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Abstract

Studies of predictive regressions analyze the case where yt is predicted by xt−1

with xt being first-order autoregressive, AR(1). Under some conditions, the OLS-
estimated predictive coefficient is known to be biased. We analyze a predictive
model where yt is predicted by xt−1, xt−2, . . . xt−p with xt being autoregressive of
order p, AR(p) with p > 1. We develop a generalized augmented regression method
that produces a reduced-bias point estimate of the predictive coefficients and derive
an appropriate hypothesis testing procedure. We apply our method to the predic-
tion of quarterly stock returns by dividend yield, which is apparently AR(2). Using
our method results in the AR(2) predictor series having insignificant effect, although
under OLS, or the commonly assumed AR(1) structure, the predictive model is sig-
nificant. We also generalize our method to the case of multiple AR(p) predictors.
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I Introduction

Consider a predictive regression model where yt is regressed on a lagged predictor variable,

xt−1. The OLS-estimated slope coefficient in such a model has been shown to be biased in

small samples when the predictor xt is first-order autoregressive (AR(1)) and the errors of

the autoregressive model for xt are correlated with the errors in the predictive regression

model. Stambaugh(1999) analyzes this case and develops the bias expression.1

Research on this topic commonly assumes that the predictor series is AR(1). This is

indeed the evidence on monthly series of some popular predictor series, such as dividend

yield, earnings/price ratio and book/market ratio. However, other predictor series may be

autoregressive of higher order. Even the dividend yield series is found in our study below

to be AR(2) when examined at quarterly frequency. Here, we present a methodology

which focuses on estimating and testing the predictive coefficients of a predictor which is

AR(p), p ≥ 1.

We analyze the case where yt is predicted by xt−1, ..., xt−p where the series xt is AR(p),

p ≥ 1. We propose a reduced-bias method of estimating slope coefficients and a corre-

sponding hypothesis test. This allows for testing predictive models with more general

dynamic structure than those previously studied, which solve the problem only for the

AR(1) case. The method developed here is a generalization of the Augmented Regression

Method of Amihud and Hurvich (2004) for the AR(1) case.2

Predictive regressions with autoregressive predictors that are not necessarily of the

AR(1) structure are quite common in finance and economics. Ferson, Sarkissian and

Simon (2003, Table 1) provide a list of variables that are commonly used to predict

1See also Mankiw and Shapiro (1986), Nelson and Kim (1993).
2Amihud, Hurvich and Wang (2008) propose a hypothesis testing method for multi -predictor regression

where the predictor vector xt is assumed to following a vector AR(1), VAR(1), structure.
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asset returns, some of which may not follow AR(1) structure. These include Fama and

French’s (1989) model where the cumulative stock return over various time intervals is

predicted by dividend yield, the term bond-yield spread or the default bond-yield spread,

all being autoregressive. Fama (1990) uses a closely related model. We show below the

use of our method for quarterly dividend yield as a predictor variable, which apparently is

AR(2). Patelis (1997) studies the effect of monetary policy on stock returns by regressing

stock returns over various time intervals—1, 3, 12 or 24 months—on lagged values of the

federal funds rate, various term yield spreads and one-month real interest rate. Ang and

Bekaert (2007), using international data, find that dividend yield predicts stock returns

at short horizons only when augmented with the short-term interest rate. Ferson et al.

(2003) point out that while stock returns are not highly persistent, expected return may

be persistent and thus may be spuriously predicted by an autoregressive series.

In economics, predictive regression studies are quite prevalent, with some predictor

variables having autoregressive structure of order that is apparently greater than 1. Some

models predict real activity, such as GNP (or GDP) growth, by term yield spread (Estrella

and Hardouvelis (1991) and studies that followed). Plosser and Rouwenhorst (1994)

predict consumption growth using data from a number of countries. Hamilton and Kim

(2002) reexamine the predictability of economic activity using decomposed term yield

spread for various prediction horizons (one to 16 quarters). Lint and Stolin (2003) reaffirm

that economic activity is predicted by the lagged term yield spread and provide theoretical

explanation for that. Another well-studied relationship in economics is the Phillips Curve,

which posits that inflation is a function of unemployment. Stock and Watson (1999)

predict the inflation rate by lagged unemployment rate, which is autoregressive.

Other studies deal with related predictive regression models. Jansson and Moreira

(2006) provide a methodology for conducting inference on the predictive regression coeffi-

cient (with a predictor that is potentially autoregressive of order greater than 1), without
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providing a corresponding estimate of the predictive coefficient. Similarly, without pro-

viding point estimates, Campbell and Dufour (1997) develop a nonparametric test of the

null hypothesis of no predictability in a very general context. In the context of an AR(1)

predictor and a single predictive lag, Eliazs (2005) develops a a median unbiased estimator

of the slope coefficient which he finds to perform well in the class of near nonstationary

predictors. Chen and Deo (2009), restricting to the case of one predictive lag but allowing

for a multivariate predictor, employ the Restricted Maximum Likelihood estimation and

the corresponding Bartlett corrected likelihood ratio test, which they show to produce ef-

ficient and well-sized results, with higher power than that in the Jansson-Moreira (2006)

test, and smaller bias than in ARM(1). Cavanagh, Elliott and Stock (1995) develop in-

ferential methods for predictive models with a nearly-integrated predictor and a single

lagged regressor in the predictive equation, whereas we deal with multi-lag predictors.

This paper proceeds as follows. Section II develops the theoretical model estimation

of the slope coefficient and hypothesis testing for a model where the predictor variable

has AR(p) structure with p ≥ 1. Section III presents empirical implementation. First,

we examine the usefulness of our proposed methodology in simulations. Second, we apply

our method to estimate a predictive model of quarterly stock returns, the predictor being

lagged dividend yield which apparently has an AR(2) structure. Using our method results

in the AR(2) predictor series having insignificant effect, although under OLS the predictive

model is significant. In Section IV we generalize our method to the case of multiple AR(p)

predictors. Our concluding remarks are in Section V.
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II Augmented Regression Method (ARM) for AR(p)

Predictor

We consider the following AR(p)-predictor model, for p ≥ 1.

yt = α + β1xt−1 + . . . + βpxt−p + ut , (1)

xt = θ + ρ1xt−1 + ρ2xt−2 · · ·+ ρpxt−p + vt , (2)

where (ut, vt)
′ is serially independent and bivariate normal, i.e.


 ut

vt


 i.i.d.∼ N(0, Σ), Σ =


 σ2

u σuv

σuv σ2
v


 ·

This model assumes potential predictive power of all p lags of xt, instead of only

xt−1. The problem with this predictive model is that the OLS-estimated slope coefficients

β̂1, β̂2, ...β̂p are potentially biased in finite samples. Stambaugh (1999) analyzes the bias in

the case of p = 1. Our analysis proposes a method for reduced-bias parameter estimation

and hypothesis testing for the general case of p ≥ 1.

Estimating the parameters in a model such as (1) is necessary in structural models

in economics and finance where, beyond the question of predictability, researchers are

interested in the magnitudes of the predictive coefficients. For example, Bernanke and

Mihov (1998a, 1998b) present a model, based on Bernanke and Blinder (1992), where

macroeconomic variables, such as output or aggregate prices, are functions of lagged

policy variables, such as money supply, with several lags. Here, policy makers need to

estimate the evolving cumulative effect of monetary policy on output or prices. In their

model, the policy variables have AR(p) structure, and the macroeconomic variables are

affected by p lags of the policy variables. Bernanke and Mihov (1998, p. 875) propose

to ”estimate [this system] by standard methods.” However, if policymakers want to know
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the effect of policy shocks on macroeconomic variables, estimation by standard methods

may produce biased coefficients, i.e., incorrect estimates of the cumulative policy effect

on the economy.

In finance, point forecasts of stock returns from predictive regressions are used in

constructing an optimal portfolio. For example, Lynch and Tan’s (2009) predictive model

uses the lagged dividend yield and the lagged book-to-market ratio (both being persistent)

to predict expected returns. The point forecasts from these models are inputs in the

solution of the multi-period dynamic individual portfolio choice problem. It follows that

beyond knowing whether expected return is predictable by lagged regressors, this study

requires point estimates of the predictive coefficients to produce the point forecast of the

dependent variable.

We assume that the autoregressive model in (2) is stationary. This assumption is

reasonable for a variety of applications of predictive regressions in Finance. For example,

Santos and Veronesi (2006) argued that ”the restriction that [the log income/consumption

ratio] is stationary rests on solid economic intuition: it is not reasonable to assume that

consumption can grow to be infinitely larger than labor income, or, alternatively, that

labor income can grow to be several times higher than consumption.”

In the model (1), (2) with p > 1 it is important to include all p lags in the regression.

Failure to do so could result in a hypothesis test for predictability with extremely low

asymptotic power. Suppose, for example, that p = 2, β1 = 0, β2 6= 0 and ρ1 = 0, so that

the process has a lag-1 autocorrelation of 0. Then the OLS regression coefficient of yt on

xt−1 alone will converge in probability to zero, in spite of the presence of predictability of

yt. More generally, suppose in the model (1), (2) that

β1 +
Cov(xt−1, (β2xt−2 + ... + βpxt−p))

V ar(xt)
= 0 (3)

and not all βi with i > 1 are zero. Then once again there will be return predictability but
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regression in the misspecified predictive model for yt based on xt−1 alone will produce an

estimated predictive coefficient of zero, asymptotically. Finally, even if the lefthand side

of (3) is nonzero but is sufficiently close to zero, the misspecified regression of yt on xt−1

alone could lead to extremely low finite-sample power in the corresponding test for return

predictability.3

A Reduced-bias estimation of predictive coefficients

We outline our proposed procedure to produce reduced-bias slope coefficients. In model

(1), ut can be decomposed into

ut = φvt + et (4)

where {et} are i.i.d. normal and independent of both {vt} and {xt}. It is easy to see that

φ = σuv/σ
2
v . We then construct a proxy {vc

t} for {vt},

vc
t = xt − θ̂c − ρ̂c

1xt−1 − ρ̂c
2xt−2 · · · − ρ̂c

pxt−p , (5)

where θ̂c, ρ̂c
1, · · · , ρ̂c

p are estimators of θ, ρ1, · · · , ρp based on the available data, {xt}n
t=−p+1.

Specific choices for these estimators are given below.

Our reduced-bias predictive coefficients β̂c
i , i = 1, 2, . . . , p are produced by an aug-

mented regression, where {yt}n
t=1 is regressed by OLS on {xt−1}n

t=1, {xt−2}n
t=1, . . . , {xt−p}n

t=1

and on {vc
t}n

t−1, with intercept.

3In both our model and the augmented regression estimation method presented here, we assume that

the number of lags in (1) and (2) are the same. This raises a model selection problem which is beyond

the scope of this paper. Above, we discussed the consequences of omitting a relevant predictive variable

in (1). If, however, we estimate an irrelevant variable in (1), for example, if β2 = 0 but we include xt−2

in the regression, then asymptotically there is no harm done, but in finite samples it will entail some cost

in terms of both efficiency and power.
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Theorem 1 The bias of β̂c
i , (i = 1, . . . , p) is given by

E[β̂c
i − βi] = φE[ρ̂c

i − ρi] .

Proof: See appendix.

Following Theorem 1, the bias of the predictive coefficients is reduced if the estimators

ρ̂c
j, (j = 1, . . . , p) are selected to be as nearly unbiased as possible for ρj. This follows

since the bias of β̂c
j is proportional to the bias of ρ̂c

j, as in Theorem 1. This result is a

generalization of the bias expression in Stambaugh (1999) for the AR(1) predictor case.

The estimated coefficient φ̂c of vc
t obtained from the augmented regression is unbiased:

Lemma 1 E[φ̂c] = φ.

Proof: See appendix.

Combining Equations (1) (2), (4) and (5) we have

yt = α + β1xt−1 + . . . + βpxt−p + φvt + et

= α + β1xt−1 + . . . + βpxt−p + φ(vt − vc
t ) + φvc

t + et

= [α + φ(θ̂c − θ)] + [β1 + φ(ρ̂c
1 − ρ1)]xt−1 + · · ·+ [βp + φ(ρ̂c

p − ρp)]xt−p + φvc
t + et

where the error terms et are i.i.d. normal with mean zero, and for all t, et is independent

of x−p+1, . . . , xn.

The unbiasedness of φ̂c is seen from the fact that, conditionally on x−p+1, . . . , xn,

the model above satisfies the usual regularity conditions for a regression model (such as

independence between the error term and all regressors, including vc
t , which is a function

of x−p+1, . . . , xn), based on the full set of regressors, that is, all p lags of xt together with

vc
t .
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Bias-corrected estimators of ρi can be obtained from Shaman and Stine’s (1988, 1989)

small-sample bias expressions for the OLS estimates ρ̂i in an AR(p) process. For example,

for the p = 2 case, (See the Appendix for the cases p = 1, . . . , 5)

E(ρ̂1 − ρ1) = −1 + ρ1 + ρ2

n

E(ρ̂2 − ρ2) = −2 + 4ρ2

n
.

We use these expressions to construct bias-corrected estimators ρ̂c
1, · · · , ρ̂c

p of the OLS

estimates ρ̂1, · · · , ρ̂p. For any AR(p) model, the bias expressions are linear functions

of the true autocorrelations ρ1, · · · , ρp. Plugging the OLS estimators ρ̂1, · · · , ρ̂p into

these expressions, and then subtracting the result from the corresponding ρ̂i yields the

reduced-bias estimators we will use, ρ̂c
1, · · · , ρ̂c

p. For example, with p = 2, we have

ρ̂c
1 = ρ̂1 +

1 + ρ̂1 + ρ̂2

n

ρ̂c
2 = ρ̂2 +

2 + 4ρ̂2

n ·

B Hypothesis testing: Estimating cov(β̂c
i , β̂

c
j)

Having estimated the reduced-biased coefficients of the predictor variable, β̂c
i , we propose

a method to test hypotheses related to these coefficients. We use the following feasible

formulas to estimate the covariance between β̂c
i and β̂c

j , motivated by Lemma 2 and (8)

below,

ĉovc(β̂c
i , β̂

c
j ) = {φ̂c}2ĉov(ρ̂c

i , ρ̂
c
j) + ĉov(β̂c

i , β̂
c
j ) (6)

and for the case (i = j),

v̂arc(β̂c
i ) = {φ̂c}2v̂ar(ρ̂c

i) + v̂ar(β̂c
i ) . (7)

To evaluate the covariance, we need the following theoretical results.
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Since E[(β̂c
i −βi)(β̂

c
j −βj)] = cov[β̂c

i , β̂
c
j ]+E[β̂c

i −βi] ·E[β̂c
j −βj], and since by Theorem

1, the bias is E[β̂c
i − βi] = φE[ρ̂c

i − ρi] = O(1/n2), we obtain

cov[β̂c
i , β̂

c
j ] = E[(β̂c

i − βi)(β̂
c
j − βj)] + O(1/n4) (8)

where the first term can be evaluated using Lemma 2.

Lemma 2

E[(β̂c
i − βi)(β̂

c
j − βj)] = φ2E[(ρ̂c

i − ρi)(ρ̂
c
j − ρj)] + E[ĉov(β̂c

i , β̂
c
j )] (9)

where ĉov(β̂c
i , β̂

c
j ) is the estimated covariance between β̂c

i and β̂c
j , based on an OLS re-

gression of yt on xt−1, · · · , xt−p and vc
t , with intercept (provided by standard regression

packages).

Proof: See appendix.

If i = j, the above lemma simplifies to

E[β̂c
i − βi]

2 = φ2E[ρ̂c
i − ρi]

2 + E[v̂ar(β̂c
i )]· (10)

We now need to accurately estimate φ2E[(ρ̂c
i − ρi)(ρ̂

c
j − ρj)]. First, we note that the

coefficient φ̂c of vc
t in the augmented regression is unbiased (see Lemma 1 above). Next,

we need to construct an estimator of E[(ρ̂c
i − ρi)(ρ̂

c
j − ρj)] with low bias. Here we use

some heuristic approximations (as in Amihud and Hurvich (2004)), which turn out to

work quite well in simulations. It follows from Shaman and Stine (1988) that ρ̂c
i is a

low-bias estimator of ρi with bias that is O(1/n2). We therefore treat the autoregressive

coefficients ρ̂c
i as if they were unbiased. Then we simply need an expression for cov(ρ̂c

i , ρ̂
c
j),

which can be easily obtained because all plug-in versions of the bias correction for ρ̂c
i can
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be expressed as a linear function of ρ̂j, (j = 1, . . . , p), according to Shaman and Stine

(1988).

In the particular case p = 2, the Shaman and Stine (1988) corrections are given in

section II.A. Based on them, feasible approximations for var(ρ̂c
1), var(ρ̂c

2) and cov(ρ̂c
1, ρ̂

c
2)

are given by

v̂ar(ρ̂c
1) = (1 +

1

n
)2v̂ar(ρ̂1) +

1

n2
v̂ar(ρ̂2) + 2(1 +

1

n
)(

1

n
)ĉov(ρ̂1, ρ̂2)

v̂ar(ρ̂c
2) = (1 +

4

n
)2v̂ar(ρ̂2)

ĉov(ρ̂c
1, ρ̂

c
2) = (

1

n
)(1 +

4

n
)v̂ar(ρ̂2) + (1 +

1

n
)(1 +

4

n
)ĉov(ρ̂1, ρ̂2)

where v̂ar(ρ̂1), v̂ar(ρ̂2) and ĉov(ρ̂1, ρ̂2) are obtained from the OLS regression of model (2).

Using these, together with (6) and (7), we can estimate the covariance cov(β̂c
1, β̂

c
2).

Lemma 3

var(φ̂c) = E[v̂ar(φ̂c)] (11)

where v̂ar(φ̂c) is the estimated standard error for φ̂c as provided by standard regression

packages, based on an OLS regression of yt on xt−1, . . . , xt−p and vc
t with intercept.

III Implementation

The ARM(p) estimation procedure can be summarized as follows:

(i) Estimate model (2) by OLS,

(ii) Apply Shaman and Stine’s (1988, 1989) reduced-bias estimators of ρi to obtain

10



vc
t , given by (5). For example, for the p = 2 case, the plug-in versions for ρ̂c

i are

ρ̂c
1 = ρ̂1 +

1 + ρ̂1 + ρ̂2

n

ρ̂c
2 = ρ̂2 +

2 + 4ρ̂2

n

(iii) Perform an augmented OLS regression of yt on xt−1, . . . , xt−p and vc
t (with inter-

cept) to obtain reduced-bias estimates (β̂c
1, . . . , β̂

c
p).

The hypothesis testing procedure is summarized as follows:

(i) Estimate the (p× p) covariance matrix for the vector (β̂c
1, . . . , β̂

c
p)
′ by Equation (6)

and (7). Denote this estimated covariance matrix by Γ̂β.

(ii) Using Γ̂β together with (β̂c
1, . . . , β̂

c
p)
′, perform individual t-tests for βi, (i = 1, . . . , p)

based on the statistic β̂c
i /

√
Γ̂β(i, i) where Γ̂β(i, i) is the i-th diagonal element of Γ̂β.

(iii) A Wald-type joint test can be constructed similarly using Γ̂β and (β̂c
1, . . . , β̂

c
p)
′.

A Simulation Study

We investigate the performance of parameter estimation and hypothesis testing using

ARM(p) in a simulation study, using 10000 simulated replications from the model (1) and

(2). Specifically, we compare OLS and ARM(p) method in terms of the bias in estimating

the predictive coefficients β = (β1, . . . , βp) and in terms of the size of the statistical tests

on hypothesis tests for the β coefficients. We expect that the under ARM(p), the bias is

smaller and the tests are more accurate than under OLS. This is in fact what we obtain.

The simulation results are presented in Table 1. We assume an AR(2) predictor model

and do the simulations for two sample sizes, n = 50 and n = 200. Naturally, we expect
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that the bias under OLS is greater for the smaller n and therefore it is for the smaller

sample size that our ARM(p) provides greater improvement. The parameter values that

we use are obtained from an empirical analysis, presented in the next section, of predict-

ing the quarterly NYSE stock returns by the dividend/price ratio. Accordingly, we set

ρ1 = 1.1053, ρ2 = −0.1430, φ = −92.17, σe = 0.01844 and σv = 0.0007746 as Case 1.

The corresponding roots for the AR(2) process are 0.9557 and 0.1496. To examine our

method for an AR(2) process whose highest root is lower, we set ρ1 = 1.0553 while holding

ρ2 = −0.1430, in which case the corresponding roots are 0.8956 and 0.1597. This is Case

2. All other parameters are the same, including the setting of β1 = β2 = 0. The table

shows the parameter estimates under both OLS and ARM(p) and the realized size under

a 5% nominal size used for both the t-tests—right-sided and two-sided—and the Wald test.

INSERT TABLE 1 HERE

We find that the OLS estimators β̂1 and β̂2 are more biased than the ARM(p) es-

timators β̂c
1 and β̂c

2. In Case 1 (with ρ1 = 1.1053), for n = 200, averaging over 10000

realizations, we obtain (β̂1, β̂2) = (1.030, 0.657), while the true values are (0,0). Under

ARM(p), the bias is much smaller: (β̂c
1, β̂

c
2) = (0.134, 0.013). For n = 50, the reduction of

the OLS bias is greater under ARM(p): the estimated bias declines from (5.263, 2.030)

under OLS to (1.793, -0.439) under ARM(2). The variance of β̂c
i , (i = 1, 2) is slightly

larger than that of β̂i, (i = 1, 2), hence the root mean squared errors (RMSE) of the

ARM(p) slope estimates—which includes the effect of the bias—are in some cases greater

than those under OLS. Nevertheless, the ARM(p)-based hypothesis testing always produces

more accurate sizes than OLS-based hypothesis testing. The parameter estimates for Case

2—with a lower highest root—are qualitatively similar.

Test results—comparisons the realized sizes with the nominal size of 5%—are reported
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in Table 1, Panel B, for right-sided and two-sided hypothesis tests.4 The null hypothesis

is H0 : β1 = 0 for t(β̂1); H0 : β2 = 0 for t(β̂2) and H0 : β1 = β2 = 0 for the joint Wald

test. For the individual coefficient tests we employ standard t-values (corresponding to

5% tail probability), and for the joint test we employ a Wald test with standard values of

χ2 that would reject the null hypothesis if it were true 5% of the time. We then report the

frequency at which the null is actually rejected when it is true—this is the realized size.

Consider Case 1 with n = 50. For the two-tailed test, the realized sizes for the tests of

(β̂1) and (β̂2) are 9.5% and 5.7%, respectively, while ARM(p)-based tests produce smaller

realized sizes, 7.7% and 5.1%, for (β̂c
1) and (β̂c

2), respectively. For the right-tail test, the

improvements in the realized sizes is greater, declining from 12.5% and 7.3% under OLS

for the two slope coefficients to 8.2% and 4.9% under ARM(p). The ARM-based test

thus greatly improves the size (makes it closer to the nominal size). That is, the null

hypothesis is rejected under OLS tests more often than it should be, and more often than

it is rejected under ARM-based tests. Still, the ARM-based test sometimes results in too

large a size for (β̂c
1), reflecting the impact of high value of ρ1 and consequently the high

value of the largest root, which is close to unity, in which case the process is close to

being non-stationary. An alternative test could be performed by generating simulation-

based critical values for the hypothesis testing instead of using those based on percentiles

of the normal distribution.5 For the larger sample size, n = 200, the realized sizes are

naturally closer to the nominal sizes and ARM(p) produces sizes which are quite accurate,

outperforming those under OLS. Similar patterns are observed for the Wald test. Finally,

for Case 2 where the highest root is lower, the realized size are closer to the nominal size

compared to those in Case 1 where the process is closer to non-stationarity, and again

they are less distorted than those under OLS. The improvement of ARM(p) over OLS is

4The results for nominal sizes 1% and 10% are qualitatively similar.
5For detailed discussion of the computation of these critical values, see Amihud, Hurvich and Wang

(2006).
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again greater for the smaller sample size (n=50).

B Empirical Analysis

We study the prediction of V WNY , the NYSE value-weighted stock return, by the pop-

ular predictor dividend yield, DY . Return is quarterly and DY pertains to the end of the

quarter, where dividend is summed over the past year and divided by the end-of-quarter

price.6 The study period is 1946-1994 during which DY has been shown to have stronger

predictive power than it has when adding the period 1995-2000, “during which time prices

moved strongly against the predictions of the model” (Lewellen (2004, p.224)).7 During

1946-1994, DY significantly predicts monthly stock returns even after accounting for the

AR(1)-induced bias in the predictive coefficient. We show that DY significantly predicts

quarterly stock returns using OLS, which is known to produce biased predictive coef-

ficient (Stambaugh (1999)). When we employ the standard correction for an assumed

AR(1) structure of quarterly DY , its predictive power is still significant. However, our es-

timation shows that the correct autoregressive structure of quarterly DY is AR(2) rather

than AR(1). Then, using our augmented regression method for AR(2), the predictive

power of DY becomes insignificant.

The predictor series log DY is identified to be an AR(2) by Akaike’s (1974) information

criterion. We therefore employ the following estimation model (Model A):

V WNYt = α + β1 log(DYt−1) + β2 log(DYt−2) + ut

log(DYt) = θ + ρ1 log(DYt−1) + ρ2 log(DYt−2) + vt

INSERT TABLE 2 HERE

6Data are kindly provided by Jon Lewellen.
7See also Ang and Bekaert (2007, Table 2).
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The estimation results, presented in Table 2, show that the appropriate autoregres-

sive model for log DYt is AR(2), with both autoregressive coefficients being statistically

significant. The largest root, given our estimate of ρ̂c
1 = 1.1053 and ρ̂c

2 = −0.1430 is

0.9557. For testing the joint predictive effect of log DYt−1 and log DYt−2 we employ the

Wald test, since the high correlation between the two predictors makes individual t-tests

inappropriate here. The Wald test is of the joint effect of log DYt−1 and log DYt−2, that

is, whether the vector (β1, β2) is significantly different from (0,0). The OLS Wald test

results shows that log DYt−1 and log DYt−2 jointly predict V WNY with high statistical

significance. However, when employing the ARM(2) test, the joint Wald test shows that

there is no significant predictive effect of lagged dividend yield. The value of the Wald

test statistic is 3.91 while the critical value for 5% significance is 5.99. Note that, even

though the test is over-sized (i.e., it rejects the null too often, as we show in the simula-

tions), we still fail to reject the null when using the ARM-based test. The p-value under

the ARM-based Wald test, 0.142, is much greater (177 times greater) than the p-value of

0.0008 under the OLS-based Wald test. That is, the OLS would lead to a sound rejection

of the null, implying significant predictability while there is none.8

Most existing predictive regression literature considers the case the predictor series is

first-order autoregressive, AR(1), which is appropriate for some data. But researchers do

not always investigate the exact autoregressive structure of the predictor variable series.

We estimate a predictive regression model assuming that log DY is AR(1) (as it apparently

is in monthly data). This implies the following predictive regression model (Model B):

V WNYt = α + β1 log DVt−1 + ut

log DVt = θ + ρ1 log DVt−1 + vt

8It is worth noting, however, that the power of the ARM(p)-based test may be reduced due to altering

the specification of the predictive regression model.
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When this model is estimated by OLS, we obtain β̂1 = 0.0728 with t = 3.43, highly

significant. The AR(1) coefficient of log DYt−1 is ρ̂c
1 = 0.9729.9 To correct for the well-

known bias in this case, we apply the Amihud-Hurvich (2004) method assuming AR(1).

This produces a reduced-bias estimate of β̂c
1 = 0.0546 with t = 2.53, still statistically

significant. However, as we have argued above, the autoregressive structure of log DY

is apparently AR(2) and not AR(1). When employing ARM(2), the predictive power of

log DY becomes insignificant.

IV Extension: Multiple AR(p) Predictors

Here, we generalize the ARM(p) method to the case of multiple predictors in which each

predictor is AR(p), with p ≥ 1. For notational simplicity, we assume that each predictor

has the same autoregressive order. Suppose, then, that {xt} is a stationary q-dimensional

series, and that we wish to use p lags of xt to predict the univariate response yt. We

assume that {xt}, {yt} are given by the model

yt = α + β′1xt−1 + · · ·+ β′pxt−p + ut (12)

xt = Θ + Φ1xt−1 + · · ·+ Φpxt−p + vt (13)

ut = φ′vt + et. (14)

In (12), we assume that {yt}, α, and {ut} are (1× 1), βi are (q × 1) for i = 1, · · · , p, and

{xt} is (q× 1). In (13), we assume that {vt} is a (q× 1) Gaussian white noise series with

cov(vt) = Σv, Θ is (q × 1), Φi are (q × q) and diagonal for i = 1, · · · , p, and that {xt} is

stationary. In (14), we assume that φ is (q× 1), the {et} are independent and identically

distributed normal with mean zero, and that {et} is independent of both {vt} and {xt}.
9The estimate ρ̂c suggests that using Lewellen’s (2004) method of setting ρ = 0.9999 is inappropriate

here.
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Combining (12) and (14), we obtain

yt = α + β′1xt−1 + · · ·+ β′pxt−p + φ′vt + et. (15)

We can construct a proxy {vc
t} for {vt}, given by

vc
t = xt − Θ̂c − Φ̂c

1xt−1 − · · · − Φ̂c
pxt−p (16)

where Θ̂c, Φ̂c
i , are estimators of θ, Φi, based on the available data, {xt}n

t=−p+1. Specific

choices for these estimators are given below. We will assume Φ̂c
i to be diagonal.

Our reduced-bias predictive coefficient vectors β̂c
i , i = 1, 2, . . . , p, are obtained by an

augmented OLS regression of {yt}n
t=1 on all pq entries of {xt−1}n

t=1, {xt−2}n
t=1, . . . , {xt−p}n

t=1

as well as all entries of {vc
t}n

t=1, with intercept. The jth entry of β̂c
i , denoted by β̂c

i,j is the

coefficient of the jth entry of {xt−i} in this regression for i = 1, · · · , p, j = 1, · · · , q. Here,

the i, j subscript refers to the ith lag, jth variable. We also obtain the estimators φ̂c
j as the

coefficient of the jth entry of vc
t in the regression, for j = 1, · · · , q. The φ̂c

j are estimators

of the jth entry of φ.

Following along the lines of the proofs of Theorem 1 and Lemma 1, we obtain the

following results (omitting the proofs for the sake of brevity).

Theorem 2 The bias of β̂c
i , (i = 1, . . . , p) is given by

E[β̂c
i − βi] = E[Φ̂c

i − Φi]
′φ .

Lemma 4 E[φ̂c] = φ.

As seen from Theorem 2, since Φi and Φ̂c
i are diagonal, the bias in the jth entry of β̂c

i is

proportional to the bias in ρ̂c
i,j as an estimator of ρi,j, where ρ̂c

i,j is the jth diagonal entry of
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Φ̂c
i and ρi,j is the jth diagonal entry of Φi. Using this notation, the jth predictor variable

xt,j is autoregressive of order p, given by xt,j = Θj + ρ1,jxt−1,j + · · · + ρp,jxt−p,j + vt,j.

For each j, we can therefore focus on the jth predictor variable alone, and obtain the

bias corrected estimators ρ̂c
1,j, · · · , ρ̂c

p,j by the univariate AR(p) method described earlier,

using the bias expressions of Shaman and Stine (1988, 1989). We then obtain

Θ̂c
j =

1

n

n∑
t=1

(xt,j − ρ̂c
1,jxt−1,j − · · · − ρ̂c

p,jxt−p,j).

A similar argument to the one leading to (6) provides motivation for the following

estimator of the covariance between the entries of the reduced bias predictive coefficient

vectors, viz.,

ĉovc(β̂c
i1,j1

, β̂c
i2,j2

) = φ̂c
j1

φ̂c
j2

ĉov(ρ̂c
i1,j1

, ρ̂c
i2,j2

) + ĉov(β̂c
i1,j1

, β̂c
i2,j2

) (17)

for i1, i2 = 1, · · · , p and j1, j2 = 1, · · · , q, where ĉov(ρ̂c
i1,j1

, ρ̂c
i2,j2

) is defined below and

ĉov(β̂c
i1,j1

, β̂c
i2,j2

) is the estimated covariance between β̂c
i1,j1

and β̂c
i2,j2

, based on the aug-

mented OLS regression (provided by standard regression packages).

We now explain how to obtain ĉov(ρ̂c
i1,j1

, ρ̂c
i2,j2

). Since the bias-corrected estimators of

the autoregressive parameters are linear combinations of the OLS estimators, it suffices

to construct an estimator of the covariance matrix cov(ρ̂), where ρ̂ is the OLS estimator

of ρ = (ρ1,1, · · · , ρp,1, · · · , ρ1,q, · · · , ρp,q)
′. Since the Φi matrices are diagonal, the OLS

estimators ρ̂1,j, · · · , ρ̂p,j can be obtained directly from the AR(p) equation for the jth

variable, but since we will also need covariances between OLS estimators corresponding

to different variables, it is helpful to express ρ̂ as a subvector of (X ′X)−1X ′ỹ where

ỹ = (x1,1, · · · , xn,1, · · · , x1,q, · · · , xn,q)
′ and X is an appropriately chosen (nq × (nq + q))
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matrix such that X ′X is block diagonal. For example, in the case p = q = 2, we have

X =




1 x0,1 x−1,1 0 0 0
...

...
...

...
...

...

1 xn−1,1 xn−2,1 0 0 0

0 0 0 1 x0,2 x−1,2

...
...

...
...

...
...

0 0 0 1 xn−1,2 xn−2,2




If ṽ = (v1,1, · · · , vn,1, · · · , v1,q, · · · , vn,q)
′ then cov(ρ̂) is a submatrix of

(X ′X)−1X ′Cov(ṽ)X(X ′X)−1.

The model assumptions imply that the entries of Cov(ṽ) are determined by Σv, which

we estimate by Σ̂v = 1
n−1

∑n
t=1 vc

t (v
c
t )
′. This determines ĉov(ρ̂). Then the vector of bias

corrected estimators ρ̂c of ρ is constructed as a product of a fixed matrix with ρ̂, leading to

ĉov(ρ̂c) and ultimately the desired values ĉov(ρ̂c
i1,j1

, ρ̂c
i2,j2

) for use in (17). The estimated

covariance matrix determined by ĉovc(β̂c
i1,j1

, β̂c
i2,j2

) from (17) can be used to construct a

Wald test of the joint null hypothesis that all predictive coefficients are zero.

We ran simulations for the case p = q = 2, all with φ1 = φ2 = −92.17, β1 = β2 =

(0, 0)′, α = 0, Θ = (0, 0)′, var(et) = 0.018442 and

Σv = (0.0007746)2


 1 1/2

1/2 1




We considered two different models. In the first model, we took Φ1 = diag(1.1053, 1.1053),

Φ2 = diag(−0.144,−0.144). In the second model, we took Φ1 = diag(1.0553, 1.0553),

Φ2 = diag(−0.144,−0.144). For each model, we ran 2,000 replications, for the two sample

sizes n = 50 and n = 200. We report here only some of the results we obtained for the

first model. See Table 3.
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INSERT TABLE 3 HERE

It is seen from Table 3 that the ARM-based estimates of the β parameters have not

only dramatically lower bias, but also much smaller standard deviations (by a factor of

approximately 2) compared with the corresponding OLS estimates. The smaller standard

deviation implies that the power of ARM -based tests for predictability would be higher

than for the corresponding OLS-based tests. The ARM-based t-tests and Wald test are

less oversized than the corresponding OLS-based tests, though the ARM-based t-tests are

still noticeably oversized for n = 50, and the ARM-based Wald test is noticeably oversized

for both sample sizes, in the situation studied.

V Conclusion

This paper emphasizes that in predictive regressions, where one variable is predicted by

lagged values of another variable, it is important to correctly identify the autoregressive

structure of the predictor variable series. Current research on predictive regressions studies

the case where the predictive series is first-order autoregressive, AR(1), which is indeed

appropriate for some data. We develop an augmented regression method for the case

where the predictor variable is autoregressive of order p, p ≥ 1, denoted ARM(p). It

reduces to Amihud and Hurvich’s (2004) method when p=1. For predictive regression

with predictor series that are AR(p), we proposed bias-reduced point estimation of the

predictive coefficients and a corresponding hypothesis testing procedure. We show, both

theoretically and by simulations, that the use of OLS in such a model may produce

biased estimates of the predictive regression coefficients. This is conceptually consistent

with the analysis of Stambaugh (1999) and others for predictor series that are AR(1).

Applying ARM(p) to a model where quarterly stock returns are predicted by dividend
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yield, we find that the predictor series is AR(2). For these data, we find that dividend

yield is a significant predictor of stock returns not only based on OLS but also based

on the standard bias-correction method that assumes that the predictor series is AR(1).

However, the predictor series is found to be AR(2), and our ARM(2) method results in

the estimated predictor coefficients being insignificantly different from zero.
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VI Appendix

Proof of Theorem 1: Combining Equations (1) (2), (4) and (5) we have

yt = α + β1xt−1 + . . . + βpxt−p + φvt + et

= α + β1xt−1 + . . . + βpxt−p + φ(vt − vc
t ) + φvc

t + et

= [α + φ(θ̂c − θ)] + [β1 + φ(ρ̂c
1 − ρ1)]xt−1 + · · ·+ [βp + φ(ρ̂c

p − ρp)]xt−p + φvc
t + et(18)

where the error terms et are i.i.d. normal with mean zero, and for all t, et is independent

of x−p+1, . . . , xn.

Let {r1,t}n
t=1 denote the residuals from an OLS regression of {xt−1}n

t=1 on {xt−2}n
t=1,

· · · , {xt−p}n
t=1 and {vc

t}n
t=1. It follows that

n∑
t=1

r1,t = 0 ,

n∑
t=1

r1,txt−1 =
n∑

t=1

r2
1,t ,

n∑
t=1

r1,txt−2 = 0 , · · · ,

n∑
t=1

r1,txt−p = 0 ,

n∑
t=1

r1,tv
c
t = 0 . (19)

We have

β̂c
1 =

∑n
t=1 r1,tyt∑n
t=1 r2

1,t

. (20)

Combining (19) and (20), we obtain

β̂c
1 − β1 = φ(ρ̂c

1 − ρ1) +

∑n
t=1 r1,tet∑n
t=1 r2

1,t

. (21)

Since θ̂c, ρ̂c
1, · · · , ρ̂c

p and {vc
t} are all functions of x−p+1, · · · , xn, and hence are inde-

pendent of {et}, the expectation of the last term on the righthand side of (21) is zero,

so

E[β̂c
1 − β1] = φE[ρ̂c

1 − ρ1]
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Similarly, if we let {rj,t}n
t=1 denote the residuals from an OLS regression of {xt−j}n

t=1

on {xt−1}n
t=1, {xt−j+1}n

t=1, . . ., {xt−j−1}n
t=1, {xt−p}n

t=1 and {vc
t}n

t=1, we obtain

E[β̂c
j − βj] = φE[ρ̂c

j − ρj] (22)

for all (j = 1, . . . , p). ¤

Proof of Lemma 1: We first note that conditionally on x−p+1, . . . , xn, Equation (18)

satisfies all the regularity conditions needed for a linear regression model, and therefore

E[φ̂c|x−p+1, . . . , xn] = φ .

Taking the expectation of the formula above and applying the double expectation

theorem completes the proof. ¤

Proof of Lemma 2: Arguing as in (21) we have

β̂c
i − βi = φ(ρ̂c

i − ρi) +

∑n
t=1 ri,tet∑n
t=1 r2

i,t

β̂c
j − βj = φ(ρ̂c

j − ρj) +

∑n
t=1 rj,tet∑n
t=1 r2

j,t

so that

E[(β̂c
i − βi)(β̂

c
j − βj)] = φ2E[(ρ̂c

i − ρi)(ρ̂
c
j − ρj)] + σ2

eE

[ ∑n
t=1 ri,trj,t∑n

t=1 r2
i,t

∑n
t=1 r2

j,t

]
(23)

The expected cross-term above is zero since {et} is independent of the {ri,t}, which

are functions of {xt}n
t=−p+1.

Using the fact that

σ̂2

∑n
t=1 ri,trj,t∑n

t=1 r2
i,t

∑n
t=1 r2

j,t

= ĉov(β̂c
i , β̂

c
j ) (24)

where σ̂2 is the estimator of the error variance from a regression (with intercept) of yt on

xt−1, . . . , xt−p and vc
t , the Lemma is proved following similar techniques used in the proof

of Lemma 2 in Amihud and Hurvich (2004). ¤
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Proof of Lemma 3: Let q be the residual vector in an OLS regression of vc
t on xt−1,

· · · , xt−p. Since e is independent of {xt}n
t=−p+1, and since q is a function of {xt}n

t=−p+1, it

follows that q is independent of e.

Next,

[ŜE(φ̂c)]2 =
σ̂2

∑n
t=1 q2

t

.

Using the representation (18) together with the properties
∑

qtv
c
t =

∑
q2
t and

∑
qtxt−p =

· · · = ∑
qtxt−1 =

∑
qt =

∑
qt(vt − vc

t ) = 0, we obtain

φ̂c =

∑n
t=1 qtyt∑n
t=1 q2

t

= φ +

∑n
t=1 qtet∑n
t=1 q2

t

. (25)

Since {et} is independent of {qt} and E[et] = 0, the expectation of the second term

on the righthand side of the above equation is zero, and we obtain

var[φ̂c] = σ2
eE

[
1∑n

t=1 q2
t

]
. (26)

Proceeding as in the proof of Lemma 2, we have

E

[
σ̂2

∑n
t=1 q2

t

| X
]

= E

[
1

n− p− 2

e′(I −H)e∑n
t=1 q2

t

| X
]

=
1∑n

t=1 q2
t

1

n− p− 2
E[σ2

eχ
2
n−p−2] = σ2

e

1∑n
t=1 q2

t

,

where X = [1n, xt−1, . . . , xt−p, v
c
t ], H = X(X ′X)−1X ′ and 1n is an n× 1 vector of ones.

Taking expectations of both sides and using the double expectation theorem yields

E

[
σ̂2

∑n
t=1 q2

t

]
= σ2

eE

[
1∑n

t=1 q2
t

]
.

The Lemma now follows from (26). ¤
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Bias of the OLS Estimators of the Autoregressive Coefficients: From Table

1 of Shaman and Stine (1988).

p bias expressions for ρ̂1, . . . , ρ̂p

1 -1+3ρ1

n

2 -1+ρ1+ρ2

n
, -2+4ρ2

n

3 -1+ρ1+2ρ3

n
, -2−ρ1+4ρ2+ρ3

n
, -1+5ρ3

n

4 -1+ρ1+ρ4

n
, -2−ρ1+2ρ2+ρ3+2ρ4

n
, -1−2ρ1+5ρ3+ρ4

n
, -2+6ρ4

n

5 -1+ρ1+2ρ5

n
, -2−ρ1+2ρ2+2ρ4+ρ5

n
, -1−2ρ1−ρ2+5ρ3+ρ4+2ρ5

n
, -2−ρ1+6ρ4+ρ5

n
, -1+7ρ5

n
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Table 1: Simulation Results of a AR(2) Predictive Regression Model

The model is,

yt = α + β1xt−1 + β2xt−2 + ut ,

xt = θ + ρ1xt−1 + ρ2xt−2 + vt ,

where the errors (ut, vt) are each serially independent and identically distributed as bi-

variate normal, with contemporaneous correlation,

(
ut

vt

)
∼iid N(0, Σ) , Σ =

(
σ2

u σuv

σuv σ2
v

)
,

It is known that we can write ut = φvt + et and {et} are IID and independent of {xt}
and {vt}.

In the simulation, β1 = β2 = 0, thus the estimated parameters in the table represent the

bias. We set φ = −92.17, σe = 0.01844 and σv = 0.0007746. These parameter values, as

well as those of Case 1, are taken from the empirical estimation in Table 2.

For the autoregressive coefficients, there are two cases:

Case 1: ρ1 = 1.1053 and ρ2 = −0.1430; the roots of the AR(2) process are 0.9557 and

0.1496.

Case 2: ρ1 = 1.0553 and ρ2 = −0.1430; the roots of the AR(2) process are 0.8956 and

0.1597.

Panel A shows the parameter estimates and Panel B shows the realized size when the

5% nominal size is used for for both t-test—right-sided and two-sides (using standard

t-values that correspond to 5% tail probability)—and the Wald test. The simulations are

based on 10000 realizations.

Throughout, the ARM-estimated parameters are indicated by c and are boldfaced.
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Panel A: Parameter Estimation

Case 1: ρ1 = 1.1053, ρ2 = −0.1430, with roots of 0.9557 and 0.1496

n=200 n=50

Mean Std Dev RMSE Mean Std Dev RMSE

β̂1 1.0302 6.3088 6.3923 5.2630 12.9280 13.9582

β̂2 0.6576 6.1324 6.1675 2.0304 11.4311 11.6106

β̂c
1 0.1343 6.3117 6.3131 1.7929 12.9973 13.1203

β̂c
2 0.0127 6.2472 6.2472 -0.4394 12.2878 12.2957

ŜE(β̂1) 6.3325 0.4732 – 11.9039 1.9964 –

ŜE(β̂2) 6.3277 0.4885 – 11.6697 2.2256 –

ŜE(β̂c
1) 6.3352 0.4733 – 11.9468 1.9978 –

ŜE(β̂c
2) 6.4474 0.4977 – 12.5536 2.3953 –

ĉov(β̂1, β̂2) -37.91 5.64 – -120.46 43.58 –

ĉov(β̂c
1, β̂

c
2) -38.62 5.74 – -129.32 46.85 –

True cov(β̂1, β̂2) -36.02 -121.50

True cov(β̂c
1, β̂

c
2) -36.69 -130.42

31



Case 2: ρ1 = 1.0553, ρ2 = −0.1430, with roots of 0.8956 and 0.1597

n=200 n=50

Mean Std Dev RMSE Mean Std Dev RMSE

β̂1 0.9352 6.4778 6.5449 4.2003 13.4161 14.0582

β̂2 0.6623 6.3145 6.3491 2.6173 12.0492 12.3302

β̂c
1 0.0619 6.4819 6.4822 0.8127 13.4897 13.5141

β̂c
2 0.0176 6.4328 6.2329 0.1905 12.9499 12.9513

ŜE(β̂1) 6.5240 0.2737 – 12.6222 1.4211 –

ŜE(β̂2) 6.5229 0.2857 – 12.5416 1.5649 –

ŜE(β̂c
1) 6.5280 0.2737 – 12.6715 1.4237 –

ŜE(β̂c
2) 6.6462 0.2912 – 13.4918 1.6851 –

ĉov(β̂1, β̂2) -38.48 3.52 – -132.85 33.52 –

ĉov(β̂c
1, β̂

c
2) -39.20 5.59 – -142.48 36.08 –

True cov(β̂1, β̂2) -36.42 -129.56

True cov(β̂c
1, β̂

c
2) -37.08 -138.93
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Panel B: Hypothesis Testing: Realized Sizes of Test with a Nominal Size of 5%

Case 1: ρ1 = 1.1053, ρ2 = −0.1430, with roots of 0.9557 and 0.1496

t-test Wald test

n=200 n=50 n=200 n=50

Right-tailed Two-tailed Right-tailed Two-tailed

β̂1 6.7% 5.4% 12.5% 9.5% 7.4% 12.7%

β̂2 5.6% 4.5% 7.3% 5.7% 7.4% 12.7%

β̂c
1 5.2% 5.0% 8.2% 7.7% 7.0% 9.9%

β̂c
2 4.5% 4.6% 4.9% 5.1% 7.0% 9.9%

Case 2: ρ1 = 1.0553, ρ2 = −0.1430, with roots of 0.8956 and 0.1597

t-test Wald test

n=200 n=50 n=200 n=50

Right-tailed Two-tailed Right-tailed Two-tailed

β̂1 6.5% 5.1% 10.2% 8.0% 6.3% 9.5%

β̂2 5.5% 4.5% 7.2% 5.4% 6.3% 9.5%

β̂c
1 5.1% 4.9% 6.8% 6.9% 5.8% 8.1%

β̂c
2 4.5% 4.5% 5.1% 4.7% 5.8% 8.1%

33



Table 2: Market Return Predicted by Lagged Dividend Yield

V WNY is the value-weighted NYSE quarterly stocks return and DY is dividend

yield on these stocks for the end of the quarter. The estimation period is 1946-1994. The

estimated model is:

V WNYt = α + β1 log(DYt−1) + β2 log(DYt−2) + ut

log(DYt) = θ + ρ1 log(DYt−1) + ρ2 log(DYt−2) + vt

We present results for OLS regressions and for the corresponding Augmented Regres-

sion Method (ARM). For each parameter, we report the point estimate as well as the

corresponding t-statistic (in parenthesis). The hypothesis testing are two-sided. ? and ??

indicate significance at 5% and 1% levels, respectively. The joint Wald test is a test of

the joint hypothesis that the vector (β1, β2) is (0,0).

Model Est. Method β̂1 or β̂c
1 β̂2 or β̂c

2 ρ̂c
1 ρ̂c

2 φ̂c Joint Wald Test

A OLS -2.9696 10.8244 14.35??

Predictor (-0.44) (1.58) p-value: 0.0008

is AR(2) ARM(2) -3.8937 10.1597 1.1053 -0.1430 -92.17 3.91

(-1.45) (1.46) (49.31)?? (-1.96)? (-53.50)?? p-value: 0.142

B OLS 7.2814

Assume (3.43)??

predictor ARM(1) 5.4569 0.9729 -91.72

is AR(1) (2.53)? (42.73)?? (-36.10)??
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Table 3: Simulation Results for Multivariate ARM(p)

Bivariate Predictor

Predictors are AR(2), each having ρ1 = 1.1053, ρ2 = −0.1430, with roots of 0.9557 and 0.1496

Tests have Nominal Size 0.05

t-test Results for (Right-Tailed, Two-Tailed)

OLS ARM

Parameter Mean Std Dev t-test Size Mean Std Dev t-test Size

(n = 50)

β1,1 8.81 29.07 0.109, 0.082 1.95 14.97 0.088, 0.074

β2,1 1.04 28.39 0.067, 0.064 –0.420 14.95 0.053, 0.054

β1,2 8.69 28.38 0.097, 0.075 2.04 14.49 0.070, 0.067

β2,2 1.08 28.01 0.053, 0.059 –0.693 14.43 0.042, 0.046

Wald Test Size 0.166 0.115

(n = 200)

β1,1 1.77 13.22 0.069, 0.055 0.21 6.86 0.056, 0.052

β2,1 0.42 13.25 0.050, 0.045 –0.005 6.83 0.048, 0.051

β1,2 1.40 13.63 0.063, 0.061 0.004 6.92 0.056, 0.052

β2,2 0.65 13.60 0.062, 0.049 0.084 6.94 0.050, 0.047

Wald Test Size 0.092 0.081

35


