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Abstract: We develop and analyze a model of pricing for digital products with discontin-
uous supply functions. This characterizes a number of information technology-based products
and services for which variable increases in demand are fulfilled by the addition of "blocks" of
computing or network infrastructure. Examples include internet service, telephony, online trad-
ing, on-demand software, digital music, streamed video-on-demand and grid computing. These
goods are often modeled as information goods with variable costs of zero, although their actual
cost structure features a mixture of positive periodic fixed costs, and zero marginal costs. The
pricing of such goods is further complicated by the fact that rapid advances in semiconductor
and networking technology lead to sustained rapid declines in the cost of new infrastructure
over time. Furthermore, this infrastructure is often shared across multiple goods and services
in distinct markets.

The main contribution of this paper is a general solution for the optimal nonlinear pricing
of such digital goods and services. We show that this can be formulated as a finite series of
more conventional constrained pricing problems. We then establish that the optimal nonlinear
pricing schedule with discontinuous supply functions coincides with the solution to one specific
constrained problem, reduce the former to a problem of identifying the optimal number of
"blocks" of demand that the seller will fulfil under their optimal pricing schedule, and show
how to identify this optimal number using a simple and intuitive rule (which is analogous to
"balancing" the marginal revenue with average "marginal cost"). We discuss the extent to which
using "information-goods" pricing schedules rather than those that are optimal reduce profits
for sellers of digital goods. A first extension includes the rapidly declining infrastructure costs
associated with Moore’s Law to provide insight into the relationship between the magnitude
of cost declines, infrastructure planning and pricing strategy. A second extension examines
multi-market pricing of a set of digital goods and services whose supply is fulfilled by a shared
infrastructure.

Our paper provides a new pricing model which is widely applicable to IT, network and
electronic commerce products. It also makes an independent contribution to the theory of
second-degree price discrimination, by providing the first solution of monopoly screening when
costs are discontinuous, and when costs incurred can only be associated with the total demand
fulfilled, rather than demand from individual customers.

Keywords: digital goods, price discrimination, nonlinear pricing, screening, discontinuous
costs, shared infrastructure, Moore’s Law
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1. Introduction

This paper studies nonlinear pricing for a digital product whose supply function is discontinuous

and varies significantly over time. This is characteristic of a number of digital products for which

variable increases in demand are fulfilled by the addition of "blocks" of computing or network

infrastructure. Each additional block costs a fixed amount, and enables a seller to fulfill a

fixed additional level of demand at zero marginal cost. The latter feature often leads to these

products being modeled as "information goods". We present the first general formulation of the

monopoly nonlinear pricing problem with discontinuous costs of this kind, and analyze how its

solution differs from the problem of pricing zero-marginal-cost information goods. We examine

how this optimal pricing policy is sensitive to (1) multi-period pricing when rapid technological

progress reduces these costs over time, (2) multi-market pricing for differentiated digital goods

whose supply depends on a shared IT infrastructure. Our research will thus extend a standard

model of second-degree price discrimination to accommodate key (and previously unexplored)

aspects of cost and supply that are unique to IT and network-based digital products.

Our study is most easily motivated by some examples. Given a fixed level of infrastructure,

the marginal cost of providing an additional unit of Internet service is typically zero. However,

as the total quantity of service supplied by the ISP increases, the ISP need to add blocks of

infrastructure: modems to their modem pool, and equipment/bandwidth to the networks that

connect their users to the Internet backbone. Each additional block of infrastructure provides

the ISP with the ability to fulfill an additional (fixed) amount of demand for Internet service

with negligible marginal cost. An application service provider who offers access to hosted

software incurs costs towards installing new servers and buying Internet bandwidth; these costs

are incurred in blocks, each instance of a "fixed" cost enables the fulfilling of a fixed amount of

1



additional demand at no marginal cost. The cost structure for a provider of streaming media, or

of online trading is similar — costs towards infrastructure are incurred in discontinuous blocks,

each of which enables the provider to stream a fixed amount of additional content or to execute

a fixed number of additional trades per unit time, at no additional marginal cost.2.

In each of these examples, the seller faces consumers who demand variable (and individually

varying) levels of usage, the seller’s cost function is non-decreasing in the total demand it

fulfils, with periodic discontinuous increases as additional blocks are added, and the seller

incurs low or no variable costs for fulfilling additional demand between these "jumps". This is

the cost structure that underlies the supply function in our model. Judging by the examples

described above, it appears to be applicable to an increasing number of digital goods and

services. Furthermore, it differs from the standard models of supply used in price-discrimination

models in three specific ways. First, it models costs that are somewhere in between variable and

fixed costs. Traditional variable costs are modeled as being incurred in the short-run, varying

continuously with the level of demand a seller fulfils, and often having a significant impact on

pricing policy. Traditional fixed costs, while discontinuous, are modeled as being long-run costs

that are incurred very infrequently – for instance, the costs associated with building a factory

– and whose magnitude does not directly affect a seller’s short-run choice of pricing. In each

of the examples we describe above, neither of these traditional components of costs capture the

actual supply of the good; in contrast, the relevant costs appear to be similar to fixed costs in

that they increase the "capacity" of the seller across periods, but similar to variable costs in

2Other examples might include local phone or cell phone service providers, video-on-demand for a digital
cable provider, Internet caching services, collocation, shared grid computing, shared data storage, and rendering
server farms for digital animation; this set of examples is likely to increase as "on-demand computing" and
"apps-on-tap" models are more widely adopted.
There are examples of IT-enabled "non-digital" goods that share this cost structure as well — for instance,

the provision of call-center services (where each agent facilitates fulfilling a fixed number of additional calls), or
the addition of new flights to an existing route of an airline.
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that they are incurred in the short-run, and vary in (possibly large) steps based on the demand

a seller faces in each period.

Our research can also be distinguished from the existing pricing literature in other important

ways. Standard models of nonlinear pricing associate a variable cost function with the demand

of each customer, rather than with the total demand fulfilled. This makes no difference when

variable costs are continuous and linear (or zero, for that matter). However, the distinction is

important when a specific cost increase cannot generically be associated with each unit demand

increase — an implicit assumption that underlies the specification of any standard cost function.

Rather, when a collective increase in demand of a group of customers results in periodic jumps in

the cost of supply, as is the case with the digital products described in the examples above, this

changes the formulation of the problem of designing optimal second-degree price discrimination

in a significant way. Furthermore, technological progress changes the cost function of sellers

of these goods rapidly over time, and it is not clear how this kind of trend, which is unique

to IT infrastructure (and empirically rendered in what is widely referred to as Moore’s Law),

will affect the design of pricing. These IT infrastructures are of increasing power and ubiquity,

leading sellers to base the supply of different digital goods on common large-scale infrastructures

of this kind. The Internet backbone (Economides, 2005) is an ubiquitous example of such a

shared infrastructure, but there are company specific ones as well. For example, Google’s search,

mail, news and maps each rely on the same massive on-demand computing infrastructure, while

providing different products in distinct markets.

Our analysis proceeds as follows. Starting with a single period problem in section 3, we

first derive the optimal nonlinear pricing schedule for a monopolist who can fulfill demand

up to a pre-specified level of demand at zero marginal cost. We show that the solution to
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this problem (which we term the constrained demand problem) coincides with the solution to

an unconstrained problem with positive linear marginal costs, a problem well studied in the

literature. The demand constraint of this problem generates a function which measures the

marginal revenue from increasing the seller’s ability to fulfill demand. Next, we show that the

optimal nonlinear pricing schedule with discontinuous costs coincides with the solution to a

specific instance of the constrained demand problem, and reduce the former to a problem of

identifying the optimal number n∗ of "blocks" of demand (which may be of differing sizes) that

the seller will fulfill under their optimal pricing schedule. We then show how to identify n∗

using a simple and intuitive rule (which is analogous to "balancing" the marginal revenue with

average "marginal cost") that identifies the appropriate level of average cost to operate at. The

pricing schedule that solves the corresponding constrained demand problem is optimal for a

seller who faces discontinuous costs. We discuss some managerial implications of this result,

provide an example that highlights how pricing and profits can vary significantly relative to

those suggested by a model with zero marginal costs, and describe how changes in some key

model parameters affect the optimal pricing schedule.

In section 4, we extend this analysis in two ways. First, we examine infrastructure costs that

remain discontinuous but decline over time. We show that when a seller faces a finite horizon

of product viability, pricing may not be affected by anticipated cost declines up to a point; this

result highlights one implication of the "capacity" nature of the cost function of the digital

products we model. However, if the anticipated drop costs is significant enough, it results

in a decline in average price, but often increases the total price paid by each participating

buyer. Next, we discuss the extension in which the seller provides multiple products based

on a common infrastructure. The solution to this pricing problem also coincides with that
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of an unconstrained problem with linear marginal costs. Furthermore, our results indicate

that the shadow linear marginal cost of each product is proportional to its rate of utilization

of the underlying infrastructure. In other words, the more a product utilizes the underlying

infrastructure, the higher its optimal price should be.

Our paper adds to a growing literature on the optimal pricing of digital goods. This body

of research has shown, among other things, that large-scale pure bundling can increase a mo-

nopolist’s profits (Bakos and Brynjolfsson, 1999) so long as the value each customer places

on different goods in the bundle does not vary too much (Geng, Stinchcombe and Whinston,

2005), that product versioning may not be an optimal pricing strategy (Bhargava and Choud-

hary, 2001), and that fixed-fee pricing can increase the profits from pure second-degree price

discrimination (Sundararajan, 2004). Each of these papers assumes that digital goods are "in-

formation goods" with zero marginal costs, an aspect that distinguishes their analyses from

ours, and also suggests a significant direction for future research. Our model differs signifi-

cantly from those studied in the literature on nonlinear capacity pricing or "peak-load" pricing

(for instance, in Oren, Smith and Wilson, 1985, Wilson 1993), since their focus is on capacity

planning to account for short-run variability in demand, and pricing that optimally controls

this variation.

Some of the literature on pricing of information systems with queuing effects addresses issues

related to ours. For example, Mendelson (1985) highlights the differences between optimal

short-run and long-run transfer pricing an IT-based system whose supply is subject to capacity

constraints In particular, when capacity can be varied in the long-run, he shows that the optimal

adjustment of pricing to account for queuing externalities depends only on relative utilization,

and is independent of the specific queuing characteristics of the system. Many subsequent
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papers have extended Mendelson’s central results on queuing effects; these include Mendelson

and Whang (1990) who demonstrate that priority pricing for a constrained resource can be

expressed in a simple form: a base price for the lowest class plus an increasing priority surcharge.

Dewan andMendelson’s (1990) analysis of congestion pricing with general delay costs establishes

a relationship between expected delay costs and the marginal cost of capacity, a connection our

analysis explores indirectly as well. Konana, Gupta and Whinston (2000) show that dynamic

priority pricing that charges a congestion premium for accessing real-time database outperforms

a variety of standard priority rules; this result is established both analytically, and in a more

detailed simulation that takes the operational intricacies of real-time databases into account.

Westland (1992) recognizes the presence of both positive and negative demand externalities.

More recently, Nadiminti, Mukhopadhyay, and Kriebel (2002) extend Mendelson (1985) to

admit asymmetric information about user preferences, and among other things, highlight the

optimality of volume discounted (nonlinear) pricing. The model of Afeche andMendelson (2004)

allows delay costs and consumer value to be interdependent (rather than additive): their result

describing the deviation of the revenue maximizing solution with the one that maximizes welfare

is related to the contrast we draw between revenue maximizing (under the "information goods"

assumption) and the actual profit maximizing pricing policy3.

Some of these papers model uniform pricing mechanism while others model second degree

price discrimination based on priority (or quality) — in contrast, our baseline results model sec-

ond degree price discrimination based on quantity for a demand-constrained monopolist — while

both latter sets of models have related mechanism design problems, our constraint on demand

3Other notable papers in this literature include Ha’s (1998) analysis of joint production between customers
and servers, So and Song (1998) who examine the effect of delivery time guarantees on capacity choices, Stidham’s
(1992) extension of Dewan and Mendelson (1990), and the model of pricing systems of distributed congestible
resources (specifically, the Internet) of Gupta et al. (1997).
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has not been explored thus far, and has a different impact on the optimization problem. By

abstracting away from delay costs (which form the basis for unknown customer heterogeneity in

most of this literature), we can admit a more general specification of heterogeneity in consumer

value, which is appealing, since delay costs are not the central basis for choice in many of our

examples. In a sense, one might approximately account for queuing effects into our model if

one thinks of a seller who has a target (exogenous) quality level that it aims to achieve, and

incorporates the effect of congestion by adjusting the effective additional demand k(i) that each

"unit" of supply can achieve while still maintaining this quality level. The fact that both k(i)

and c(i) are independently defined for each unit makes this possible. Of course, explicitly mod-

eling queuing effects could be attractive in terms of expanding the model’s generality; however,

it will lead to a substantially more complex model. Moreover, this would shift the focus of

the model away from those unique (and under-researched) aspects of pricing IT-based products

that our model aims to highlight.

2. Overview of model

A monopolist sells a digital product that may be used by customers in continuously varying

quantities. The cost function of the monopolist is described by a pair of functions c(i) and

K(i), where K(i) is the total demand that i units of infrastructure enables the seller to fulfill,

and c(i) is the variable cost of the ith unit of infrastructure4. Therefore, the cost of supplying

4In general, the seller deploys a fixed level of infrastructure, represented by the vector K = (k1, k2, ..., kn).
The components of infrastructure could include hardware, software licenses, disk storage, customer support
infrastructure, administration and maintenance staff, and so on. For ease of exposition, we treat K as a scalar
rather than a vector since here we only need the constrained demand and the associated fixed cost for that
chunk of demand capacity.
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Figure 2.1: Illustrates the shape of the cost function C(Q).

a total quantity Q is specified by the function

C(Q) =

n(Q)X
i=1

c(i), (2.1)

where n(Q) is the minimum units of infrastructure that provide the ability to fulfill demand5

of at least Q, and thus n(Q) = min{j : K(j) ≥ Q}. To examine the average cost of each unit

of infrastructure, we define: k(i) ≡ K(i) − K(i − 1) and we set c(0)/k(0) ≡ 0. The latter

assumption is for future analytical brevity, so that we do not have to analyze the seller using

just one unit of supply as a special case. The cost function, illustrated in Figure 2.1, is therefore

a step function with discontinuous increases at specific integer value of Q, and with potentially

different jumps at each of these values6.

We assume that the average cost of the seller c(i)/k(i) is non-decreasing in i, or loosely

5The seller also guarantees a fixed level of quality-of-service to each of its customers, which restricts the
aggregate level of demand that it can fulfill at a choice of infrastructure K to a maximum of Q(K).

6Often, there is a fixed cost F associated with setting up the ability to fulfill demand; equivalently, c(1) may
be substantially higher than succeeding values of c(i). A generalization of our model that incorporates this kind
of setup cost is straightforward.
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speaking, costs are "discontinuously convex". This convexity can arise in many different ways.

For example, the complexity of managing a server farm in which each server adds roughly the

same capacity increases with the number of servers; this would correspond to an increasing

level of c(i), for constant k(i). Analogously, the increase in the effective processing capacity

of a grid of computers reduces as one adds more nodes (each of which costs about the same);

this would correspond to a constant c(i) and a decreasing level of k(i). The latter argument

might hold for any digital product whose supply or distribution is based on an IT system that

resembles a multi-server queue — the incremental arrival rate k(i) that can be handled by the

addition of an extra server at a constant cost c(i) while keeping service levels constant declines

as the number of servers increases.

Customers are heterogeneous, indexed by their type θ ∈ [0, 1]. The preferences of a customer

of type θ are represented by the function

w(q, θ, p) = U(q, θ)− p, (2.2)

where q is the quantity of the product used and p is the total price paid by the customer.

Our formulation of preferences follows the standard general model of nonlinear pricing (Maskin

and Riley, 1984), in which U(q, θ) is referred to as the customer’s utility function, and has the

following properties, for each θ ∈ [0, 1]:

1. Increasing and concave value: U(0, θ) = 0;U1(q, θ) ≥ 0, U11(q, θ) < 0 for all q.

2. Higher customer types get higher utility: U(q, 0) = 0 and U2(q, θ) > 0 for all q > 0.

3. These increases in utility with type are diminishing: U22(q, θ) ≤ 0

4. Spence-Mirrlees single-crossing condition: U12(q, θ) > 0 for all q.
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5. Non-increasing absolute risk-aversion:
∂

∂θ

∙
−U11(q, θ)
U1(q, θ)

¸
≤ 0.

Through the paper, numbered subscripts of functions represent derivatives with respect to

the corresponding variable. Assumptions (1), (2), (4) and (5) are standard in models of second-

degree price discrimination. A discussion of their implications can be found, for instance, in

section 2.1 of Sundararajan (2004). While assumption (3) is made for mathematical reasons, it

seems like a reasonable description of preferences.

The sequence and information structure of the model is as follows. The seller does not

observe the type of any customer, but knows F (θ), the probability distribution of types in the

customer population7, which is assumed to be absolutely continuous (and thereby has a density

function f(θ) which is non-zero and finite), and to have a non-increasing inverse hazard rate

H(θ), where H(θ) ≡ 1−F (θ)
f(θ)

. The seller prices its product by announcing a pricing schedule

that assigns a specific total payment for each level of usage q. Since the seller cannot explicitly

distinguish between customer types prior to contracting, the entire schedule (menu of quantity-

price pairs) must be available to all customers. The revelation principle ensures that the seller

can restrict its attention to direct mechanisms, under which one specific quantity-price pair

is designed for each customer type, and it is rational and optimal for the customer to choose

the quantity-price pair that was designed for his or her type. The pricing schedule is therefore

represented by a menu of quantity-price pairs (q(t), p(t)), where t ∈ [0, 1], which satisfies two

standard constraints:

[IC]: For each θ, U(q(θ), θ)− p(θ) ≥ U(q(t), θ)− p(t), for all t ∈ [0, 1].

7The interpretation of F (θ) is slightly different from the ordinary screening model due to the capacity
constraint. One interpretation is that there is no uncertainty of θ but the values of θ is unknown to the seller.
The other (less rigorous) interpretation is that θ is random but the seller faces a very large number of buyers
and thus the total demand is almost always the same as that in the first case. As a consequence, our model can
still describe the market in the second case.
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[IR]: For each θ, U(q(θ), θ)− p(θ) ≥ 0.

When the menu of quantity-price pairs satisfies (IC) and (IR), every customer of type θ

will choose the pair q(θ), p(θ). A schedule satisfying these constraints is simply referred to as

incentive-compatible. An incentive-compatible schedule is said to be optimal if it yields profits

that are at least as high as any other incentive-compatible schedule.

The sequence of events is as follows: the seller designs and announces the schedule q(t), p(t),

customers make their purchasing choices, and each party receives its payoff. For an incentive-

compatible schedule q(t), p(t), the cumulative quantity demanded by all customers will beR 1
θ=0

q(θ)f(θ)dθ, which means that the seller’s profit is

Z 1

0

p(θ)f(θ)dθ − C
³R 1

0
q(θ)f(θ)dθ

´
, (2.3)

and the seller consequently aims to design the incentive-compatible schedule that maximizes

(2.3) subject to [IC] and [IR].

3. Pricing for a single period

This section presents the optimal nonlinear pricing schedule of a seller who incurs discontinuous

costs, and who prices for a single-period. The sequence of analysis leading to the section’s main

result is summarized in Table 3.1.

3.1. A preliminary result: Pricing with demand constraints

This section derives the structure of the optimal pricing schedule when the seller incurs no

fixed or variable costs but faces a constraint on its capacity to fulfill demand. While this sub-
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(A) Lemma 1 formulates a constrained demand pricing problem in a form that makes it
tractable.

(B) Lemma 2 provides a characterization of the solution to this problem. With a con-
straint on demand K, the optimal pricing schedule is (pC(θ,K), qC(θ,K)).

(C) Theorem 1 shows that if the optimal solution to the main problem involves the
seller incurring its first n∗ "units" of cost, then its pricing schedule must be p∗(θ) =
pC(θ,K(n∗)), q∗(θ) = qC(θ,K(n∗)).

(D) Theorem 2 characterizes the optimal choice of n∗, which leads immediately to the
optimal pricing schedule based on Proposition 1 and Lemma 2.

Table 3.1: Brief summary of the sequence of analysis in this section

problem may seem tangential to the main problem described thus far, it is important because

we subsequently show that the design of the optimal pricing schedule (and its comparative

statics) for both the static and dynamic versions of the main problem can be characterized in

terms of the results of this subsection8.

The sub-problem in this section assumes that the seller has a fixed upper bound on the

demand it can fulfill, (equivalently, its capacity), denoted by K. The seller cannot increase K,

and incurs no costs for supplying any quantity Q ≤ K. The pricing problem solved in this

section is therefore:

max
q(.),p(.)

Z 1

0

p(θ)f(θ)dθ (3.1)

subject to [IC], [IR], and

q(θ) ≥ 0 ∀ θ ∈ [0, 1] (3.2)R 1
0
q(θ)f(θ)dθ ≤ K. (3.3)

8This subsection may be somewhat mathematically detailed for some readers. Structuring the paper so that
some of these details were relegated to the appendix. led to exposition problems and lack of transparency in
subsequent sections, since many key intermediate functions necessary for a clear exposition of the paper’s main
results are defined in this subsection.
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This problem is referred to as the constrained demand pricing problem.

Lemma 1. An equivalent formulation of the pricing problem in (3.1)-(3.3) is:

max
θ,q(.)

Z 1

θ=θ

[U(q(θ), θ)− U2(q(θ), θ)H(θ)] f(θ)dθ (3.4)

subject to q(θ) ≥ 0 ∀ θ ∈ [θ, 1] (3.5)

q1(θ) > 0 ∀ θ ∈ [θ, 1] (3.6)R 1
θ
q(θ)f(θ)dθ ≤ K (3.7)

Unless otherwise specified, all proofs are relegated to Appendix A. Lemma 1 transforms

the constrained demand pricing problem in two ways. The first is a standard transformation

of the objective function (3.1) into the virtual profit function (3.4) that internalizes the incen-

tive compatibility constraints while adding an additional set of monotonicity constraint (3.6).

Additionally, we reformulate this transformed problem so that the seller directly chooses the

fraction of customer types (θ, 1] who will purchase positive quantities, and chooses the appro-

priate quantity each of these customer types is induced to purchase. This reformulation is

useful because its solution provides a direct way of examining how market coverage (that is,

the subset [θ, 1] of customers who purchase) varies with changes in K.

The solution to the constrained demand problem is derived in Lemma 2, which uses the

expression defined in equation (3.8). Given any constant λ > 0, define q(θ, λ) as follows:

q(θ, λ) = max{0, q}, where q is the solution of U1(q, θ)− U12(q, θ)H(θ) = λ, (3.8)

This equation is simply the F.O.C. of the integrand of (3.4) with a Lagrange multiplier λ
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associated with (3.7). Intuitively, if the seller had no demand constraint, and instead incurred

linear variable costs at the rate λ, then q(θ, λ) is the optimal quantity that the seller would

induce customers of type θ to consume. Next, define q0(θ) and p0(θ), the solution when λ = 0,

as follows:

q0(θ) = q(θ, 0) and p0(θ) = U(q0(θ), θ)−
R θ
θ
U2(q

0(t), t)dt.

Together, q0(θ) and p0(θ) are referred to as the revenue maximizing pricing schedule, since it

maximizes the seller’s revenues with a zero marginal cost (equivalently, without any constraint).

The marginal revenue function (which is the shadow value of the demand constraint, more on

this following Lemma 2) defined as:

λ(K) is the solution of
hR 1

θ=0
q(θ, λ)f(θ)dθ

i
= K. (3.9)

Given a demand constraint K, denote the pricing schedule that solves the constrained demand

pricing problem as qC(θ,K), pC(θ,K), and the lowest adopting type as θ(K). Here, we use

the superscript C for the quality and price schedules in terms of θ and K. To minimize our

future use of in-line integrals, also define the revenue maximizing level of total demand Q0 as

Q0 ≡
R 1
0
q0(θ)f(θ)dθ.

Lemma 2. (a) If K ≥ Q0, then the demand constraint is non-binding, and therefore the seller

chooses q0(θ) and p0(θ) to maximize its profits in the absence of a capacity constraint:

qC(θ,K) = q0(θ) for each θ ∈ [θ(K), 1] (3.10)

θ(K) is the solution of U(q0(θ), θ)− U2(q
0(θ), θ)H(θ) = 0 (3.11)
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(b) If the constraint is binding, that is, if K < Q0, then the seller chooses the pricing schedule

that would be chosen if it incurred linear variable costs equals to the marginal revenue λ(K):

qC(θ,K) = q(θ, λ(K)) for each θ ∈ [θ(K), 1] (3.12)

θ(K) is the solution of U(qC(θ,K), θ)− U2(q
C(θ,K), θ)H(θ) = λ(K) · qC(θ,K).(3.13)

In each case, the corresponding total price for customer type θ is

pC(θ,K) = U(qC(θ,K), θ)−
R θ
t=θ(K)

U2(q
C(t,K), t)dt. (3.14)

Moreover, for a given K , the contract qC(θ,K), pC(θ,K) and the lowest adopting customer

type θ(K) are uniquely specified by (3.12)-(3.14)

The definition of λ(K) as the marginal revenue function follows from Lemma 2: it is the

value of the Lagrangian multiplier of the demand constraint when the upper bound on demand

K. It therefore measures the marginal increase in revenue with demand: that is, the marginal

increase in the value of (3.1) at its maximizing values of p(.) and q(.) for a marginal increase

in the demand the seller is able to fulfill, after the seller adjusts its pricing function in response

to the relaxation of the constraint

A corollary of this lemma indicates how pricing, demand and fraction of customers who

purchase vary with changes in K.

Corollary 1. When K < Q0, we have the following results of comparative statics analysis:

(a) qC2 (θ,K) > 0, d
£
pC(θ,K)/qC(θ,K)

¤
/dK < 0: relaxing the demand constraint induces an

increase in total consumption (and decrease in average price) for all customers.
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(b) θ1(K) < 0: relaxing the demand constraint increases the fraction of participating customers.

Corollary 1 indicates that any binding constraint on the seller’s ability to fulfill demand

always reduces both the fraction of customers who purchase a positive quantity, and the quan-

tity purchased by each of these customers. Moreover, as K increases and the seller is less

constrained, the fraction of adopting customers and the total usage induced from each of these

customers both increase. This result is quite intuitive: when the demand constraint is relaxed,

the seller can sell more products, which will lead to lower average product prices. Since all

types of consumers will consume more (qC2 (θ,K) > 0), it is straightforward that more con-

sumers may be served when K is larger. The result, qC2 (θ,K) > 0, is independently interesting

from a managerial perspective, for the following reason: an alternative response would be for

the seller to focus ONLY on the high-end of the market by inducing as much consumption as

possible from a fraction of high-valuation customers while shutting out customers with lower

willingness to pay. This seems intuitively consistent with getting as much value as possible

from one’s allowed total demand. The corollary shows that while intuitively appealing, this

is never a profit-maximizing strategy. The reason is that although low-end consumers are less

valuable, they may still have relatively higher marginal willingness-to-pay when they have very

low consumption compared with that of high-end consumers with high consumption.

3.2. Optimal pricing with discontinuous costs

In this section, we return to the main problem described in Section 2, and present two of the

paper’s main results. First, Theorem 1 relates the solution of the main problem to the result of

Lemma 2, thereby reducing the seller’s problem to one of simply identifying the optimal number

of units of supply. Next, under the assumption that c(i)/k(i) is non-decreasing, Theorem
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2 provides a simple way of identifying this optimal number, by comparing their incremental

revenue to their incremental cost. The optimal pricing schedule follows immediately from

Lemma 2 and Theorem 1. We do not have general results when c(i)/k(i) is non-monotonic or

decreasing in i, and the reasons will be discussed towards the end of the section.

Our first theorem relates the solution of the main problem to the solution of the constrained

demand pricing problem solved in Section 3.1

Theorem 1. Let q∗(θ) and p∗(θ) be the optimal pricing schedule when the seller’s cost function

is as defined in (2.1), and let n∗ be the corresponding optimal number of units of cost incurred

by the seller. Then, either:

q∗(θ) = q0(θ) and p∗(θ) = p0(θ), (3.15)

for each θ, that is, the seller chooses the revenue-maximizing pricing schedule, or

q∗(θ) = qC(θ,K(n∗)) and p∗(θ) = pC(θ,K(n∗)), (3.16)

for each θ, that is, the optimal pricing schedule is identical to the constrained demand pricing

schedule with an upper bound K(n∗) on demand.

Proof. Given any optimal solution K(n∗) > Q0(θ), revenue-maximizing pricing solves the

problem. Otherwise, (q0(θ), p0(θ)) is not feasible and cannot be the solution. When K(n∗) ≤

Q0(θ), the demand constraint will be binding (Q∗ = K(n∗)) at some n∗ and therefore the

solution is the one presented in Lemma 2.

Given the result of theorem 1, the seller’s problem has now been reduced to identifying the
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optimal value of n∗, the number of discontinuous units of cost the seller should optimally incur.

A direct way of doing this is to solve equations (3.16) for each feasible value of n, compare the

corresponding profits, and choose the best one. Our next result specifies how to identify n∗ in

a more efficient and intuitive way.

Theorem 2. (a) There exists a unique number of units of infrastructure i∗ ≥ 0 such that:

λ(K(i∗)) ≥ c(i∗)

k(i∗)
; (3.17)

λ(K(i∗ + 1)) <
c(i∗ + 1)

k(i∗ + 1)
. (3.18)

(b) The value of i∗ in (3.17-3.18) defines the optimal number of units of cost a seller should

incur, and consequently, the optimal pricing schedule with discontinuous costs.

. (i) 1f
Z K(i∗+1)

K(i∗)

λ(x)dx < c(i∗ + 1), then n∗ = i∗.

(ii) If
Z K(i∗+1)

K(i∗)

λ(x)dx ≥ c(i∗ + 1), then n∗ = (i∗ + 1),

where the function λ(x) is defined in Lemma 2.

The result of Theorem 2(a) is illustrated in Figure 3.1. Marginal revenue decreases as the

seller’s ability to fulfill demand increases, and the corresponding average cost, [c(i)/k(i)], of

fulfilling each incremental block of demand increases with i. Since the seller gets no further

revenue from increasing its ability to fulfill demand beyond Q0, the revenue-maximizing level

of demand, λ(K) is zero for K > Q0. Therefore, there are always two successive values of i

such that the marginal revenue exceeds the average cost at the former, and the the average cost

exceeds the marginal revenue at the latter.

The result of Theorem 2(b) is more subtle. The area under the marginal revenue curve over

each unit of cost represents the actual additional revenue the seller can get by incurring this
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Figure 3.1: Illustrates part (a) of Proposition 2. The solid downward sloping curve is the
marginal revenue λ of capacityK, while the series of upward sloping points are successive values
of the average cost of capacity c(i)/k(i). As illustrated, i∗ = 2, since λ(K(2)) > c(2)/k(2) and
λ(K(3)) < c(3)/k(3).

unit of cost. This incremental revenue stems from the optimal changes in its pricing schedule

that reflect the seller’s ability to fulfill k(i + 1) additional units of demand, and the resulting

changes in realized demand as discussed in Section 3.1, this is because the function λ(K) is the

value of the multiplier of the demand constraint in an optimization problem whose objective

function is the seller’s revenue. Figure 3.2 illustrates this result further.

Theorem 2 has a number of implications. Its result provides a complete solution to a new

nonlinear pricing problem, one that describes the monopoly screening problem faced specifically

by sellers of a wide variety of information-technology based products and services. Additionally,

this solution shows that when faced with this non-standard IT-specific problem, a seller can

use an appropriately modified version of their standard pricing techniques, rather than having

to understand and apply an entirely new theoretical formulation.

The specific prescription of our result — pricing based (approximately) on the average value

of one’s last discontinuous unit of cost — is relatively straightforward and intuitive. However,
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Figure 3.2: Illustrates the result of Proposition 2(b). The area under the λ(K) curve between
K(i∗) and K(i∗ + 1) is the incremental revenue (horizontal stripes); the area in the rectangle
betweenK(i∗) andK(i∗+1) and under the c(i∗+1)/k(i∗+1) line is the incremental cost c(i∗+1).
Figure 3(a) illustrates a scenario under which incremental cost exceeds incremental revenue, in
which case n∗ = i∗, while Figure 3(b) illustrates the opposite, in which case n∗ = (i∗ + 1).

it can also change pricing and profitability in a significant way. For example, if there are

discontinuously diseconomies of scale (e.g., resulting from an OS platform with poor scalability),

the average cost of the last block will be much higher than overall average cost or zero. The

seller is liable to sell excessively unless it recognizes that its pricing should be based on the

average cost of the last unit of cost incurred.

If a seller bases its pricing on the near-zero marginal costs observed between successive

increases in capacity (that is, if it treats its product like an information good), it will choose

the revenue maximizing pricing schedule. This can affect profits significantly. To draw out

some managerial implications of this result, we present a simple example in which utility is

quadratic and the customer type distribution follows the beta distribution9 with parameters

a = 1 and b > 0, that is U(q, θ) = θq − 1
2
q2 and F (θ) = 1− [1− θ]b.

Given a supply function c(i),K(i), the optimal menu of quantity-price pairs, along with their

9The beta distribution describes a family of curves that are unique in that they are nonzero only on the
interval (0 1). The shape of the beta distribution is quite variable depending on the values of the parameters.
Uniform distribution (a = b = 1) is a special case of beta distribution. The general pdf of beta distribution is

1
B(a,b)x

a−1(1− x)b−1, where B(a, b) is the beta function.
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associated profit and welfare expressions are available upon request. These yield the optimal

n∗ according to Theorems 1 and 2. The actual pricing function (that is, price as a function of

quantity) takes the following form: a two-part tariff with a volume discount.

p(q) =
1

1 + b

h
bλ(K(n∗)) + q(1− q

2
)
i
. (3.19)

Note that all of the dependence of pricing on the supply function c(i), K(i) is contained in

n∗. This is a consequence of the sequence we have chosen for our theoretical formulation, and

is advantageous when applying it to specific examples, since allows one to examine properties

of the pricing schedule without too much algebraic complexity. In this specific case, (3.19)

indicates that when the seller treats its good as an information good, then λ(K(n∗) = 0. In

contrast, when the seller takes its discontinuous costs into account, λ(K(n∗)) > 0, and prices

at all levels of usage should be higher (by a fixed amount in this example, though this is not

true in general). For higher levels of c(i), the number of units n∗ will be lower, λ(K(n∗)) will

be higher, and zero marginal cost pricing will be farther from the optimal level.

Since the cost of the infrastructure associated with delivering digital products and services

(servers, networking equipment, ...) declines fairly rapidly over time, it is natural to investigate

how the seller’s optimal pricing schedule changes with this kind of sustained decline. Compara-

tive statics analysis of the base model has two weaknesses. First, it ignores the durability of the

infrastructure associated with delivering digital goods: costs incurred in fulfilling demand in

one period are likely to fulfill demand in subsequent periods. Second, by collapsing a dynamic

problem into a comparative statics calculation, it does not capture the effects that anticipated

future cost declines might have on current choices (a seller may deploy less infrastructure in

anticipation of future cost declines, for instance). Consequently, we investigate the effect of
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declining costs on pricing further in the first extension to our model in section 4.

4. Extensions

4.1. Declining costs and evolving demand

In this section, we extend the analysis to two periods: costs remain discontinuous but decline

proportionally at a rate α over time. Customers are short-lived in each period with identical

and independent type distributions. In this section, the seller is facing the trade-off to save the

capital expenditure by delaying the installation of demand capacity while sacrificing the revenue

in the first period. We show that when the seller faces a finite horizon of product viability,

pricing may not be affected by anticipated cost declines up to a point; this result highlights

one implication of the "capacity" nature of the cost function of the digital products we model.

However, if the anticipated drop of costs is significant enough, it results in a decline in the

demand capacity installed in the first period with an increase in the demand capacity installed

in the second period, which leads to decreasing average price and increasing consumption of

each participating buyer over time.

We have solved the single period pricing problem in section 3. Define the associated single

period revenue function as R(K(n)). We can express the single period optimization problem

as maxnR(K(n))− C(K(n)). Let the number of blocks installed in each period be n1 and n2,

respectively. The objective function of this two-period problem is

max
n1,n2

R(K(n1))− C(K(n1)) + δ[R(K(n1 + n2))− αC(K(n1 + n2)) + αC(K(n1))]. (4.1)

The first two terms are the profits from the first period and δ is the discount rate. Terms in
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the bracket are the profits earned in the second period. It should be noted that n2 is defined as

the incremental rather than cumulative number of block purchased in the second period. The

total number of block installed in the second period is thus n1 + n2, which leads to the capital

expenditure in the second period being α[C(K(n1 + n2))− C(K(n1))]. For ease of exposition,

we define the single-period optimal number of blocks in terms of the market size, x, as follows:

n(x) = argmax
n

x ·R(K(n))− C(K(n)) = argmax
n

R(K(n))− 1
x
C(K(n)). (4.2)

There are two additional interpretations of n(x): (1) The optimal number of blocks when the

infrastructure can be reused x times. (2) The optimal number of blocks when the cost is

proportionally scaled down by 1/x. By this definition, n(1) is our single period solution in

Section 3. The following theorem describes how this result changes when costs decline from

period 1 to period 2.

Theorem 3. The monopolist will install demand capacity only in the first period when the

costs decline slightly. Formally, when α ∈ [1/(1 + δ), 1], we have

n∗1 = n(1 + δ) and n∗2 = 0.

Otherwise when α ∈ [0, 1/(1 + δ)], the seller will defer the installation of demand capacity.

n∗1 = n(
1

1 + αδ
) and n∗2 = n(

1

α
)− n∗1 .

The condition that separates our two cases depends only on the discount rate, and a more

patient monopolist tends not to defer installation. In contrast, the monopolist always defers

23



the installation of some infrastructure when the discount rate is lower. A contrast between two

extreme cases is instructive. When δ → 1, costs needs to decline by more than 50% before the

installation decision is influenced. In contrast, a monopolist who is very impatient (δ → 0) will

almost always defer some demand capacity installation, but to a lesser degree. The reason is

that when the monopolist cares less about the future, both the revenue and cost in the future

are less important than the current profit. As a result, the monopolist will not procure all of

the demand capacity in the first period because of the high present value of the capital cost,

and always finds it profitable for to defer some infrastructure procurement to the second period.

Given the optimal number of blocks in each scenario, we can compare the market coverage,

optimal quantity and pricing across cases. It can be verified that when cost declines significantly,

the optimal number of blocks in the first (second) period is smaller (higher) than that of the

benchmark case. More precisely, this is the case when n(1/(1+αδ)) ≤ n(1+δ) ≤ n(1/α). Using

Corollary 1, we can summarize the results in Table 4.1. Observe that declining costs always lead

to an increase in market coverage, an increase in demand fulfilled, and a lower unit price. The

direction of change in total price offered to each type of customer is generally ambiguous since

consumers purchase more at lower unit prices. However, since the market coverage is smaller

and the lowest type always gets zero quantity, we know that at least an interval of lower type

customers will pay a lower total price as costs decline. The greater the decline in costs, the

more significant is this trend.

4.2. Multimarket pricing with shared infrastructures

Our next extension considers multimarket pricing with shared IT infrastructure. In a modern

business environment, most firms provide multiple products and/or services in several markets
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Cost Down Period 1 Cost Down Period 2 Benchmark Case
Total number of blocks Small Large Medium
Market coverage Small Large Medium
Quantity to each type Small Large Medium
Total price to low types Low High Medium
Total price to high types Ambiguous Ambiguous Ambiguous
Unit price to each type Large Low Medium

Table 4.1: Summary of Results

based on a shared IT infrastructure. For example, Google and Yahoo! both provide a number

of services (mail, chat, spreadsheets, calendaring, social networking), and the provision of these

services is based on a powerful shared IT infrastructure.

Suppose the seller offers m products rather than one. For simplicity, we assume that the

demand for each of these products is independent. We continue to maintain each of the as-

sumptions made in Section 3. In the absence of an infrastructure-related constraint on fulfilling

demand, denote the revenue function for product i as Ri(Q). This revenue function is con-

structed by constructing the optimal schedule with total demand Q as in section 3, and can

vary arbitrarily across the m products.

We also allow the provision of each of the services to entail the use a varying "amounts"

of the infrastructure, while assuming that the services are ranked in decreasing order of their

infrastructure. For example, Google Search, Google Maps, and Google Mail may utilize the

underlying shared IT infrastructure at differing intensities. Specifically, let service 1 be the

most infrastructure intensive. If the shared infrastructure was dedicated to the provision of this

product, then the jth block of infrastructure facilitates the fulfillment of k(j) additional units

of demand (this is following the development of the model in section 3.1). For any product

i > 1, if the shared infrastructure was dedicated to the provision of this product, then the jth

block of infrastructure facilitates the fulfillment of k(j)/ui additional units of demand, where
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ui < 1 captures the infrastructure needs per unit demand for product i relative to product 1.

It is now straightforward to show that the profit maximization problem of the firm can be

written as

max
n,Qi

mX
i=1

Ri(Qi)− C(K(n)), (4.3)

subject to:
mX
i=1

ui ×Qi = K(n), (4.4)

where Qi is the total demand of product i, and n is the number of blocks of infrastructure.

Since there is no interaction among the revenue functions, all of our results pertaining to

the design of pricing schedules still apply. Therefore, the optimal pricing schedules can be

derived by solving unconstrained nonlinear pricing problems with shadow variable costs ui×λ,

associated with the demand in market i. In other words, the more a product uses the IT

infrastructure, the higher the shadow variable cost is accrued to mitigate its demand so that

the total usage of the infrastructure equals the installed demand capacity (K(n)).

5. Concluding remarks

A number of IT-based products and services are modeled as information goods that have large

fixed costs of production, but no variable costs of production or distribution. It is widely

recognized that pricing policies for information goods differ significantly from those which are

optimal for goods with positive variable costs. However, we posit that information technology-

based products and services — internet service, telephony, online trading, on-demand software,

digital music, streamed video-on-demand and grid computing — are not really information goods.

Variable increases in demand are fulfilled by the addition of "blocks" of computing or network
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infrastructure, and their actual cost structure resembles a mixture of positive periodic fixed

costs, and zero marginal costs.

We have provided the first general solution for the optimal nonlinear pricing of such digital

goods and services. We show that the optimal nonlinear pricing schedule with discontinuous

supply functions coincides with the solution to one specific instance of a constrained pricing

problem (which we characterize the solution to), thus reducing a complex constrained optimiza-

tion problem with a discontinuous objective function to simply identifying an optimal number

of "blocks" based on a simple and intuitive rule analogous to "balancing" the marginal revenue

with average "marginal cost". We show how our results differ from those based on the infor-

mation goods assumption, and provide extensions that allow declining IT costs, and shared IT

infrastructures.

There are many interesting directions for future research that our model suggests. First, our

extension to multimarket pricing with shared infrastructures does not permit demand in these

markets to be interdependent. An extension that admits this would improve our understanding

of how the use of shared infrastructures affects pricing policy. Second, we do not consider the

effects competition may have. It is likely that Google is able to compete more effectively because

of its technological prowess in implementing a shared infrastructure which delivers tremendous

power at a cost-performance ratio which is far lower than its competitors. An extension of our

model to one of infrastructure-based competition would add to our understanding of how pricing

power is influenced by technological capability these increasingly common shared infrastructure

environments.
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7. Appendix: Proofs

7.1. Proof of Lemma 1

The transformation of the objective function into the virtual profit function is standard in the

literature (see, for example, Armstrong, 1996 or Sundararajan, 2004). Our next step is to

show that the optimization problem (3.1) - (3.3), denoted as P1, is equivalent to (3.4) - (3.7),

denoted as P2. We first show that P1 and P2 have the same feasible set and next show that

their optimal solutions are the same.

Firstly, the feasible set of P2 is a subset of the feasible set of P1 when we set q(θ) = 0,∀θ < θ.

Secondly, any feasible solution of P1 is also a feasible solution of P2 if we define θ by θ = {θ :
q(θ) = 0 and q(θ) > 0,∀θ > θ}, which is well-defined and it implies q(θ) = 0 ∀θ ≤ θ because

q1(θ) > 0. hence, these two problems have the same feasible set.

To show the maximum is the same, note that the only difference between these two objective

functions is the profit generated from θ ∈ [0, θ], which is zero because q(θ) = 0,∀θ < θ (by

assumption, u(0, θ) = 0 and u2(0, θ) = 0, ∀θ.) Consequently, the total profit from θ ∈ [0, θ] is
zero and these two problems have the same optimum.
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7.2. Proof of Lemma 2

(1) Part (a) is standard in the literature (please see Sundararajan 2004).

(2) Part (b) is an Isoperimetric problem in the dynamic programming literature. It is a

well-known result that the objective function of this problem is

max
θ,q(.)

L =

Z 1

θ=θ

[U(q(θ), θ)− U2(q(θ), θ)H(θ)] f(θ)dθ + λ[K −
R 1
θ
q(θ)f(θ)dθ], (7.1)

=

Z 1

θ=θ

[U(q(θ), θ)− U2(q(θ), θ)H(θ)− λq(θ)] f(θ)dθ + λK. (7.2)

subject to (3.5) and (3.6). Maximizing the integrand pointwise with respect to q(θ), we have

the necessary condition (3.8). Also, this is a free initial point problem of calculus of variations.

By Seierstad and Sydsæster (p39, equation (41b)), the transversality condition (boundary con-

dition) at the initial point θ is exactly (3.13). (3.14) results from the total price equals to the

consumer surplus minus the information rent offered to each type.

(3) Uniqueness. We prove this by three steps: (1) We show that (3.13) uniquely determines

θ. (2) We show that the LHS of (3.7) is continuous in λ and (3.8) uniquely determines q as a

function of λ. (3) LHS of (3.7) is decreasing in λ and (3.7) uniquely determines the value of

λ(K).

Step 1: To show the uniqueness of θ, it can be verified that q(θ) = 0 is always a solution

of (3.13). Fully differentiating the LHS of (3.13) with respect to q, we have

d(LHS)

dq
= [U1 − U12H(θ)] + [U2 − U22H(θ)]

dθ

dq
− U2

dH

dq
, (7.3)

= λ+ [U2 − U22H(θ)]
dθ

dq
− U2

dH

dq
. (7.4)

Note that d(LHS)/dq equals to λ at θ because q(θ) = 0, U2 = 0 and U22 = 0. Hence, d(LHS)/dq

is strictly greater than λ for all θ > θ because the second term is positive from assumptions:

U2 > 0, U22 < 0, H(θ) > 0, and dθ/dq > 0. The last term is also positive given the fact that

H(θ) is nonincreasing in θ and q is nondecreasing θ. Since d(LHS)/dq > λ and LHS > λq, the

only solution of (3.13) is θ.

Step 2: To show that (3.7) uniquely determines λ(K), we first define the total quantity in

terms of λ as

Q(λ) ≡
R 1
θ=θ

q(θ, λ)f(θ)dθ. (7.5)

Without loss of generality, we assume that for large enough λ, Q(λ) = 0 ∀λ > λ. The reason
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is that when λ (the variable cost) is very high, the monopolist will stop selling. In (3.7) and

the uniqueness of q is guaranteed by the concavity assumptions. As a result, the LHS of (3.7)

is a one-to-one, continuous (all functions are continuous of RHS) mapping from the compact

metric space of q to the compact metric space of λ. By the result from real analysis, the inverse

function is also continuous. In other words, q is continuous in λ.

Following standard procedures in the analysis, we can show that Q(λ) is also continuous in

λ. For any ε > 0,we can find λ and λ0 close enough such that

|Q(λ)−Q(λ0)| ≤
Z
Θ

|q(θ, λ)− q(θ, λ0)|f(θ)dθ,

in which the RHS equals toZ
{θ:|q(λ)−q(λ0)|<ε}

|q(θ, λ)− q(θ, λ0)|f(θ)dθ +
Z
{θ:|q(λ)−q(λ0)|≥ε}

|q(θ, λ)− q(θ, λ0)|f(θ)dθ.

This term can be shown to be smaller than

ε+ (maxθ |q(θ, λ)− q(θ, λ0)|) · P (θ : |q(θ, λ)− q(θ, λ0)| ≥ ε). (7.6)

By the demand capacity constraint, (maxθ |q(θ, λ)− q(θ, λ0)|) is bounded above by some con-
stant. Also, |q(θ, λ)− q(θ, λ0)| can be arbitrarily small by the continuity of q(θ, λ). As a result,
the second term disappears and we have |Q(λ)−Q(λ0)| < ε,which completes the proof.

Step 3: To prove the strictly decreasing part, we apply the implicit function theorem on

(3.8) and it follows that

dq(θ, λ)

dλ
=

−1
−[U11 − U112H(θ)]

< 0, ∀θ. (7.7)

The last inequality results from the global concavity assumptions on U11 and U112.

7.3. Proof of Corollary 1

Part (a-1): qC2 (θ,K) > 0 comes from the proof of Lemma 2, in which we show dqC1 (θ,K)/dλ <

0 and dK/dλ < 0.

Part (a-2): (Total Price) We first derive the results of the total price and next the

results of the average price. We can show that the sign of the total price is ambiguous. After
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differentiating (3.14), we have

dPC

dK
=

∙
U1(q

C(θ,K), θ)
dqC(θ,K)

dK
−
R θ
t=θ(K)

U12(q
C(t,K), t)

dqC(t,K)

dK
dt

¸
+U2(q

C(θ,K), θ)
dθ

dK
.

(7.8)

The last term is zero by qC(θ,K) = 0. Hence, the sign of LHS is the same as that of the bracket.

When θ → θ, this term is positive because the second term goes to zero while the first term

is still positive. In other words, when K increases, the total payment for the lower types are

higher. We can show that the sign in general is ambiguous by showing this term is decreasing

in θ and dPC

dK
|θ=1 may be negative or not. Differentiating again by θ, we have

d2PC

dKdθ
= U11(q

C(θ,K), θ)
dqC(θ,K)

dK

dqC(θ,K)

dθ
. (7.9)

The RHS is negative and therefore the sign of dPC

dK
depends on the value at θ = 1. It follows

that
dPC

dK
|θ=1 = λ · dq

C(1, K)

dK
−
R 1
t=θ(K)

U12(q
C(t,K), t)

dqC(t,K)

dK
dt. (7.10)

As a result, when λ = 0, it is negative.

(Average Price) Lastly, we show that the unit price is decreasing in K. It follows that

d(PC(θ)/qC(θ))

dK
=

qC · dPC

dK
− PC · dqC

dK

qC(θ)2
. (7.11)

Thus, the sign of the LHS is the same as that of the numerator. It can be verified that this

term goes to 0 when θ goes to θ(K) since q and PC are both zero at θ(K). If the numerator

is decreasing in θ, then it is negative for all θ. Equivalently, the unit price is decreasing in K.

The last part of the proof is to prove this claim.

d

dθ

∙
qC · dP

C

dK
− PC · dq

C

dK

¸
=

dqC

dθ
· dP

C

dK
+ qC · d

2PC

dKdθ
− dPC

dθ

dqC

dK
− PC · d

2qC

dKdθ
.

Substituting dPC

dK
, d

2PC

dKdθ
, and dPC

dθ
into this equation, we have

dqC

dθ
·
∙
−
R θ
t=θ(K)

U12(q
C(t,K), t)

dqC(t,K)

dK
dt+ qC · U11 ·

dqC

dK
− PC · dq

C

dK

¸
< 0.

This inequality results from the fact that q > 0, U11 < 0,
dqC

dK
> 0, and U12 > 0.

Part (b) From the proof of Lemma 2, By dq/dλ < 0 and q(θ) = 0, we can conclude that

dθ/dλ > 0,which is equivalent to dθ/dK < 0.
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7.4. Proof of Theorem 3

Solving backward, we solve n∗2 in (4.1) by maximizing the following two terms.

max
n2

δ[R(K(n1 + n2))− αC(K(n1 + n2))]. (7.12)

In fact, it is exactly the single-period problem with cost scaled by α. The solution is

n∗2 = 0, when n∗1 > n(1/α). (7.13)

n∗2 = 0 because the marginal revenue from adding additional block is already smaller than the

marginal cost. Otherwise,

n∗2 = n(1/α)− n∗1, when n∗1 ≤ n(1/α), (7.14)

which means in the second period, the seller will add blocks (n∗2) until n
∗
1, where marginal

revenue "equals" average cost.

Back to the first period’s decision of n1, we solve the problem by considering two cases.

Case (1) If n∗1 > n(1/α), we already know that n∗2 = 0, which means the monopolist does

not defer installation decisions. After simplifying (4.1), we have

max
n1
(1 + δ)R(K(n1))− C(K(n1)). (7.15)

The solution is thus n∗1 = n(1 + δ). To satisfy n∗1 > n(1/α), we need (1 + δ) > (1/α) ⇔
1/(1 + δ) < α, which is the condition in the theorem.

Case (2) If n∗1 ≤ n(1/α), n1 does not affect the two terms involving n2 in (4.1) since the

second period’s optimal decision will fill up the gap to second period’s optimal level. As a

result, we only need to consider the other three terms in (4.1), which can be simplified to

another single-period problem.

max
n1

R(K(n1))− C(K(n1)) + αδC(K(n1)) = R(K(n1))− (1− αδ)C(K(n1)). (7.16)

The solution of n∗1 is thus n(1/(1− αδ)). In order to satisfy the constraint, we need n(1/(1−
αδ)) ≤ n(1/α), which is equivalent to 1/(1− αδ) ≤ 1/α⇔ 1/(1 + δ) ≥ α. This completes our

proof.
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