.netinst.org/

ORCHESTRATING WEB SERVICES FOR NETWORKED ENTERPRISE
COLLABORATION1

Ananth Srinivasan

and
David Sundaram

{a.srinivasan,d.sundaram}@auckland.ac.nz

Center of Digital Enterprise

Department of Information Systems and Operations Management
University of Auckland Business School

Auckland, New Zealand

1 This project was partially funded by a grant from the Net Institute, New York.

 1

ORCHESTRATING WEB SERVICES FOR NETWORKED ENTERPRISE
COLLABORATION

Abstract

Ananth Srinivasan

and
David Sundaram

Center of Digital Enterprise

University of Auckland Business School
Auckland, New Zealand

Internet technologies are widely recognized for their promise as enablers of collaborative

computing both within and among organizations. The presence of heterogeneous systems based
on different technological platforms in organizations makes the implementation of network
collaboration very complex. The approach taken for the most part to deal with this issue has been
based on Enterprise Application Integration. The major drawback of this approach is the
dependence on proprietary solutions that are not based on open standards. When the need for
inter-organizational collaboration arises, such solutions hinder the smooth exchange among the
participating organizations due to their complexity and lack of interoperability.

“Web Services” is a new class of internet based, open standards technology that offers

the promise of resolving these problems. Web services technologies are offered as the new
generation of electronic commerce enablers. What is currently missing is a compelling
implementation framework for the deployment of this technology in organizations. A lack of
clear understanding about how to deploy Web Services to enable inter-organizational
collaboration will impede the uptake of this promising new technology. In this project, our aim is
to construct and test a valid implementation framework for Web Services. Such a framework will
enable effective inter-organizational network based computing which will have a positive effect
on organizational productivity. The emphasis of our work will be to support decision oriented,
collaborative business processes.

We propose a conceptual framework for building systems that utilize Web Services

technologies to enable networked organizations to automate collaborative processes. We take the
view that it is useful to conceptualize organizational service chains in terms of workflows and
build a framework for orchestrating such services. We articulate a conceptual framework along
these lines and present specific ways by which the implementation of the framework using Web
Services technologies could benefit inter-organizational collaboration. Our primary objective of
building prototypes that demonstrate the validity of such a framework was successful. Two
prototypical systems that demonstrate the validity of such a framework were built. They now
offer a platform for ongoing testing and refinement. We believe that such prototypes will serve
as useful tools for organizations that are investigating the use of this emerging technology to
facilitate networked collaboration to improve productivity.

Key Words: Web Services Orchestration; Inter-organizational systems; Enterprise collaboration

 2

Introduction and Problem Background

Internet technologies are widely recognized for their promise as enablers of collaborative

computing both within and among organizations. The presence of heterogeneous systems based

on different technological platforms in organizations makes the implementation of network

collaboration across organizational boundaries very complex (Stal, 2002). The approach taken

for the most part to deal with this issue has been based on Enterprise Application Integration

(McKeen and Smith, 2002). The major drawback of this approach is the dependence on

proprietary solutions that are not based on open standards (Fremantle, et al 2002). When the need

for inter-organizational collaboration arises, such solutions hinder the smooth exchange among

the participating organizations due to their complexity and lack of interoperability. “Web

Services” is a new class of internet based, open standards technology that offers the promise of

resolving these problems (Gottschalk, et al, 2002; Johnston, 2002). What is currently missing is a

compelling implementation framework for the deployment of this technology in organizations.

A lack of clear understanding about how to deploy Web Services to enable inter-organizational

collaboration will impede the uptake of this promising new technology. In this project, our aim is

to construct and test a valid implementation framework for Web Services. Such a framework will

enable effective inter-organizational network based computing which will have a positive effect

on organizational productivity. The emphasis of our work will be to support decision oriented

business processes.

 3

Web Services: The Essentials

Web Services promise cheap, reliable, flexible and scalable computing. Further, their

deployment and maintenance is not very complex. Though much hype still surrounds them most

practitioners agree that they offer a significant step forward in leveraging the power of the

Internet. Web services have received wide spread support from industry leaders. These

organizations have been instrumental in driving the setting of standards and specifications for the

development of Web Services and their related technologies. This task is overseen currently by

the W3C Working Groups (http://www.w3c.org/2002/ws). Another possible reason for this

enthusiasm is summarized well by Johnston (2002), who suggests that while integrating

technologies already exist, limitations such as complexity and verbosity have impacted their

widespread use. Web Services address these issues by steering a middle road between

complexity and verbosity.

A brief definition of Web Services highlights the following: they are applications

(operations and tasks) that can be developed in modular, independent fashion and made available

through their interfaces across heterogeneous systems using standard internet protocols (Ferris

and Farrell, 2003; Gottschalk, et al, 2002) . A Web Service is less a single tangible thing than an

interwoven mesh of technologies and standards that work together to achieve their shared goals.

A Web Service architecture requires three fundamental operations: publish, find, and bind

(Gottschalk, 2000). Service providers publish services to a broker while service requesters find

required services using a broker and bind to them (Figure 1).

 4

Figure 1: Publish, Find, and Bind (Source: Gottschalk, 2000)

Each of these fundamental operations is enabled through one or more of the several technologies

and standards that we encompass in the term “Web Services”. At the heart of Web Services lies

XML. The Web Service Description Language (WSDL), and the Simple Object Access Protocol

(SOAP) are two XML-based technologies that Web Services use. WSDL is used to publish a

Web Service and act as an instruction manual for binding to it. SOAP is used to encode and

transfer messages to and from Web Services.

 “WSDL offers an XML grammar for describing Web Services as collections of

communication endpoints capable of exchanging messages” (Christensen et al., 2001). WSDL

definitions serve as a guide to automate the communication of distributed applications. A

WSDL document defines services as collections of network endpoints/ports. In WSDL, a port is

defined by associating a network address with a reusable binding. A collection of such ports

define a service.

Service
Broker

Service
Provider

Service
Requester

Publish Bind

Find

 5

SOAP, like WSDL, is also based on XML. SOAP has been designed as a lightweight

protocol for exchanging information in a distributed environment (Box et al., 2000). Web

Services use SOAP messages to communicate. A SOAP message consists of three parts 1) an

envelope that defines a framework for describing what is in a message and how to process it 2) a

set of encoding rules for expressing instances of application-defined data types and 3) a

convention for representing remote procedure calls and responses. The goal of SOAP is to break

down the barriers between distributed computing platforms. It accomplishes this through

simplicity, flexibility, platform neutrality, and finally by being text-based. Thus SOAP allows

distributed computing communications over the Web to be standardized.

Examples of Web Services Applications

 To illustrate important dimensions of the use of web services, we describe the

deployment of the technology in a variety of organizational settings. These examples help us

better understand the full range of issues that arise in the use of the technology and the specific

organization processes that are impacted by them. They also help us begin to articulate a sensible

framework that captures the various dimensions in a manner that fosters systematic development

of ideas for web service implementation.

 General Motors spends about $4 billion a year on acquiring new software

(Business Week Online, June 24, 2003). In an effort to curtail expenditure on the acquisition of

new software, GM is deploying web services to upgrade existing software and integrate

applications across its many systems. The technology is being used to act as a bridge between a

diverse set of systems within the organization. With increasing amounts of software placed in

 6

vehicles themselves, the objective in the future is to use web services to upgrade software that is

resident in these vehicles. The technology can help cut the cost associated with upgrading such

software. Another useful application that GM sees for the technology is to connect its parts and

inventory data in flexible ways with its suppliers. Once issues related to security are resolved

satisfactorily, the push will be toward tying together data from a diverse set of systems that span

organizational boundaries.

 Putnam Lovell Securities, an investment bank, uses web services to automate the

process of customizing the content of their research department to suit the particular needs of

their client base (Nghiem, 2002). The emphasis on the use of web services was on integrating a

variety of applications. Both information about customers and research content of interest to their

clients are applications that reside outside the organization and are accessible through the

internet infrastructure. The leverage gained by web services technologies is the automation of the

collection of research content distributed by multiple sources and the matching of the content to

the specific requirements of the investment clientele. Real value is added by conforming to the

specific formatting requirements of various clients whether they are investors or distributors of

research content. For example, individual clients can receive tailored information by email; a

distributor can get the same information in a portable document format. Web services has helped

the organization reduce the costs, increased the level of personalization, and improved the speed

with which information gathered from multiple sources external to the organization are

distributed to clients.

 7

 Pantechnik International is a European based organization that has implemented

web services technologies in the logistics and transportation industries (Nghiem, 2002;

http://www.diffuse.org/Presentations/PeterNicholls.ppt). The company offers logistics

information services to connect large suppliers or distributors with their carriers and customers.

The company offers relevant information that is accessible in a transparent manner to any of the

parties in the supply chain in a manner that is tied to the internal business processes of these

organizations. Providing relevant information seamlessly across organizational boundaries that

helps organizations connect their systems with each other is the value added by Pantechnik. The

business processes that are defined within its platform are at an appropriate level of detail to

enable participant organizations to create relevant data by matching and integrating a set of

automated processes. The combination of integrating data from diverse systems in a manner that

allows clients to orchestrate multiple processes to reflect transactions are hallmarks of the

effective use of web services technologies by Pantechnik.

 Talaris Corporation (Nghiem, 2002; http://www.talaris.com) is an excellent

example of the use of web services technologies to deploy a services based procurement platform

for client organizations. Web services technologies are used to maintain a private registry of

service providers and detailed profiles of individual clients. When a client organization requires a

business service such as a meeting facility or an airline reservation, the registry is processed in a

way that matches the specific requirements of the client organization and a solution is offered.

The strengths of the application in Talaris lie in (a) compliance with specific client organization

procurement policies (b) knowledge of individual client profiles to produce a personalized

solution and (c) offering services from suppliers who are approved by client organizations.

 8

 There are many common threads that run through the various applications

described above. First is the ease of integration that is offered by web services technologies. The

use of open, non-proprietary standards that can be deployed over the internet is perhaps the

prime catalyst that encourages its use. Second, the ability to integrate diverse systems regardless

of whether they are within a single organization or span organizational boundaries addresses a

problem that has plagued organizations for many decades. Third, the ability to provide

personalized solutions to information needs based on a deep understanding of client profiles

makes it possible to accurately align specific business processes with deployment of the

technology. Perhaps the key mitigating factor lies in issues related to the security aspects of

transporting potential sensitive information across organizational boundaries. Currently, many

organizations are dealing with this issue with customized solutions until security standards are

well established within web services technologies. The focus of this paper however, is on

investigating the variety of applications that are enabled by web services technologies by

approaching the design problem in a systematic manner.

Web Services: High Level Issues

Web Services exist as a collection of technologies and standards rather than any

individual technology or standard. It is useful to consider a range of high level issues that enable

us to better understand the design implications of constructing Web Services in organizational

contexts. In this section, we integrate several observations that have been made with regard to

Web Services applications that provide a useful identification about what these issues are.

 9

The first issue relates to considerations of how Web Services need to be managed with

specific regard to collaboration among enterprises. Kreger (2003) mentions the importance of

quality of service, security, and management of Web Services as critical infrastructural concerns

in the delivery of Web Services. Some of the operational issues that arise as a result of this are

discussed here. The binding of a Web Service refers to how loose or tight its coupling with other

Web Services is. If Web Services are loosely coupled, we call them ad-hoc. Tightly coupled

Web Services are considered negotiated. Web Services may be published via a federated

manager (e.g. a UDDI registry), which automates to a large degree their discovery and

brokerage. On the other hand they may be independently published to be discovered by explicit

notification or chance. The reach of a Web Service refers to its ability to 1)be used by other

organizations and 2) use other Web Services.

A second issue relates to the complexity and dynamism of the nature of the service that

is provided. A Web Service may perform a range of tasks that vary from complicated functions

that return manipulated results (such as the valuation of options as provided by

http://www.xignite.com), to simply acting as ‘dumb’ data storage (Andrews, 2003). Further,

Web Services may provide result updates in response to repeated execution of a particular query,

thereby exhibiting its dynamic nature (Berry, Chase, Cohen, Cox, and Vahdat, 1999).

A third issue relates to multiple embedded services to support a single business process.

We refer to this issue as the depth of a Web Service in terms of the direction that it provides for

purposes of alignment with a business process. Is the Web Service an aggregation of other

 10

nested Web Services (Bloomberg, 2002), or does it stand on its own? Often this dimension is

transparent to users of the service.

A fourth issue relates to the ability of Web Services to leverage existing functionality in

organizations by providing streamlined application integration pathways. Web Services may be

entirely new pieces of functionality, or they may act as wrappers for existing functionality.

When used as wrappers, Web Services expose the API’s of existing (legacy) components to give

them the advantages that Web Services have to offer without having to recode existing

functionality. This aspect is very significant in the context of Enterprise Application Integration

(EAI) and seamless interoperability of software from diverse systems (Almeida, Pires, Sinderen,

2003).

Two final issues that relate to Web Services applications and/or environments that have been

developed so far are versatility and usability. Versatility is the ability of a product to be used for

a variety of applications, support different paradigms, operate in multiple application domains,

etc. Usability is the ability of a product to be effectively used by a community that possesses a

broad range of skills. High usability is usually achieved at the expense of versatility but this

could have the advantage of the user/decision maker being shielded from the complexity of the

system. In Figure 2 below we have illustrated the trade-offs involved in usability vs. versatility.

Most Web Services applications and Orchestration Environments lie on this curve. In this paper

we explore two prototypes that were developed as part of our research:

• Prototype 1: A spreadsheet based Web Services Application that integrates a number of

web-services to support a complex decision situation

 11

• Prototype 2: A workflow oriented Web Services Orchestration Environment that

dynamically allows us to integrate Web Services to create scenarios that meet changing

needs. While shielding naïve users from problem complexity the prototype provides

versatility, usability, and customisability

In these prototypes we explore the various dimensions discussed above as well as their ability to

satisfy the versatility and usability dimensions (Figure 2).

Figure 2: Trade-offs between Usability and Versatility

In many cases, Web Services will not exist at the extremities of any one of the above

dimensions. However, the dimensions provide a useful set of ideas for the consideration of how

organizations can usefully implement Web Services to fit existing business processes.

Versatility

Prototype 1

Prototype 2

Usability

High

Low

Low High

Most Web Services
Applications and

Orchestration
Environments lie on

this curve.

 12

Service Chain Orchestration

Recent work by Fremantle, et al. (2002) puts forward the idea of a service oriented vision

for enterprise architecture, where components described in WSDL are registered and called upon

by other components when they are required. In the service oriented vision, components are

choreographed to form a chain of components, performing various enterprise tasks. We call

these integrated components service chains.

Actually, Web Services can be wrappers for service chains. A service chain is composed

of many linked Web Services, but it can be represented by a single Web Service. A service chain

that has its start and end points exposed allows itself to be conveniently wrapped for reuse

elsewhere via a Web Service. For this reason, the dimensions of the taxonomy described above

apply equally to service chains as well as individual Web Services, because they may in some

cases be one and the same thing.

The service oriented vision is driven largely by two themes. The first is e-Business, in

which organizations are increasingly exposing and integrating their processes. The second is

business process automation, which is the systematic integration of everyday business processes

by integrating core systems. The service oriented vision has many benefits including the ability

to expose existing functionality through WSDL, moderating heterogeneity, providing

interoperability and supporting business processes.

Two key initiatives that support this vision are the Web Services Choreography Interface

(Arkin et al., 2002) and the Business Process Execution Language for Web Services (Curbera, et

 13

al., 2002). The Web Services Choreography Interface (WSCI) initiative is spearheaded by BEA

Systems, Intalio, SAP, and Sun Microsystems. It is an XML-based language that describes and

provides a global picture of the messages exchanged by interacting Web Services. The Business

Process Execution Language for Web Services (BPEL4WS) is spearheaded by IBM and

Microsoft. It combines IBM’s Web Services Flow Language (WSFL) technologies and

Microsoft’s Xlang and defines a notation for describing the behaviour of business processes that

are based on Web Services.

One common application of e-Business is inter-organizational value chain building,

where a business process spans across systems of multiple organizations, adding value at each

node. While current architectures like CORBA and COM+ perform these tasks well, they are

tightly coupled and expensive. Web Services, while less sophisticated than these technologies,

are natural candidates to replace them because of the simplicity and modularity they offer.

A construct that outlines how service chains can support e-Business and the service

oriented vision is the service chain complexity grid (Figure 3). The grid focuses on the

dimensions of complexity and reach of chains of Web Services. We have singled out these

dimensions because we believe they are the critical enablers of e-Business. However, many of

these dimensions are inter-related in particular ways.

 14

Intra-Organizational Inter-Organizational

Service Chains

Complex

Simple

Complexity

Reach

complex service chain
within an organization

complex service chain
across organizations

simple service chain
within an organization

simple service chain
across organizations

uses

Supply/value chain
integration

Enterprise application
integration

Simple business processes Limited collaborative
business processes

Figure 3: The e-Business service chain grid

For example, if a Web Service is dynamic rather than static, nested or composite rather

than flat, or versatile rather than specific, it is also more like to be complex, rather than simple.

Essentially, if a Web Service performs a simple task, it is probably a fairly simple Web Service.

Conversely, complex tasks are performed by more complex Web Services. The reach of a Web

Service is another critical measure of its usefulness in e-Business activities. Reach refers to the

Web Service’s proclivity to communicate across numerous distinct systems that may belong to a

single organization (see the description of the application at GM mentioned earlier) or span

organizational boundaries.

 15

All e-Business activities, typically would fall somewhere in the quadrants of this grid.

From operational activities and processes at the bottom left of the grid, to more strategic

processes at the top right. The first quadrant (bottom left) describes simple business processes.

These processes are the building blocks of e-Business, used to perform simple operational tasks.

Quadrant two (on the bottom right) of the grid represents business processes which are simplistic

but beginning to show a collaborative theme as they span organizational boundaries. E-Business

activities are not always conducted across organizational boundaries, however. Often there are

intra-organizational processes which leverage e-Business models. Usually these cases involve

inter-departmental processes or communication across internal system boundaries. Enterprise

application integration is an example of this type of activity, which is found in quadrant three

(top left). Quadrant four of the grid is the most sophisticated area of activity, with complex

inter-organizational processes being employed to provide strategic collaboration between

business partners.

Dynamic collaborations between business processes often require peer to peer

interaction. Figure 4 illustrates the peer to peer service model, and is a good example of the

collaborations found in the supply/value chain integration quadrant of the grid.

 16

Figure 4: The peer to peer structure of two interacting business processes (Leymann et al., 2002)

Being able to orchestrate diverse Web Services to build service chains would be difficult

without a graphical representation of some kind. Allowing users to drag and drop icons onto a

screen to build a process dynamically offers many benefits over attempting to code such a

process without a visual aid. Increased understanding, better architecture, better manageability,

and higher productivity are but a few examples of the benefits that may be derived. Existing

workflow architectures do support these features but are generally limited to intra-organizational

components. A workflow approach to managing Web Services is one way to overcome this

problem. Such an approach will be a critical enabler of the service oriented vision.

 17

Workflow-based Web Services Orchestration

A system that orchestrates diverse Web Services over a distributed environment needs to

be able to find them, and bind to them together somehow in a meaningful fashion. Figure 5

illustrates the broad vision of what such a system will achieve.

Figure 5: The Service Integration Vision

At the core of the system is a kernel that supports the plugging in of any combination of

services to create a service chain which supports the execution of a business process scenario.

The scenario is intended to allow for the construction of a useful business process on an ad-hoc

basis. Stable and well recognized business processes would exist in an organization and these

have been the focus of much of the existing work. The combination of such stable with ad-hoc

 18

processes needs to be explicitly acknowledged in a true service oriented framework. We think of

a scenario in this case as an instance of a process. Services may come from within an

organization, another organization, or independent service providers. These providers could

either be service development specialists or other application vendors or developers exposing

useful functionality of existing systems. The aforementioned two prototypes implement this

vision in very different ways. Prototype 1 uses a traditional Web Services application oriented

approach whereas Prototype 2 uses a Web Services Orchestration and scenario generator

approach.

Prototype 1: A Specific Application that integrates multiple

Web Services to support a complex decision situation

In the following sections we explore the architecture and implementation of a specific

Web Services application that integrates multiple Web Services that reflect some of the

dimensions that we explored earlier. This section describes the client side application delivered

through a familiar spreadsheet environment. The application provides for a user to get stock

quotes and option values based on the Black-Scholes model. It also provides charts of historical

data for the stocks. The data can be viewed on an individual or comparative basis of all the

stocks in a spreadsheet environment. All this is achieved through the consumption of Web

Services of varying degrees of complexity.

 19

Architecture

A simplified view of the Web Services application is illustrated in Figure 6. The

application accesses, manipulates, and integrates results from multiple Web Services spread

across the internet, intranet, and local databases to support a complex decision process.

Figure 6: Simplified View of the Web Services Application

The spreadsheet prototype is based on client server architecture. The prototype itself is

the client application and the Web Services it consumes act as the server components. The client

application can use a number of Web Services to achieve its goal. These Web Services can either

be external to the client environment and hosted on the web (internet) or can be internal to the

client environment (intranet), or a combination of the two.

 20

Figure 7 describes the architecture in some detail. We refer to the externally accessed

Web Services as the Web server layer. The spreadsheet prototype uses 6 different methods

provided by 2 different external Web Services (server layer). It also uses 2 different Web

Services hosted internally in the client environment.

The first tier shown in the client layer of the architecture is the presentation tier. This tier

presents the prototype as a single integrated entity that provides related functionality. The fact

that this functionality is derived from different sources is transparent to the user.

The second tier in the client layer is the proxy tier. A proxy is a person (or object)

authorized to represent and act for another. The proxy components tier contains localized ‘proxy’

components. These objects provide a client-side representation of the actual components located

at the server. The client application uses these proxies to access both the internal and external

Web Services. The proxies themselves are mostly generated by the development environment.

The next tier that deals with mapping, interpretation and messaging, along with the generation of

the HTTP requests and handling the responses is also dealt with automatically by the

development environment. However certain kinds of mapping are still done explicitly by the

client application. This sort of mapping deals with linking different Web Services together based

on their input and output parameters.

 21

Client layer

Mapping
HTTP

Request
Generator

Client Application Code

Web Service Proxy Tier

Proxy
Serv

1

Proxy
Serv

2

Proxy
Serv

3

Proxy
Serv

4

Presentation Tier

Data Tier

Client DBMS DataSet

Web Service Application

Local Service
1

Web Server Layer

Web
Service 1

Web
Service 2

Web
Service 3

Web Server Web Server

Application / Organisational Boundary

Web
Service I

Web
Service II

Web
Service III

Web
Service a

Web
Service b

Web
Service c

Web Server

User Interface

Send

Receive

Figure 7: The Web Services Application Architecture

 22

The final tier of the architecture is the data tier, which allows access to locally stored

data. The client DBMS is used to store data retrieved from the various external Web Services

and also to store data generated locally by the internal Web Services and the application itself.

Externally generated data is stored if this historical data needs to be cached locally. If the

requested data exists locally then this is used or else it is pulled from the external Web Services.

In the case of the spreadsheet prototype, external data in the form of historical stock quote data is

stored locally every time the historical quotes Web Service is invoked. This way a check is done

to see if the requested data already exists in the database before the Web Service is invoked

again. An example of locally generated data stored in the database would be the financial

scenario’s generated by the prototype. These scenarios are stored as XML spreadsheet objects so

that they can be accessed by other external applications through a locally hosted Web Service.

These existing scenarios can also be loaded on to the application and further analyzed and

modified.

Once all of the necessary relevant services have been integrated at step 1 in Figure 8, the

user is able to execute the service chain. When the application is executed, at step 2 in Figure 8, a

number of actions occur. First, the application finds all of the relevant services in the service

chain, and instantiates all the parameters of the data services. Next, the application retrieves the

data from the parameters, and sends it to the Web Service. This is accomplished at step 3 in

Figure 8.

 23

Figure 8: Executing the Service Chain

 24

At this stage a check is done to see if the service is an in-house service or one that is

externally accessed on the web server layer. If the service is an in-house one, then it is locally

accessed and data is retrieved from the client DBMS itself (step 4, Figure 8). If the service is

being provided by an external web service, this web service is accessed at the web server layer.

Regardless of the service being external or internal, the application updates the client data

service with the data returned by the Web Service. At step 6 Figure 8, the application updates the

database that the data service is linked to, with the data returned by the Web Service. The output

is also displayed to the user at the presentation layer of the prototype (step 8, Figure 8). This

entire process amounts to a series of push and pull operations, where data is pulled from one

service and pushed to another. The order of this pushing and pulling defines the business process

we are building.

Implementation

The external web services were all sourced from Xignite (www.xignite.com). Xignite is a

company that helps financial institutions deliver wealth management services to investors. They

provide consulting services to this end and offer two complementary solutions:

• xPortal: A flexible wealth management portal that acts as integration layer deployed on

top of the different resources available in the firm.

• xServices: The worlds largest collection of Wealth Management services in the form of

web services.

These services are listed in the following UDDI registries:

http://www.xmethods.com/
http://www.salcentral.com/salnet/webserviceswsdl.asp
http://www.remotemethods.com/
http://www.bindingpoint.com/

 25

Details of the Xignite web services that we used and their respective methods are as shown in

Figure 9.

Web Service: XigniteOptions

getBlackScholesValue
This method calculates the value of an option using the Black-Scholes model. The method takes
in parameters such as the type of the option, stock price, years to maturity, the strike price, the
risk free rate and the volatility.

Web Service: XigniteQuotes

getQuote
This method returns a 20 minute delayed stock quote. The return value contains a host of
information such as the 52 week high, the 52 week low, Market Capitalization. This method is
used to get the stock price and the company name of the stock symbols filled in the spreadsheet.

getTopGainers
Returns quote information about the top gaining equities from NYSE, NASDAQ and AMEX.

getTopLosers
Returns quote information about the top losing equities from NYSE, NASDAQ and AMEX.

getTopMovers
Returns quote information about the top moving equities from NYSE, NASDAQ and AMEX.

getQuotesHistorical
Returns the stock quotes for a given stock for the whole month.

Figure 9: Xignite Web Service and their Methods that were used by the Application

The user interface fundamentally follows the spreadsheet paradigm with some additional

functionality provided by buttons on top of the sheet (Figure 10).

 26

Figure 10: Web Services Application Interface

This is the opening screen. The user can either enter the symbols in the ‘Stock Symbol’

column or use a section of ‘Top Gainers’, ‘Top Losers’ or ‘Top movers’ from the NYSE,

NASDAQ or AMEX stock exchanges. Using this option would give the user a pop up window

(Figure 11) from where selection can be made.

Figure 11: Stock Listing of Top Gainers, Losers, or Movers from NYSE, NASDAQ or AMEX

 27

The user can select the stock symbols from this list which will be added to the existing

list in the ‘Stock Symbol’ column (Figure 12).

Figure 12: Stocks for Consideration

On clicking the quote button Web Services are called to fill in the stock name and the

stock quote. A local service will populate the other columns – Strike Price, Years, Risk Free Rate

and the Volatility. (Figure 13) These additional columns are populated with default values in

calculating the stock option prices based on the stock quotes received. The user can then change

these values to calculate the Option price.

 28

Figure 13: Local Web Service populates Strike Price, Years, Risk Free Rate and Volatility

The option value is fetched from another Web Service with all the values for a particular

stock taken in from the excel sheet. This is done so by clicking the Options button and by

selecting either a ‘put’ or a ‘call’ value based on the type of option required to be calculated.

This results in the option values being populated (Figure 14).

Figure 14: Execution of the Option Price Web Service

 29

The user can view a chart of historical data based on the type of view s/he would like to see. S/he

could either see a chart of a single stock (Figure 15) or for all the stocks in the spreadsheet

(Figure 16).

Figure 15: Graph of historical data for the selected stock

Figure 16: Graph of historical data for all the stock symbols in the sheet

 30

The Web Services that are required to fetch historical data for the selected period for the

individual symbols are called individually. This could be time consuming if there were a lot of

symbols on the list. For this the application makes used of historical data stored in the local

cache. If the requested data exists locally then this is used; else it is pulled from the Web Service.

Prototype 2: Web Services Orchestration and Scenario

Generation

In the following sections we explore the framework, architecture, and implementation of

a Web Services orchestration and scenario generation environment that overcomes some of the

problems exhibited by traditional Web Services applications. The concepts and implementation

of this particular prototype were initiated by the work of Pienaar (2002).

Framework and Architecture

We have built a framework that will support the activities that we consider to be

important. Figure 17 illustrates the workflow-based Web Services orchestration framework. The

framework is simplistic in design. We have taken a rather generalized approach because we see

value in reusing it across multiple domains, rather than being too specific and limiting its use.

The framework follows the client/server paradigm. The server provides the Web

Service(s) we intend to use. Six high level layers of the client have been proposed. The first

layer of the framework is the user interface and manipulation layer. This consists of an iconic

graphical user interface (GUI) that enables users to access, map, integrates, manipulate, and

visualize parts of the system.

 31

The second layer is the proxy components layer. Similar to the first prototype the proxy

components layer contains localized ‘proxy’ components. Providing a proxy service allows the

user to access, view, integrate and manipulate the service transparently, without having to

communicate with the server where the actual service resides. This reduces the network traffic,

time lag and complexity involved in basic service operations.

Figure 17: The workflow-based Web Services orchestration framework

 32

The third layer is the client data layer. This layer allows the user to access data stored

locally. This may be to retrieve data that could be used to populate a service, or update the data

in a database with results obtained by executing a service chain. The client data layer is

important in executing many distributed service chains as it is often the beginning of the data

flow of the service chain.

The fourth layer of the framework is the mapping layer. It allows the user to link

together the services used in the application. It also allows users plug (embed) a specific service

into another service. This is implemented by allowing the user to make and maintain mappings

(relationships) between parameters of corresponding services.

The fifth layer is the XML interpreter layer. Since the client/server model is a distributed

model, a standardized means of communicating between the client and server is required. It

must be able to handle services running on different platforms, operating systems, and using

different communication software. This layer prepares, encodes (serialization), and decodes

(deserialization) XML messages. In our framework, the XML interpreter layer deals mainly with

reading and writing SOAP and WSDL.

The last layer of the framework is the messaging layer. The message from the XML

interpreter layer is passed on to the messaging layer. The messaging layer then handles the

asynchronous sending and receiving of the message and its reply. The messaging layer will send

a serialized message via a protocol like HTTP, and then wait for a response. It then passes the

response back to the XML interpreter layer for further processing. An example of an architecture

 33

we have created that exploits this framework can be seen in Figure 18. Here the layers of the

framework can be seen clearly in the modules of architecture.

Figure 18: An Architecture for the Web Services orchestration framework

 34

The data tier contains modules for managing the application data, and corresponds to the

third (client data) layer of the framework. The integration tier corresponds to the fourth, fifth

and sixth layers of the framework (mapping, interpretation and messaging). Most of the

functionality in this area deals with creating proxy services through a ‘factory’ (an OO software

development pattern). There is also a strong focus on reading and writing XML through the

XML interpreter modules, as well as managing asynchronous messaging in the HTTP request

generator module. The proxy tier corresponds to the second layer in the framework (the proxy

components layer). This is where most of the functionality to manage proxy services is kept.

Finally, the presentation tier relates to the first layer of the framework, the presentation layer.

The functionality in this layer provides the workflow tools for the application.

Implementation

A prototype that proves the concepts proposed in the Web Services orchestration

framework and architecture was implemented. It was tested against scenarios from a number of

different domains with a variety of Web Services. Key phases of Web Service orchestration

supported by the prototype are discussed in the following paragraphs.

Generate & manipulate (proxy) components. The first step to using the system is to add services

to the canvas (Figure 19). To add a service, the user selects the appropriate service icon in the

toolbox, located on the left of the screen, and drops it into the canvas work area. They are (at this

point) blank representations of real-world services that will be ‘filled in’, or instantiated, later.

Once the services have been added to the canvas, they may be positioned about the Canvas as

required, and operated on using the Editor Panel. Using iconic proxy representations of services

 35

in this fashion shields users from the complexity, location, and implementation of the real Web

Services that they represent.

Figure 19: Adding Services to the Canvas

Access heterogeneous and distributed Web Services. The second step is to find and access the

real Web Services our icons will represent. Accessing a Web Service is achieved by querying its

WSDL interface via HTTP. The user provides a URL for the WSDL file and the application

uses that URL to read its description.

 36

Analyse heterogeneous and distributed Web Services to determine their nature and

functionality. The third step is to analyse the Web Service via its description to find out what

methods it offers. The WSDL is analysed to determine what implementation of SOAP the Web

Service uses. Once the implementation type has been discovered, the application reads the

WSDL to extract the information about the methods of the Web Service, and what their

parameters are (Figure 20).

Figure 20: Analysing a Web Service

Select the desired functionality of Web Services based on analysis. The fourth step is to choose

which methods of the Web Service to use. The application generates a form that shows the user

the methods that are implemented by the Web Service and also the parameters of the methods.

Generally, for each Web Service, an input method and its equivalent output method will need to

be selected. Selecting the desired methods of the Web Service populates the proxy service with

the parameters of those methods.

 37

Map heterogeneous and distributed Web Services to form a service chain. Once we have

populated the services, the fifth step is to bind them together through a process called mapping.

Mapping services together is the way in which we orchestrate them and design their workflow.

To map two populated services together, the user selects them on the Canvas, and clicks on the

mapping button on the toolbar. The lines between the services’ icons in Figure 21 depict their

mappings. Each of the three services in this example is provided by a different organisation. The

service chain is therefore inter-organisational.

Figure 21: Mapping the Services Together

 38

Map parameters of heterogeneous and distributed Web Services by specifying which

parameter of the Web Services should exchange data when a service chain is run. The sixth

step involves detailed mappings between the parameters of the services that represent the same

data. In the Parameters tab of the model service (Figure 22), we can see both of the services to

which the model service is mapped: the data service and the solver service. A mapping between

two parameters is created by clicking on a parameter of one web service, and dragging and

dropping the it onto a parameter of another web service.

Figure 22: Mapping the Parameters

Execute the distributed service chain by ‘pulling’ data from distributed Web Services, and

‘pushing’ data to Web Services. The seventh step is to run the finished service chain. When all

of the necessary services have been mapped together, populated, and their parameters mapped

together, the user is able to execute the service chain. Figure 23 shows the service chain during

execution. A record of the XML messages being sent between the application and the Web

Service server is written to a SOAP Log window.

 39

Figure 23: Executing a Service chain

The application executes the solver by creating a SOAP request. This request contains an

envelope, a header, and a body. The body in turn contains all the parameters of the Web Service

and their current value. This message is then sent to the Web Service. The Web Service

interprets this message, executes appropriate methods, and then sends a SOAP response back to

the application. Figure 24 is an example of such an interaction while executing the stock value

service chain.

 40

SENT: 5/02/2002 11:33:22 p.m.

POST http://thor.velocigen.com:80/vx_engine/soap-trigger.pperl
Accept: text/html
Cache-Control: no-cache
Content-Length: 490
SOAPAction: urn:vgx-realtime

<?xml version="1.0" encoding="utf-8"?><SOAP-ENV:Envelope xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"><SOAP-
ENV:Body><getRTQuote xmlns="urn:vgx-
realtime"><stockticker><symbol>MSFT</symbol></stockticker></getRTQuot
e></SOAP-ENV:Body></SOAP-ENV:Envelope>

RECEIVED: 5/02/2002 11:33:23 p.m.
**

Date
Server
Connection
Content-Type

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"><SOAP-
ENV:Body><namesp166:getRTQuoteResponse
xmlns:namesp166="urn:getRTQuote"><stock_quotes><stock_quote><symbol>M
SFT</symbol><time>Feb 4</time><last>61.12</last><change>-
1.53999996</change><pctchange>-
2.46%</pctchange><bid>61.20</bid><ask>61.22</ask></stock_quote></stoc
k_quotes></namesp166:getRTQuoteResponse></SOAP-ENV:Body></SOAP-
ENV:Envelope>

Figure 24: Log of SOAP Requests and Responses

Pressing the run button, on the user interface, results in a sequence of actions. We

illustrate the flow of data through the architecture of the application when this occurs through

 41

Figure 25. We instantiate the data sources in the service chain, get the data, execute the solver,

set the data, and synchronize the data with the database.

Figure 25: Executing the Service Chain

 42

First, the application finds all of the data services in the service chain, and instantiates all

of the mapped parameters of those data services. This prepares them as candidates to provide

data when the solver service is looking for data to use. Next, the application retrieves the data

from the instantiated parameters, and runs the solver, sending the data from the parameters to the

Web Service. This is accomplished at step 2 in Figure 25.

After the solver has been executed, the application updates the client data service with the

data returned by the Web Service (step 3 in Figure 25). Finally, at step 4, the application updates

the database that the data service is linked to with the data returned by the Web Services.

This entire process amounts to a series of push and pull operations, where data is pulled

from one service and pushed to another. The order of this pushing and pulling defines the

business process we are building.

Analyse the results of the execution. The eighth step in using the system is getting and analysing

the results of executing the service chain. The application allows the user to preview the updated

data and thus analyse the results of the service they have executed in the Editor Panel on the

main window. Advanced support for flexible analysis of data could easily be achieved through

plugging in visualisation Web Services.

Store the distributed service chain including its structure and details of distributed

components, for future use. The ninth and final step is to make the service chain persistent. The

 43

system allows the user to save service chains as an XML file, and then load them again whenever

they are needed, thereby persisting them. The XML file stores the information required to

regenerate the distributed services within a service chain. Once it is saved, the service chain can

be loaded again. The ability to retrieve stored service chains allows users to share and

incrementally develop them. Thus allowing new functionality to be added or changes to existing

functionality. The serialised XML service chain description acts as a language for describing

orchestrated Web Services.

Implications of the Framework

The framework we have built supports all of the types of Web Services we defined in the

taxonomy. It is general enough to be applied across many domains. This is because we address

the fundamental business problem of integrating heterogeneous and loosely coupled components

to form a service chain. These building blocks can be the foundation of a huge variety of

systems, much as chains of simple proteins in DNA create a huge and complex variety of life.

In order for organizations to evolve, they will need to be able to reap the benefits of the

new service model. Quickly and dynamically creating peer to peer interactions will allow them

to build inter-organizational value chains which will save time and money. Using workflow

principles will give users the tools to harness services in this way.

Our framework provides users with these tools, and provides a set of functionality they

can use to quickly and easily knit together diverse services. In so doing, support is provided for

all the four quadrants of the e-Business service chain grid we developed. The framework

 44

supports simple and complex service chains, as well as intra and inter-organizational service

chains. It does this in a flexible and modular way. The framework therefore supports not only

simple operational business processes, but complex strategic service chains as well. This has

implications for enterprise application integration, business process management, value chain

management, and e-Business as a whole.

Conclusion

Web Services continue to be an important emerging technology. They have important

implications for e-Business in particular. We have developed a taxonomy to describe Web

Services, as well as a grid to outline how they support e-Business when linked together in service

chains. We have also developed a framework and architecture that support the creation and

management of service chains. These chains will form the business processes of organizations

as they adopt the service vision. They will also increase the ease of inter-organizational

integration in the future. Being able to create and orchestrate service chains using a workflow

interface will provide many benefits to users, including increased understanding of processes and

higher productivity. Support for all kinds of e-Business from operational tasks to strategic ones

will be provided by a tool that supports the quadrants of our grid. Our Web Service orchestration

prototype is a first attempt at such a tool.

Acknowledgments

We would like to acknowledge the contributions of Schalk Pienaar, Nikhil Ravishankar, and

McNeill Mendes toward different aspects of the project.

 45

References

Almeida, J.P.A., Pires, L.F., and M.J. van Sinderen (2003), Web services and seamless
interoperability, First European Workshop on Object Orientation and Web Services,
ECCOP2003, Darmstadt, July 21-25, http://www.cs.ucl.ac.uk/staff/g.piccinelli/eoows/eoows-
programme.htm .

Andrews, W. (2003), Case Studies Illustrate Strategic Use of Web Services,
http://www4.gartner.com/pages/story.php.id.8842.s.8.jsp

Arkin, A., S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer, S.
Struble, P. Takacsi-Nagy, I. Trickovic, S. Zimek, (2002), Web Service Choreography Interface
1.0, http://wwws.sun.com/software/xml/developers/wsci/.

Berry, G., Chase, J., Cohen, G., Cox, L., and A. Vahdat (1999), Toward Automatic State
Management for Replicated Dynamic Web Services, Netstore Symposium, Seattle WA, October
1999.

Bloomberg, J. (2002), Web Services: Opening Soon for Business,
http://www.therationaledge.com/content/mar_02/f_webServices_jb.html

Box, D., D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and
D. Winer (2000), Simple Object Access Protocol (SOAP) 1.1, W3C,
http://www.w3.org/TR/SOAP/

Brown, K. (2000), SOAP for Platform Neutral Interoperability, XMLMag.COM,
http://www.xmlmag.com/upload/free/features/xml/2000/04fal00/kb0004/kb0004.asp

Christensen, E., F. Curbera, G. Meredeth, S. Weerawana (2001), Web Services Description
Language (WSDL) 1.1, W3C, http://www.w3.org/TR/wsdl.html

Curbera, F., Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, S. Weerawarana, (2002),
Business Process Execution Language for Web Services 1.0, http://www-
106.ibm.com/developerworks/Web Services/library/ws-bpel/.

Ferris, C., and J. Farrell (2003), ‘What are Web Services’, Communications of the ACM, 46(6),
31.

Fremantle, P., S. Weerawarana, and R. Khalaf, ‘Enterprise Service’, Communications of the
ACM, 45(10), 77-82.

Gottschalk, K. (2000), Web Services Architecture Overview: The next stage of evolution for e-
Business, IBM developerWorks, http://www-106.ibm.com/developerworks/library/w-ovr/

Gottschalk, K., S. Graham, H. Kreger, and J. Snell (2002), Introduction to Web services

 46

architecture, IBM Systems Journal, 41(2):170-177.

Johnston, S. J. (2002), State of Web Services, InfoWorld,
http://www.infoworld.com/articles/pl/xml/02/02/04/020204plwebstate.xml

Kreger, H (2003)., Fulfilling the Web Services Promise, Communications of the ACM, 46(6):
29-34.

Leymann, F., D. Roller, M. Schmidt (2002), Web Services and Business Process Management,
IBM Systems Journal 41(2): 198-211.

McKeen, J. D., and H. A. Smith (2002), ‘New Developments in Practice: Managing the
Technology Portfolio,’ Communications of the AIS, 9(5), 1-25.

Nghiem, A, (2002), IT Webservices: A Roadmap for the Enterprise, Prentice Hall, USA.

Piennar, S. W., (2002), The design and implementation of a flexible distributed decision support
system generator using web services, Unpublished MCom thesis, University of Auckland.

Stal, M., (2002), ‘Web Services: Beyond Component-based Computing,’ Communications of the
ACM, 45(10), 71-76.

