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Abstract

We examine the profitability and the welfare implications of price discrimination in two-

sided markets. Platforms have information about the preferences of the agents that allows them

to price discriminate within each group. The conventional wisdom from one-sided horizon-

tally differentiated markets is that price discrimination hurts the firms and benefits consumers,

prisoners’ dilemma. Moreover, it is well-known that the presence of indirect externalities in

two-sided markets can intensify the competition. Despite all these, we show that the possibility

of price discrimination, in a two-sided market, may actually soften the competition. Therefore,

the implications of price discrimination from one-sided markets may not carry over to two-sided

markets. This is the case regardless of whether prices are public or private, although private

prices boost profits. Our analysis also sheds light on the welfare properties of price discrimina-

tion in intermediate goods markets, such as Business-to-Business (B2B) markets.
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1 Introduction

Two-sided markets have recently received significant attention in the industrial organization liter-

ature [e.g., Armstrong (2006a), Caillaud and Jullien (2003), Rochet and Tirole (2003) and Rochet

and Tirole (2006)]. Two-sided (or multiple-sided) markets are markets that are organized around

intermediaries or “platforms” with two (or multiple) sides who should join a platform in order for

successful exchanges (trade) to take place. Indirect network externalities play an important role in

these markets. For example, videogame platforms (e.g., Nintendo, Sony, Microsoft) need to attract

both gamers and game developers. TV networks need to attract advertisers and viewers.1 Credit

cards need merchants and users.2 More formally, a two-sided market is defined as a one where the

volume of transactions between end-users depends on the structure of the fees and not only on the

overall level of fees charged by platforms [Rochet and Tirole (2006)].

The development of the Internet and the rapid growth of sophisticated software tools have

enabled firms to collect large amounts of information about consumer preferences, characteristics

and purchasing history. Firms can use such information to segment consumers into distinct groups

and target each group with different prices and products of different qualities and attributes.3

The aim of this paper is to study specifically the implications of price discrimination in two-sided

markets. There exists a relatively large literature on oligopolistic price discrimination in “one-sided”

markets,4 but this paper is among the first ones that examine this problem in the context of a two-

sided market.5 We assume that there are two platforms that are horizontally differentiated. The

literature on price discrimination in one-sided markets where products are horizontally differen-

tiated suggests—under the standard Hotelling-type assumptions—that price discrimination leads to

lower prices and profits for the firms (prisoners’ dilemma).6 The reason is best response asymmetry

[Corts (1998)].7 Under horizontal differentiation, one firm’s strong market is the other firm’s weak

1In general, most media and advertising markets are two-sided markets, e.g., Anderson and Coate (2005) and
Anderson and Gabszewicz (2006).

2Other examples of two-sided markets include, newspapers, scholarly journals, magazines, shopping malls, dating
services and Business-to-Business (B2B) markets. See also the papers cited above for more detailed discussions and
examples.

3Dell, for example, follows this practice. According to the June 8, 2001 Wall Street Journal: “One day recently,
the Dell Latitude L400 ultralight laptop was listed at $2,307 on the company’s Web page catering to small businesses.
On the Web page for sales to health-care companies, the same machine was listed at $2,228, or 3% less. For state and
local governments, it was priced at $2,072.04, or 10% less than the price for small businesses.” As another example,
credit cards target credit card holders of rival issuers with rates that are typically lower than the rates they charge
to their own customers.

4By “one-sided” markets we simply mean markets with no externalities.
5For a survey of the literature on oligopolistic price discrimination in one-sided markets we refer the reader to

Armstrong (2006b) and Stole (2003).
6See, for example, Thisse and Vives (1988), Shaffer and Zhang (1995), Bester and Petrakis (1996), Chen (1997)

and Fudenberg and Tirole (2000).
7Best response asymmetry is only a necessary condition for prices and profits to go down when firms price

discriminate.
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market and vice versa. When price discrimination is feasible, a firm can charge a low price to the

loyal customers of the rival firm, while at the same time it can keep its price high to its own loyal

customers. The problem is that the other firm can follow the same strategy, resulting in a very

intense competition among the firms for consumers.

Therefore, the conventional wisdom is that in markets with no indirect externalities, roughly

symmetric firms and products that are mainly horizontally differentiated, price discrimination is

beneficial for the consumers (at least on average).8 The advice then given to policymakers and

antitrust authorities is that they should not worry much about firms acquiring and using consumer

information with the intention to customize prices, because after all firm competition for each

consumer dissipates profits and transfers most of the surplus to consumers.

Furthermore, it is well-known that the presence of indirect externalities in two-sided markets

can intensify the competition, e.g., Armstrong (2006a). Therefore, putting together the results

from one-sided models with price discrimination and from two-sided models with no price discrim-

ination, one would expect that price discrimination in a two-sided market will generate a very

competitive environment with low prices and profits. Nevertheless, we show that the possibility of

price discrimination may actually soften the competition, even in a market with symmetric and

horizontally differentiated platforms. The game need not be a prisoners’ dilemma. In particular,

price discrimination in two-sided markets is possible to increase prices for (almost) all consumers

(agents) relative to uniform prices.

Our result has important theoretical and policy implications because it demonstrates that price

discrimination is more likely to be anti-competitive in two-sided markets than it is in one-sided

markets. More fundamentally, it suggests that two-sided markets can be very different from one-

sided markets. An interesting implication is that firms in two-sided markets may seek to acquire

customer information (in order to facilitate price discrimination) more aggressively than in one-

sided markets.

Our analysis can also apply to intermediate goods markets where price discrimination is more

likely to raise antitrust concerns than in final goods markets. Indeed, in the Unites States price

discrimination is illegal in intermediate goods markets under the Robinson-Patman act. Each

platform in our model can be viewed as a Business-to-Business (B2B) website which matches input

suppliers with producers [e.g., Caillaud and Jullien (2003)]. The Internet facilitates the collection

and application of information about the users’ preferences and characteristics, see FTC (2000). An

interesting question which arises then is whether platforms should be restricted to charge uniform

prices. We will return to this interpretation of our model later.

The model we develop consists of two platforms that are horizontally differentiated. There

8When some kind of firm asymmetry is introduced the game may no longer be a prisoners’ dilemma, e.g., Shaffer
and Zhang (2002) and Liu and Serfes (2005a). Price discrimination benefits the firm with the larger market share.
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are two groups of agents and each agent is assumed to join only one platform (single-homing).9

Agents from one group that contemplate joining a given platform care about the number of agents

from the other group that will join the same platform.10 This (indirect) externality is captured by

the cross-group externality parameters. Each platform charges lump-sum prices. Under a uniform

pricing rule each member of a group that joins a platform pays the same price (across groups the

prices of a platform are allowed to differ). Under price discrimination each agent pays a different

price (perfect price discrimination). We show that if the cross-group externality parameters are

high enough price discrimination increases platform profits and hurts consumer welfare.

The intuition for this result is as follows. A uniform equilibrium price charged by a platform to

(say) group 1 agents balances optimally the following three effects: i) loss (gain) of inframarginal

rents, ii) gain (loss) of marginal agents from group 1 and iii) gain (loss) of marginal agents from

group 2. The third effect is called a feedback effect and it has to do with the two-sidedness of the

market. A price reduction to group 1 first increases the number of group 1 agents who join the

platform. This induces more group 2 agents to join the platform, which in turn allows the platform

to extract more revenue from group 1 agents and so on. This feedback effect is responsible for

lowering the equilibrium (uniform) prices because platforms compete more aggressively to sign up

agents. The cross-group externality parameters affect the magnitude of the feedback effect. The

higher the values of these parameters the lower the uniform equilibrium prices and profits.

Under perfect price discrimination the feedback effect is absent, in equilibrium.11 Let’s explain

why. We focus on group 1 agents. Each agent in equilibrium joins the platform that is closest to

his “ideal” platform. When prices can be customized competition is for each agent individually.

Each platform charges to the agents that are located in the rival platform’s territory marginal cost

prices and to its own agents a platform can charge a premium over marginal cost. This premium

is equal to the transportation cost difference a particular agent will incur by joining instead the

rival platform and the difference in the memberships of group 2 agents across the two platforms.

The latter difference is zero in a symmetric equilibrium. Due to the “limit price” nature of the

problem under perfect price discrimination the feedback effect disappears in equilibrium. Equilib-

rium discriminatory prices are free of the cross-group externality parameters. Put differently, if the

externalities become stronger then the discriminatory equilibrium prices will not get affected, while

the uniform equilibrium prices will decrease. Hence, we can conclude that when these externalities

are strong enough perfect price discrimination leads to higher (average) prices and profits. The

9We relax this assumption in section 5 by allowing agents to make a choice about whether to join only one platform
or both (multi-homing).
10Examples include newspapers and scholarly journals. Advertisers care about the number of people who read a

particular newspaper and readers care about the number of advertisements in a newspaper. In the market of scholarly
journals, authors care about the number of readers and readers care about the number of authors (research papers),
McCabe and Snyder (2007).
11This result depends crucially on the assumption that prices cannot become negative. We offer a discussion on

this in the main body of the paper.
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result and intuition are similar even when we allow agents on both sides to multi-home.

Perfect price discrimination helps us to derive a clean prediction and also to extract a clear

intuition. But how much of our result is due to the assumption of perfect price discrimination? To

answer this important question, we extend our model to allow for imperfect price discrimination.

Platforms can segment the agents into groups but this segmentation is not perfect. In particular, we

employ the segmentation approach that was developed in Liu and Serfes (2004).12 Platforms lack

the necessary information needed to identify the preferences of each agent with perfect accuracy.

Nevertheless, platforms possess some information which can be used to segment agents into groups.

Each agent segment pays a different price. We allow the number of segments to vary exogenously

in an attempt to capture variations in the quality of information. A higher number of available

segments implies that platforms can identify the preferences of each agent with higher precision

(higher quality of consumer information). In the limit, we recover the perfect price discrimination

paradigm. Imperfect price discrimination is interesting because it combines features from both

the uniform pricing and the perfect discrimination cases. Further, it allows us to draw a more

comprehensive picture of equilibrium profits and welfare under varying levels of quality of consumer

information.

We examine two different cases depending on whether all prices are observed by all agents before

they join a platform. In the first case, we assume that prices are public. This assumption may

not be very realistic when platforms discriminate via many prices, but it can serve as a benchmark

case. Also, it may not be a bad assumption if the number of segments (and hence prices) is small.

In the second case, we assume that each agent only observes the price that is offered to him (private

prices). This distinction matters in the presence of network externalities.13

We show that equilibrium profits can be non-monotonic (U-shaped) with respect to the quality

of agent information, regardless of whether prices are public or private. Competition is more intense

when prices are public. A price cut to a specific agent segment that is observed by everyone also

attracts agents from other segments to the platform. So, targeted price cuts are more lucrative when

they are publicly observed than when they are not. This suggests that firms have incentives to make

prices less transparent. The U-shape pattern of the equilibrium profits with respect to the degree of

segmentation (quality of information) implies that price discrimination hurts the platform profits

(relative to the uniform price profits) when the quality of information is low. When the quality of

information is high—and unlike the case in one-sided markets— price discrimination can benefit the

platforms.

When the market is a B2B market, then our result implies that price discrimination will lead

to higher input prices if and only if platforms have detailed information about the preferences of

12Liu and Serfes (2005a & 2005b) and Eruysal and Ouksel (2006) have employed the segmentation approach as
well to study the profitability of price discrimination in other contexts.
13As we will argue later, it does not matter when firms price discriminate perfectly.
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the participants. To arrive at this result, we assume that each firm is seeking to buy only one unit

of the input and each input seller sells only one unit. The platforms facilitate the matching process

between the two sides [as in Caillaud and Jullien (2003)]. Let’s assume that platforms have very

good information about the agents. If platforms are allowed to customize their prices then firms

end up paying higher prices for the right to trade a unit of the input. Now if we assume that

the prices the participants pay to join a platform do not affect the bargaining process between an

input supplier and a firm that will ensue once a matching takes place, then a higher price charged

by a platform will lead to a higher overall price a firm will have to pay in order to acquire its

input. If firms can pass part of this extra cost on to consumers, then price discrimination is anti-

competitive. However, the reverse is true if platforms do not possess very detailed information about

the participants. In this case the cost of acquiring the input is reduced due to price discrimination.

Caillaud and Jullien (2003) and Armstrong (2006a) also allow for price discrimination. In

Caillaud and Jullien agents in each group are homogeneous and therefore price discrimination means

different prices charged to each group of agents, while within each group the price is constant.

This is also the meaning of price discrimination in Armstrong (2006a), although he allows for

heterogeneous populations of agents. In contrast, we allow the prices within each group to vary.

Price discrimination in Armstrong’s model can lead to higher or lower prices and profits, but the

condition that determines the profitability of price discrimination is qualitatively different from

the condition (and intuition) we derive in this paper. In Armstrong the differences between: i)

the degrees of platform differentiation and ii) the cross-group externalities across groups play an

important role. In contrast, in our paper the levels matter. As a consequence, if we assume complete

symmetry (i.e., same degrees of platform differentiation and same cross-group externalities across

groups) then price discrimination always yields the same prices and profits with uniform prices in

Armstrong’s paper. In our paper, however, this need not be the case.

The rest of the paper is organized as follows. In section 2, we present the benchmark model.

In section 3, we perform the analysis assuming that platforms can target each agent perfectly.

We relax the perfect price discrimination assumption is section 4. In section 5, we extend the

benchmark model to two different directions. First, we allow agents to multi-home and second we

endogenize information acquisition decisions. We conclude in section 6. The appendix contains the

proofs of propositions.

2 The description of the benchmark model

There are two groups of agents c = 1, 2 and two horizontally differentiated platforms k = A,B.14

We will denote the “other” group of agents by m. We capture platform differentiation as follows.

14Our benchmark model follows closely the model in Armstrong (2006a).
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Platform B

Platform A

Platform A

Platform B

Group 1

Group 2

0 1

0 1

Figure 1: Graphical represenation of the benchmark model

There is a continuum of agents of group c that is distributed on the [0, 1] interval according to

the distribution function Fc (·) with density fc. The distributions are independent across the two

groups of agents and symmetric about 12 , i.e., Fc
¡
1
2

¢
= 1

2 and fc (x) = fc (1− x). The two platforms

are located at the two end points of each interval, with platform A located at 0 and platform B

located at 1, see figure 1. The common per-unit transportation cost of both groups is denoted by

t > 0. We assume that each agent joins only one platform (single-homing).15 Each member of a

group who joins a given platform cares about the number of members from the other group who

join the same platform. Denote by nck the number of participants from group c that platform k

attracts. The maximum willingness to pay for a member of group c if he joins platform k is given

by V + αcnmk, where V is a stand-alone benefit each agent receives independent of the number of

participants from the other group on platform k. The parameter αc > 0 measures the cross-group

externality for group c participants. The indirect utility of an agent from group c who is located

at point x ∈ [0, 1] is given by,

Uc =

½
V + αcn

e
mA − tx− pcA (x) , if he joins platform A

V + αcn
e
mB − t (1− x)− pcB (x) , if he joins platform B

(1)

where pck (x) is platform k’s lump-sum charge to a group c participant who is located at point x

and nemk denotes the expectations agents from group c have about how many agents from group m

will join platform k. Under a uniform pricing rule prices are constant across all agents in the same

group (prices are allowed to vary across groups), while under discriminatory pricing the price each

agent pays depends on his preferences (location). We assume that V is high enough which ensures

that the market is covered. The costs are zero.

The timing of the game is as follows. In stage 1, the two platforms make, simultaneously, their

pricing decisions. In stage 2, the agents decide which platform to join.

15We allow for multi-homing in section 5.
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3 Analysis

First, we solve for a symmetric equilibrium assuming that each platform charges uniform prices to

the agents of each group. Second, we assume that each platform can price discriminate perfectly

the agents of each group. Finally, we compare prices and profits between these two different price

regimes. We assume that each agent has rational expectations about how many agents from the

other group will join each platform.

3.1 No price discrimination (uniform prices within each group of agents)

Each agent observes all prices before he decides which platform to join, [e.g., Caillaud and Jullien

(2003) and Armstrong (2006a)]. The location of the marginal agent from group c, who is indifferent

between A and B, is given by,

V + αcn
e
mA − tx− pcA = V + αcn

e
mB − t (1− x)− pcB ⇒

xc =
αc (n

e
mA − nemB)− pcA + pcB + t

2t
. (2)

where nemA = Fm (x
e
c) and nemB = 1 − Fm (x

e
c). Therefore, the implicit functions for the market

shares are given by,

x1 =
α1 [2F2 (x

e
2)− 1]− (p1A − p1B) + t

2t
and x2 =

α2 [2F1 (x
e
1)− 1]− (p2A − p2B) + t

2t
.

Since expectations are rational we must have xc = xec , or n
e
mk = nmk. By invoking the implicit

function theorem we can derive the effect of prices on the market shares,

∂x1
∂p1A

=
∂x2
∂p2A

= − t

2 [t2 − α1α2f1 (x1) f2 (x2)]
,
∂x1
∂p2A

= − α1f2 (x2)

2 [t2 − α1α2f1 (x1) f2 (x2)]
(3)

and
∂x2
∂p1A

= − α2f1 (x1)

2 [t2 − α1α2f1 (x1) f2 (x2)]
.

For the Jacobian of the system of the implicit functions to have a non-zero determinant it must be

that t2−α1α2f1 (x1) f2 (x2) 6= 0, for all x1 and x2. We further assume that t2−α1α2f1 (x1) f2 (x2) >
0, for all x1 and x2.

The platforms’ profit functions are given by,

πA = p1An1A + p2An2A = p1AF1 (x1) + p2AF2 (x2) and

πB = p1Bn1B + p2Bn2B = p1B [1− F1 (x1)] + p2B [1− F2 (x2)] .

The first order conditions of platform A are given by,

∂πA
∂p1A

= F1 (x1) + p1Af1 (x1)
∂x1
∂p1A

+ p2Af2 (x2)
∂x2
∂p1A

= 0,

∂πA
∂p2A

= F2 (x2) + p2Af2 (x2)
∂x2
∂p2A

+ p1Af1 (x1)
∂x1
∂p2A

= 0.
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Each first order condition has three terms. Suppose platform A lowers its price to group c

agents. The first two terms in each first order condition capture the reduction in inframarginal

rents and the increase in marginal agents respectively. Since more agents from group c join platform

k, platform k becomes more attractive to the members of group m. The third term represents the

additional revenue from the increase in the number of agents from group m that join platform k.

We look for a symmetric equilibrium where platforms charge the same prices to each group.

We assume that regularity conditions hold so that a symmetric sharing equilibrium exists.16 Using

(3), the symmetric solution to the system of first order conditions is given by,

p∗1A = p∗1B =
t− α2f1

¡
1
2

¢
f1
¡
1
2

¢ and p∗2A = p∗2B =
t− α1f2

¡
1
2

¢
f2
¡
1
2

¢ . (4)

Each platform serves one half of the members of each group. The equilibrium prices depend

positively on the differentiation parameter t, negatively on the strength of the cross-group exter-

nality αc and negatively on the number of marginal agents fc
¡
1
2

¢
. When the externality for group

c is stronger firms offer lower prices to the members of group m. Potentially, the price can be neg-

ative, but we do not allow for this possibility (so we assume that t > max
©
α1f2

¡
1
2

¢
, α2f1

¡
1
2

¢ª
).

The implication of this assumption is that differentiation is more important than the cross-group

externality.

The equilibrium profits are,

πA = πB =
t− α2f1

¡
1
2

¢
2f1

¡
1
2

¢ +
t− α1f2

¡
1
2

¢
2f2

¡
1
2

¢ . (5)

3.1.1 Uniform distribution

If we assume that the distribution is uniform, then the equilibrium prices and profits are,

p∗1A = p∗1B = t− α2, p∗2A = p∗2B = t− α1 (6)

and

πA = πB = t− (α1 + α2)

2
. (7)

16We were not able to come up with clean conditions on the distribution functions that would ensure the strict
concavity (or quasi-concavity) of the objective functions. For instance, the monotone hazard rate property is not
enough. When the distribution is uniform, then the profit functions are strictly concave provided that 2t > (α1 + α2).
When this condition holds, then a symmetric sharing equilibrium exists. Otherwise, one platform may corner the
entire market.
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3.2 Perfect price discrimination

3.2.1 Prices are public

Now we assume that platforms can discriminate perfectly and prices cannot be negative. (Below

we discuss how the equilibrium changes when prices are allowed to be negative). Agent utility is

given by (1) and platforms compete on an agent by agent basis. Each agent receives a targeted

offer. Arbitrage is not feasible. We assume that agents observe all prices before they decide which

platform to join. We make this assumption in order to be consistent with the uniform price case.

We discuss about how our results might change if we relax the assumption that all prices are public

in the next section.

The symmetric equilibrium is,

p∗cA (x) = t (1− 2x) and p∗cB (x) = 0, for x ≤
1

2
and (8)

p∗cA (x) = 0 and p∗cB (x) = t (2x− 1) , for x ≥ 1
2
.

Each agent is indifferent between the two platforms, and we assume that he joins the one that

is closest to his location. It is easy to see that no platform has an incentive to deviate from (8).

The price platform A (say) charges to agents located in its own turf is a limit price. It is a price

that prevents the rival platform from making any sales to these agents. Hence, an equilibrium

discriminatory price does not balance the same three effects a uniform price does. Rather, the

primary purpose of a price is to drive the rival platform out of the market for each agent. The

premium a platform can charge is equal to the transportation difference an agent will incur if

he instead joins the rival platform. In addition, a platform can enjoy an extra premium if it

has acquired more agents, but in a symmetric equilibrium this premium vanishes.17 Therefore,

cross-group externalities do not affect the equilibrium prices when firms have the ability to price

discriminate perfectly. In this respect, the equilibrium prices are the same as those in a one-sided

market.18

The equilibrium profits are given by,

πA = t− 2t
Z 1/2

0
x [f1 (x) + f2 (x)] dx and πB = 2t

Z 1

1/2
x [f1 (x) + f2 (x)] dx− t.

17This suggests that the assumption of symmetry across platforms is crucial for our results. We conjecture that
our predictions will continue to hold if we introduce a small degree of asymmetry (i.e., one platform has a slightly
larger market share than the other). Future research intends to fully relax the symmetry assumption.
18We have implicitly assumed that coordination among agents is not feasible. If agents could coordinate, then they

would all become better off by agreeing to join the same platform, after the firms have announced their prices. This
follows from the fact that, in equilibrium, each agent is indifferent between the two platforms. Hence, coordination
would increase the membership of one platform and would make all agents better off. Firms, of course, would
anticipate that and they would change their prices. In the rest of the paper coordination is assumed away.
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If the distribution is uniform, then the equilibrium profits are,

πA = πB =
t

2
. (9)

Remark (allowing for negative prices and pricing below marginal cost). If we allow

for negative prices, then (8) is no longer an equilibrium. Each platform has an incentive to lower

its price below zero by ε in order to attract the rival platform’s agents and then raise its prices to

its own agents. Such a deviation is profitable. The symmetric equilibrium in this case is,19

pcA = t (1− 2x)− αm and pcB = −αm, for x ≤
1

2
and (10)

pcA = −αm and pcB = t (2x− 1)− αm, for x ≥
1

2
.

As one can immediately see prices are affected by the cross-group externality parameters. How-

ever, in many cases negative prices are unrealistic [see also Armstrong (2006a) for a discussion

on this issue].20 Moreover, the equilibrium given by (10) is “risky” for the two platforms. Here,

we assume that agents in
£
0, 12

¤
, for example, who are also indifferent between the two platforms

join platform A. But what if we allow agents to make small mistakes (trembles) and instead join

platform B? Is B ready to honor its commitment and pay these agents α1 or α2 (or sell the product

at prices below marginal cost)? This does not seem very likely since platform B will loose money

on these agents without being able to recoup its loses by raising its prices to its own agents, since

prices at that point are fixed. Finally, when prices are private (which may be a more realistic

assumption in the presence of so many prices) (8) is an equilibrium, even when prices can become

negative. In other words, the credible signal that the negative price sends to the whole market

disappears once prices cannot be observed publicly.

For all these reasons, in the remaining of the paper we assume that prices cannot become

negative.

Thus far, we have assumed that marginal cost is zero. Now let’s assume that marginal cost is

strictly positive, c > 0, and platforms can charge below marginal cost prices (but still negative prices

are not allowed). In this case, the equilibrium prices are given by (8), provided that c−αm < 0. In

other words, the externality is priced out of the equilibrium discriminatory prices as long as either

the marginal cost is low or the externality is high. Otherwise, i.e., c − αm > 0, the externality

appears in the equilibrium prices as in (10), with the difference that αm is replaced by c− αm. In

the rest of the paper we assume that marginal cost is zero.

19The proof is standard and it is omitted.
20 If negative prices were allowed, viewers could, for example, subscribe to a TV channel, never watched it and got

paid for that.
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3.2.2 Prices are private

So far we have assumed that prices are public. We recognize that this assumption may not be very

realistic in the context of perfect price discrimination. Alternatively, we can assume that platforms

target each consumer with private coupons that represent discounts off the regular prices.21 Given

the cross-group externalities, beliefs are important in this case. What is an agent’s belief about the

offers made to other agents if he receives an out-of equilibrium offer? If beliefs are passive [e.g.,

McAfee and Schwartz (1994)] and price offers are secret, then (8) will continue to constitute an

equilibrium. To see this, suppose that a platform raises unilaterally its prices to a group of agents

in its territory. Each agent, however, continues to believe that market shares will not change and

given that agents are indifferent, in equilibrium, between the two platforms they will all switch to

the rival platform. Hence, such a deviation is unprofitable. Price cuts would also be unprofitable

because a reduction in price to an agent (or a group of agents) will not lead to higher market share.

The distinction between public and private prices does make a difference in the imperfect price

discrimination case that we examine later.

3.3 Price and profit comparison

We compare the equilibrium uniform prices given by (6) with the discriminatory prices given by

(8). We will exploit the fact that uniform prices depend on the cross-group externality parameters,

while discriminatory price do not. Discriminatory prices, as it is the case in one-sided markets that

are characterized by horizontal differentiation, are decreasing in the degree of consumer loyalty to

a platform. Agents located very close to one or the other platform pay higher prices than those

located in the middle. The highest price is t and the lowest is 0. If we compare these prices with

the no discriminatory prices,
t−αcfm( 12)
2fm( 12)

, we will see that it is possible that nearly all agents pay

higher prices under price discrimination if αc is arbitrarily close to t
fm( 12)

. It then becomes obvious

that there exists a threshold for the cross-group externality parameters above which perfect price

discrimination benefits the platforms (relative to uniform pricing).

When the distribution is uniform, equilibrium profits increase with price discrimination if and

only if t
2 > t− (α1+α2)

2 . This is the case if and only if,

t < (α1 + α2) . (11)

Furthermore, the necessary and sufficient condition for a market sharing equilibrium to exist is

21We note that the analysis of the previous section (i.e., the uniform prices case) is not affected because we can
reasonably assume that agents observe each platform’s regular prices. In general, when prices are private platforms
face a problem similar to the commitment problem in bilateral contracting contexts with externalities, e.g., Segal
and Whinston (2003). Platforms would have an incentive to raise their prices under passive beliefs. This is because
when price changes are secret a price increase is not very costly due to the absence of the feedback effect. The next
section confirms this intuition.
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2t > (α1 + α2). Therefore, there exists a range of parameters such that uniform equilibrium prices

are given by (6) and price discrimination leads to higher profits.

The main idea behind the price and profit comparison is that the externalities are priced in the

equilibrium uniform prices, while the discriminatory prices, because they are limit prices, do not

depend on the externalities. So, strong enough externalities, all else equal, make price discrimination

more profitable (relative to uniform prices). This intuition does not rely on specific modeling

assumptions and it is likely to hold in more general models.

Armstrong (2006a) compares price discrimination with uniform prices. In his model price

discrimination is defined as the uniform pricing rule in our model, i.e., when platforms charge each

group a different price. A uniform pricing rule in Armstrong’s model is when a platform charges

both groups the same price. Armstrong shows that price discrimination is profitable if and only if,

(t1 − t2)
2 > (α1 − α2)

2 . (12)

Our condition (11) for a profitable price discrimination is qualitatively different from Arm-

strong’s condition (12). In our case the levels matter, whereas in Armstrong’s case the differences

matter more. If the transportation parameters are the same across groups (t1 = t2), as it is the

case in our model, then price discrimination is never profitable in Armstrong’s model, while it may

be in our model.

Finally, as it is well-known [e.g., Thisse and Vives (1988)], price discrimination, in one-sided

markets when preferences are uniformly distributed and firms are symmetric, leads always to a

prisoners’ dilemma. The profits under perfect price discrimination are t
4 , while under a uniform

pricing rule they are t
2 . In contrast, in two-sided markets, when (11) is satisfied price discrimination

yields higher profits than uniform prices.22 Firms in one-sided markets have “more incentives” to

eliminate the practice of price discrimination than in two-sided markets. Because information about

consumer tastes facilitates price discrimination one would expect that firms in two-sided markets

will seek to develop and acquire customer databases more aggressively than their counterparts in

one-sided markets.

4 Imperfect price discrimination

Now we relax the assumption of perfect price discrimination. Rather, we assume that platforms

can segment the agents, but this segmentation is not perfect. Platforms can develop or acquire

information which helps them to classify the agents into distinct segments based upon each agent’s

22So far, we have not analyzed the asymmetric games, where one platform price discriminates while the other
charges uniform prices. In section 5, we allow the platforms to make a commitment to uniform prices prior to the
price competition stage. We show that price discrimination is a dominant strategy and if (11) holds then price
discrimination is more profitable. Otherwise, the game is a prisoners’ dilemma.
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Figure 2: Market segmentation

relative degree of platform loyalty. We assume that the information partitions each [0, 1] interval

into N sub-intervals (indexed by s, s = 1, ..., N) of equal length, see figure 2. A platform can

charge different prices (pcks, c = 1, 2, k = A,B and s = 1, ..., N) to different consumer segments

[for an application of the segmentation approach in a one-sided framework, see Liu and Serfes

(2004)]. To make the analysis tractable, we assume that the distribution of preferences is uniform

and α1 = α2 = α > 0.

We further assume that N = 2i, where i takes on all integer values, i = 0, 1, 2, 3, 4.... Hence, N

will parameterize the precision of agent information, with higher N ’s being associated with higher

information precision. Moreover, N = 1 corresponds to no price discrimination and N = ∞ to

perfect price discrimination. Note that N , for simplicity, does not take on all integer values, but

rather N = 1, 2, 4, 8, 16...(i.e., information refinement). We assume that information of precision

N is available to both platforms and that the current state of technology dictates N which the

platforms take as exogenously given. Hence, our approach is static and the effect of information

improvements on the equilibrium is captured by comparative statics analysis.

To be consistent with the previous analysis, first we assume that agents observe all the prices

before they choose which platform to join. This assumption seems reasonable when the number

of segments is small. An alternative assumption is that agents receive targeted discounts and

therefore each agent observes only his own price (and the regular (highest) prices). In the previous

section we showed that this distinction does not matter as long as beliefs are passive. However,

under imperfect price discrimination, the analysis will change. So, we also derive the equilibrium

by assuming that prices are private.
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4.1 Prices are public

We denote by ncks the number of agents from group c in segment s that join platform k. Then, the

total number of agents from group c that join platform k is given by nck =
NP
s=1

ncks. The marginal

agent from group c in segment s is given by,

xcs =
α (nemA − nemB)− pcAs + pcBs + t

2t
. (13)

From (13) the implicit expressions for the segment s shares are given by,

n1As =
α (ne2A − ne2B)− p1As + p1Bs + t

2t
− s− 1

N
; n2As =

α (ne1A − ne1B)− p2As + p2Bs + t

2t
− s− 1

N
,

(14)

and

n1Bs =
s

N
− α (ne2A − ne2B)− p1As + p1Bs + t

2t
;n2Bs =

s

N
− α (ne1A − ne1B)− p2As + p2Bs + t

2t
, (15)

for s = 1, ..., N .

Now we sum up over all segments. This yields,

NX
s=1

n1As =
α (ne2A − ne2B)N −

P
s p1As +

P
s p1Bs +Nt

2t
−

NX
s=1

s− 1
N

, (16)

NX
s=1

n2As =
α (ne1A − ne1B)N −

P
s p2As +

P
s p2Bs +Nt

2t
−

NX
s=1

s− 1
N

and
NX
s=1

n1Bs =
NX
s=1

s

N
− α (ne2A − ne2B)N −

P
s p1As +

P
s p1Bs +Nt

2t
, (17)

NX
s=1

n2Bs =
NX
s=1

s

N
− α (ne1A − ne1B)−

P
s p2As +

P
s p2Bs +Nt

2t
.

Since expectations are rational we must have nck =
PN

s=1 ncks = neck. Solving (16) and (17)

with respect to nck, c = 1, 2 and k = A,B, we obtain the aggregate market shares explicitly as a

function of prices,

n1A =
αN (

P
s p2Bs −

P
s p2As)− t (

P
s p1As −

P
s p1Bs) + t2 − α2N2

2 (t2 − α2N2)
, (18)

n2A =
αN (

P
s p1Bs −

P
s p1A)− t (

P
s p2As −

P
s p2Bs) + t2 − α2N2

2 (t2 − α2N2)
,

and

n1B =
αN (

P
s p2As −

P
s p2Bs)− t (

P
s p1Bs −

P
s p1As) + t2 − α2N2

2 (t2 − α2N2)
, (19)

n2B =
αN (

P
s p1As −

P
s p1Bs)− t (

P
s p2Bs −

P
s p2As) + t2 − α2N2

2 (t2 − α2N2)
.
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Next, we substitute (18) and (19) into (14) and (15) to obtain the segment shares ncks, c = 1, 2,

k = A,B and s = 1, ..., N . Segment s demand depends on all 4N prices.

We denote by pNck = (pck1, pck2, ..., pckN ) the n-dimensional vector of prices charged by platform

k to the agents of group c. The platforms’ profit functions are then given by,

πA
¡
pN1A,p

N
2A,p

N
1B,p

N
2B

¢
=

NX
s=1

p1Asn1As +
NX
s=1

p2Asn2As and

πB
¡
pN1A,p

N
2A,p

N
1B,p

N
2B

¢
=

NX
s=1

p1Bsn1Bs +
NX
s=1

p2Bsn2Bs.

Each platform chooses pN1k and p
N
2k to maximize profits, given the two vectors of the rival

platform. The presence of the externalities complicates the problem. This is due to the fact that

we cannot treat each segment separately from the other segments, as it would be the case if the

externalities were absent [see Liu and Serfes (2004, proposition 1)]. In two-sided markets the price

a platform charges to agents in a particular segment affects the number of agents from that segment

who join the platform which, in turn, affects the number of agents from the other group that join

this and other segments of the platform. Nevertheless, we built on the results in Liu and Serfes

(2004) and we were able to characterize the symmetric equilibrium as the following proposition

demonstrates. We maintain the assumption that brand differentiation is more important than

externalities, i.e., t > α. We also assume that t < 2α.23

Proposition 1 (Prices are public). Suppose that N ≥ 4.24 If t ≤ αN
2 , then a symmetric

pure strategy equilibrium exists.25 The equilibrium profits are

πk =
t

2
− t

N
, k = A,B. (20)

Platforms do not share any segment demand, which implies that each agent joins the platform that

is closest to his location.

Proof. See appendix. ¥

What is quite interesting is that the partition does not have to be very fine for the influence of

the indirect externality on the equilibrium profits to disappear. Four agent segments and higher

(i.e., N ≥ 4) is enough. In this case platforms do not share any segment demand and the price
23We need this condition because, as we proved in a previous section, if t > 2α, see (11), then even perfect price

discrimination is not profitable relative to uniform prices.
24 If N = 2, then the structure is different than when N ≥ 4 (when N = 1, then we are back to the uniform pricing

case we have already analyzed). In particular, platforms share the segment demands. For this to occur we need
t > 2α (details can be found in the proof of proposition 2 in the appendix). If t < 2α, then a symmetric (sharing)
equilibrium does not exist and the equilibrium may involve tipping, when N = 2. Hence, in the remaining of this
section we suppress this case and we focus on N ≥ 4.
25Note that the condition t ≤ αN

2
is not very restrictive, especially when N is large.
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in each segment is a limit price. This implies that the indirect externalities are priced out in

equilibrium (as in the perfect price discrimination case).

Overall, the relationship between equilibrium profits and the quality of information N is U-

shaped (with some abuse of the term), see figure 3. In drawing figure 3 we assumed, for convenience,

that N is a continuous variable and that t < 2α. Moreover, we ignored the case when N = 2.

4.2 Prices are private

Each agent only observes the price offers made to him. Agents form conjectures about the mem-

bership of each platform that must be confirmed in equilibrium. An unexpected deviation by a

platform is not going to be observed by anyone, except by the segment of agents which the price

deviation targets. We assume that beliefs are passive. Hence, a deviation will only have an effect

on the demand in the targeted agent segment and nowhere else.

Proposition 2 (Prices are private). Assume that N ≥ 2. Platforms share the segment

demand only in the middle two segments (in each group of agents). The equilibrium profits are

given by,

πk =
t

2
− t

N
+
20t

9N2
, k = A,B. (21)

The equilibrium profit exhibits a U-shape as a function of N .

Proof. The proof is the same as the proof of proposition 1 in Liu and Serfes (2004) where there

are no externalities. ¥

We know from one-sided markets that price discrimination gives rise to two effects: an intensified

competition effect and a surplus extraction effect, Liu and Serfes (2004). When the segmentation

is coarse the first effect is more dominant. As platforms move to finer partitions the second ef-

fect becomes increasingly stronger. Overall, the relationship between equilibrium profits and the

number of available consumer segments (quality of information) is U-shaped. Moreover, the equi-

librium profits are always below the uniform price profits. In two-sided markets the aforementioned

two effects are also present. An additional effect is due to the cross-group externalities. Network

externalities affect the equilibrium prices when a segment demand is shared and prices are pub-

lic. Otherwise, they do not influence the equilibrium prices. Nevertheless, externalities affect the

equilibrium indirectly in the following sense. When prices are public, price cuts are more lucrative

precisely because of the externalities. This forces the platforms to compete more vigorously and

leads to an equilibrium where each platform drives the rival platform out of all of the segments

in its own turf. Equilibrium prices are independent of the externalities since sharing of segment

demand does not take place (prices are limit prices). This is the case when N ≥ 4 as proposition
1 documents.
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4.3 Price and profit comparison

The uniform price equilibrium profits, from (7), are equal to t−α. It can be easily seen that price

discrimination under public prices is more profitable than the uniform price profits, t
2 −

t
N > t−α,

provided that N > Ñ ≡ 2t
2α−t (and assuming that t < 2α, i.e., platforms are not too differentiated),

see figure 3. Moreover, Ñ decreases as α increases. Price discrimination is more profitable if the

externalities are strong or the quality of information is high.

For example, if t = 1 and α = .6, then Ñ = 10. This implies that price discrimination is

profitable for the platforms when they have the ability to segment each group of agents into at

least ten segments (i.e., N ≥ 10). (Recall that our definition of segmentation allows the number
of segments to go from 1 to 2 to 4 to 8 and so forth). Thus, we see that the result we derived by

assuming perfect price discrimination continues to hold even when firms discriminate imperfectly,

provided that the quality of information is high enough.

Equilibrium profits when prices are private are higher than the profits when prices are public, see

figure 3. This comparison is straightforward when N ≥ 4 based on (20) and (21). The extra term in
(21) relative to (20) measures the equilibrium benefit to the platforms from making their prices less

transparent.26 Both profit functions converge to t
2 (the profit under perfect price discrimination)

26This result can also have interesting implications if we allow for collusion. Price transparency is regarded as
a factor that inhibits collusion, e.g., FTC (2000) and Sibley and Heyer (2003). This is because the incentives for
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as N goes to infinity. Essentially, the externalities push the uniform profits and the discriminatory

profits with public prices down. They do not affect, however, the profits when prices are private.

Moreover, the discriminatory profits with public prices are affected less than the uniform profits.

When prices are public and N ≥ 4 (and t ≤ αN
2 ) the outcome is efficient because each agent

joins the platform that is closest to his location. This is not true when prices are private in which

case some agents (i.e., those in the middle two segments in each group) do not join the closest

platform, see also Liu and Serfes (2004) for more details on this.

5 Extensions

We would like to investigate the robustness of our results to two extensions to the benchmark

model. First, we allow agents to multi-home and second we endogenize information acquisition

decisions. Our main results do not change qualitatively.

5.1 Agents are allowed to multi-home

For simplicity, we assume that the distribution is uniform and we set α1 = α2 = α > 0. The

indirect utility of an agent from group c who is located at point x ∈ [0, 1] is given by,27

Uc =

⎧⎨⎩
V + αnemA − tx− pcA (x) , if he joins platform A
V + αnemB − t (1− x)− pcB (x) , if he joins platform B
V + θ + α− t− pcA (x)− pcB (x) if he joins both platforms.

(22)

The incremental maximum willingness to pay of an agent from group c who chooses to multi-

home by joining platform k is given by θ + α (1− nemk). The first effect (product variety effect) is

captured by the parameter θ, where θ ∈ [0, V ], and the second effect (indirect externality effect)
is given by the term α (1− nemk). For example, the utility of an agent who chooses to read a sec-

ond newspaper increases because he gets to see more classified advertisements (indirect externality

effect), but also because the second newspaper covers different issues than the first one (product

variety effect). Or, a second credit card allows the holder to have transactions with more mer-

chants (indirect externality effect), but also increases his credit limit (product variety effect). More

generally, agent utility can increase, when he joins a second platform, independent of the indirect

externality effect, because platforms are differentiated and agents value “variety.”

The disutility of the agent who chooses to multi-home also increases and this is captured by the

parameter t (t = tx+ t (1− x)). We assume that the total transportation cost is additive. Agents

a profitable deviation from the collusive agreement increase (in a repeated framework). In markets with indirect
externalities, however, this need not be true as price transparency can also increase the collusive prices.
27This utility specification has also been used in Kim and Serfes (2006) in a one-sided framework.
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Figure 4: Indirect utilities: Partial multi-homing

choose the option that gives them the highest indirect utility. We maintain the assumption that

t > α.

In general, there are three possible type of equilibria: i) single-homing, ii) partial multi-homing

and iii) complete multi-homing. In the first equilibrium, no agent multi-homes, in the second one

a fraction of the agents multi-homes and in the third one all agents multi-home. Due to symmetry

the outcomes are the same across the two groups of agents. We will focus on the second type

of equilibrium. Figure 4 is consistent with the partial multi-homing equilibrium and depicts the

indirect utilities when prices within each group are uniform.

There are two marginal agents in group c, where c = 1, 2, located at xcL and xcR respectively

(the subscript L stands for left and the subscript R stands for right). The first (left, L) marginal

agent is indifferent between joining platform A only and joining both platforms, whereas the second

(right, R) marginal consumer is indifferent between joining both platforms and joining B only.

5.1.1 Uniform prices (UP)

We assume that prices are constant within each group of agents. We omit the details of the

derivations. If θ ∈
h
θ1 ≡ 2t2−α2−αt

2t , θ2 ≡ 2t2−α2
t

i
, then partial multi-homing is an equilibrium (not

necessarily unique). The equilibrium prices and profits are given by,

p∗1A = p∗1B = p∗2A = p∗2B =
(t− α) (α+ θ)

2t− α
,
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πA = πB =
2t (t− α) (α+ θ)2

(2t− α)2 (α+ t)
. (23)

In equilibrium, 0 < xUPcL ≡ 2t2−α2−tθ
(t+α)(2t−α) < xUPcR ≡

t(α+θ)
(t+α)(2t−α) < 1, provided that θ ∈ [θ1, θ2],

which suggests that only the agents in the middle multi-home (see figure 4).

The effect of θ on the equilibrium prices and profits is clear. The higher the θ the higher

the prices and the profits. On the other hand, the effect of α on the equilibrium prices and

profits is ambiguous. It can be easily shown that equilibrium prices increase with α if and only

θ < θ̃ ≡ α2−4tα+2t2
t . Moreover, θ̃ > θ1 if and only if α < α̃ ≡ t

3 . Finally, θ̃ < θ2 always holds.

Therefore, if α > α̃ an increase in α lowers the equilibrium prices for all permissible values of θ. As

α approaches t equilibrium prices approach zero.

On the other hand, if α < α̃ equilibrium prices increase in α if and only if θ < θ̃. This result is in

contrast to the same comparative static under single-homing, where an increase in the cross-group

externality parameter always leads to lower equilibrium profits.28

There are two opposing effects present as the indirect externality α increases. First, as in the

single-homing case, incentives for unilateral price cuts increase. Second, agents are willing to pay

more to join a second platform, which gives platforms incentives to raise their prices. This second

effect arises because of the multi-homing assumption.29 When α and θ are low the second effect is

more dominant. Otherwise, the first effect dominates.

5.1.2 Perfect price discrimination (PD)

Now we assume that platforms can identify the exact location of each agent. When θ ∈
£
t−α
2 , t

¤
partial multi-homing is an equilibrium (not necessarily unique). The equilibrium prices and profits

are given by,

p∗cA (x) =

⎧⎪⎨⎪⎩
t(θ+α−x(t+α))

(t+α) , for x ∈
h
xPDcL ≡ t−θ

t+α , x
PD
cR ≡ θ+α

t+α

i
t (1− 2x), for x ≤ xPDcL ≡ t−θ

t+α

0, for x ≥ xPDcR ≡ θ+α
t+α

(24)

and

p∗cB (x) =

⎧⎪⎨⎪⎩
t(θ−t+x(t+α))

(t+α) , for x ∈
h
xPDcL ≡ t−θ

t+α , x
PD
cR ≡ θ+α

t+α

i
t (2x− 1), for x ≥ xPDcR ≡ θ+α

t+α

0, for x ≤ xPDcL ≡ t−θ
t+α .

28 It can be easily shown that equilibrium profits increase with α if θ < θ̄ ≡ t(2t2−α2−2tα)
(t2+α2−tα)

and decrease with α if

θ > θ̄. Moreover, θ̄ > θ1 if and only if α < ᾱ ≡ t(
√
5−1)
2

. Finally, θ̄ < θ2 always holds. Hence, when some agents
multihome, α < ᾱ and θ < θ̄, an increase in α leads to higher equilibrium profits.
29Multi-homing changes the platforms’ incentives to unilaterally change prices and therefore it generates new

insights. Choi (2006), for example, shows that, when multi-homing is allowed in two-sided markets, tying can be
welfare-enhancing because it induces more consumers to multi-home.
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πA = πB =
t
¡
t2 − 2tθ + 2θ2 + 2αθ + α2

¢
(t+ α)2

. (25)

The solid lines in figure 5 depict the equilibrium prices as given by (24). (The dashed lines on

the same figure depict the equilibrium prices under perfect discrimination when multi-homing is

not allowed, as given by (8)). The price functions under multi-homing exhibit two kinks, one at

xPDcL and the other at xPDcR . The agents that multi-home are located in the interval
£
xPDcL , xPDcR

¤
.

The agents in
£
0, xPDcL

¤
join platform A exclusively and the agents in

£
xPDcR , 1

¤
join platform B

exclusively. The differences between when multi-homing is not allowed and when it is are the

following: i) when multi-homing is allowed platforms make more sales (i.e., xPDcL < 1
2 and x

PD
cR > 1

2)

and ii) equilibrium prices are (weakly) higher when agents are allowed to multi-home. In particular,

the prices are the same between the two regimes for the agents who join one platform exclusively,

but higher when multi-homing is allowed for the agents who join both platforms. This is because

under multi-homing each agent is indifferent between joining one platform exclusively and joining

both platforms, which softens price competition.30

It can be readily verified that equilibrium prices (for the agents who multi-home) and profits

increase with α. When some agents multi-home equilibrium prices are affected by the cross-group

externalities. The reason is that equilibrium prices keep the agents who multi-home indifferent

between joining one and two platforms. In other words, platforms in equilibrium extract all the

incremental surplus from the agents who choose to multi-home. Hence, the externalities are priced

in the discriminatory equilibrium prices. (Recall that when multi-homing is not allowed, perfect

discriminatory prices are free of the externality parameters). As the indirect externality increases

30This can be better seen by observing that in the multi-homing region the prices are falling slower (slope is equal
to −t), as we move in the middle of the intervals, than when multi-homing is not allowed (slope is equal to −2t). In
the latter case a unilateral price cut induces agents to switch platforms (business stealing), whereas in the former
case a similar price cut results in more agents joining both platforms (demand creation).
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the incremental benefit from joining a second platform also increases. This allows platforms to

sustain higher equilibrium discriminatory prices as a function of α. On the other hand, as expected,

the prices for the agents who single-home are not affected by α.

5.1.3 Price and profit comparison

We compare (23) with (25). In this comparison, for brevity, we focus implicitly on the parameter

range that is common between the two parameter ranges for which (23) and (25) constitute an

equilibrium. It turns out that price discrimination is always more profitable (details are omitted).

This sharp prediction is very likely to be model specific. However, we believe that the effects

we have identified in the previous two subsections are likely to hold in more general models. These

effects yield the following predictions as the indirect externality α increases: i) uniform prices

decrease (after the externality exceeds a given threshold) and ii) discriminatory prices increase.

Hence, price discrimination should yield higher profits than uniform pricing at least when these

externalities are strong enough. This result echoes the prediction from our benchmark model where

multi-homing is not allowed.

5.2 Endogenous information acquisition

In the benchmark model we assumed that platforms are endowed exogenously with information of

a certain quality about the preferences of the agents. Here, we enlarge the game by adding one

more stage, above the stage where pricing decisions are made. In that stage, platforms choose

whether to commit to a uniform price or not. We maintain the assumption that the distribution

is uniform and α1 = α2 = α. As in the benchmark model agents are not allowed to multi-home.

Further, we assume that information is perfect and if a platform acquires, then it is for both groups

of agents. There are four subgames following the information acquisition decisions. Two symmetric

ones where both platforms either acquire (I) or do not acquire information (NI) and two asymmetric

ones where only one platform acquires information, while the other commits to a uniform price.

The cost of information is assumed to be zero. Following the literature, e.g., Thisse and Vives

(1988), in the asymmetric subgames platforms make their pricing decisions sequentially, with the

one that has committed to a uniform price moving first. The normal form game in stage 1 is given

by the payoff matrix below,

A/B I NI

I
¡
t
2 ,

t
2

¢ ¡
9t
8 ,

t−α
4

¢
NI

¡
t−α
4 , 9t8

¢
((t− α, t− α))

The profits for the symmetric subgames are taken from (7) and (9). The profit derivations for

the asymmetric subgames are omitted. Then, it follows easily that (I) is each platform’s dominant
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strategy. Moreover, if (11) holds then the platforms are better off when they engage in price

discrimination. Otherwise, the game is a prisoners’ dilemma.

The equilibrium does not change even if we allow platforms to choose which group to target,

provided that information acquisition is costless. The unique equilibrium is for each platform to

acquire information for both groups.31

6 Conclusion

We examine the issue of price discrimination in two-sided markets. We assume that there are two

symmetric horizontally differentiated platforms and two groups of agents. Agents from both groups

must join a platform for successful trades to take place. Platforms possess information about the

agents’ brand preferences which can be used to customize prices. Our first result indicates that

when the indirect externality effect is strong perfect price discrimination yields higher profits to

the platforms relative to the profits under uniform prices. This result is in sharp contrast with the

prisoners’ dilemma prediction in oligopolistic one-sided price discrimination models.

Then, we allow for imperfect price discrimination. We analyze two different cases depending on

whether agents observe all prices before they decide which platform to join: i) prices are private

and ii) prices are public. This distinction is relevant for two reasons. First, when platforms charge

many prices it seems reasonable (at least in some cases) to assume that not all prices are observed

by all agents. Second, observability matters due to the presence of network externalities. We

demonstrate that in either case the equilibrium profits exhibit a U-shape pattern with respect to

the quality of information platforms possess about the preferences of the agents. In the limit, i.e.,

as the quality of information tends to become perfect, we recover the perfect price discrimination

paradigm. This suggests that when the information is not very accurate price discrimination makes

the platforms worse off, while with accurate information price discrimination may be profitable.

Moreover, profits, when prices are public, are always lower compared to the profits when prices are

private. An implication of this result is that platforms may have incentives to make their prices less

transparent. Our analysis can also be used in intermediate goods markets, such as B2B markets.

In this case, price discrimination will lead to lower final prices if and only if market segmentation

is coarse.

Our main result that price discrimination can yield higher profits than uniform pricing is robust

to extensions that allow for multi-homing and endogenous information acquisition decisions.

31This result changes if information becomes costly. Then, asymmetric information acquisition decisions, where one
platform discriminates over one group of agents and the other platform over the other group, can be an equilibrium.
We do not pursue this any further in this paper.
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A Proof of proposition 1

The proof is divided into two parts. In the first part we solve for the equilibrium assuming that

the number of segments is two, N = 2. In the second part we assume that N ≥ 4. We do this
because there is a qualitative difference in the solution between the two cases. In the first case

firms may share the segment demand, whereas in the second case segment demand is not shared

(under some conditions). The incumbent platform is able to drive the rival out of all segments in

its own territory. Platform A’s own territory is the
£
0, 12

¤
part of the intervals and platform B’s

own territory is the
£
1
2 , 1
¤
part. When we say “incumbent platform” we refer to the platform that

is operating in its own territory.

Case 1: N = 2. Each platform can charge two prices to a given group of agents. This implies

that each platform competes with four prices.

Let pcks denote platform k’s price in segment s for group c. It can be showed (details are

omitted) that when t > 2α, each firm’s profit function is concave in its own prices. The implication

of concavity is that in equilibrium neither firm will corner the market.

• Prices in all segments are positive.

In this case first order conditions that are satisfied with equality are necessary and sufficient.

We calculate the first order conditions,32 and we assume symmetry in prices across firms

(p1B1, p1B2, p2B1, p2B2) = (p1A2, p1A1, p2A2, p2A1).

Then, we solve the first order conditions to obtain

pcA1 =
2t

3
− α and pcA2 =

t

3
− α, c = 1, 2.

When t > 3α, both prices are positive. By substituting the above prices back into the profit

function, we can obtain the equilibrium profits,

πk =
5t

9
− α.

No unilateral deviation is profitable because the objective functions are strictly concave.

• One price is positive and the other price is zero.

When t ≤ 3α, one price becomes zero. This is the price that each platform charges to the agents
in the rival platform’s own territory, i.e., pcA2 = pcB1 = 0, for c = 1, 2. By following similar steps

32Expression for the profit function is very lengthy to report.
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as above and assuming that platform A obtains zero profit in segment 2 and positive profit only

from segment 1 we can obtain the prices for platform A that satisfy the first order conditions (from

symmetry we can derive the prices for platform B)

pcA1 =
t(−2α+ t)

−3α+ 2t , for c = 1, 2.

When t > 2α, each platform has positive price in its own turf for each group. Next, we consider

a deviation. Due to symmetry, consider platform A only. There is no profitable deviation in pcA1,

c = 1, 2, due to the strict concavity of the profit function. The only possible deviation is for platform

A to increase pcA2, c = 1, 2 above zero. We show that this is not profitable (details are omitted).

Case 2: N ≥ 4. In this case each each platform competes with 2N prices. Given our assumption

that N = 2i, where i = 0, 1, 2, 3, 4, ..., there are always two middle segments in each [0, 1] interval:

one is immediately to the left of 12 and the other is immediately to the right of
1
2 .

Claim 1: Firms may share the demand only in the middle two segments. In the remaining

segments the incumbent platform drives the rival out of the market.

Let m1 =
N
2 −1 and m2 =

N
2 +2 denote the adjacent two segments (left and right respectively)

to the two middle segments in each [0, 1] interval. Then, the two middle segments are denoted

by M1 = m1 + 1 and M2 = m2 − 1 (same for both groups of agents). (For example, if N = 16,

m1 = 7 and m2 = 10. The middle two segments are M1 = 8 and M2 = 9). In Liu and Serfes (2004,

proposition 1), where market segmentation is modeled the same way as in the present paper, we

showed that firms share the segment demand only in the middle two segments, while in the other

segments the incumbent firm drives the rival firm out of the market. This is true for any N ≥ 4.
The difference between that paper and the present paper is that the model in Liu and Serfes (2004)

is one-sided. This implies that the feedback effect is absent. The feedback effect intensifies the

competition and leads to lower prices, implying that the incumbent platform has more incentives

to drive the rival out of the market. Hence, platforms in the present paper cannot share more than

the middle two segments.

Claim 2: In any pure strategy equilibrium prices in the middle two segments must be zero.

Let pcAM1 and pcAM2 denote platform A’s prices in the two middle segments in both groups,

c = 1, 2. So, platform B’s prices are pcBM1 and pcBM2 , for c = 1, 2.

We first prove that pckM1 > 0 and pckM2 > 0, c = 1, 2 and k = A,B cannot be an equilibrium.

Let’s focus on platform A. Assume an infinitesimal change of the prices, say dpcAM1 and dpcAM2 ,

c = 1, 2, such that platform A would lose market share, −dncA, c = 1, 2, in the two middle segments.
Then a price change of −dpcAM1 and −dpcAM2 , c = 1, 2 would lead to a gain of market share of

−dncA, c = 1, 2.

Let dπL denote the aggregate (i.e., both groups combined) change in platform A’s profit in

segments s = 1, ...,m1, i.e., left segments, dπM in the two middle segments, s =M1,M2, and dπR
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the change in the right segments, s = m2, ..., N . Obviously dπR = 0. For platform A not to find

the dpcAM1 and dpcAM2 , c = 1, 2 change profitable, it must be that the resulting profit goes down,

i.e,

dπL + dπM + 0 ≤ 0.

After platform A loses share in the middle segments, we can show that it will not find it in its

best interest to drive platform B out of the market in segment M1, and possibly not in some other

left segments as well. But suppose that platform A, suboptimaly, still drives platform B out of the

market in all left segments s = 1, ...,m1, and let dπ0L be the corresponding profit change. Then we

have,

dπL ≥ dπ0L ⇒ dπ0L + dπM + 0 ≤ 0. (26)

Now consider a price decrease of −dpcAM1 and −dpcAM2 , c = 1, 2. The corresponding profit

change is

−dπ0L − dπM + dπR.

dπR > 0 since platform A will gain some share in each right segment s = m2, ..., N . This is

because platform A lowered its prices.

For platform A not to find the −dpcAM1 and −dpcAM2 , c = 1, 2 change profitable, it must be

that the resulting profit goes down, i.e,

−dπ0L − dπM + dπR ≤ 0.

But this is impossible, since from (26) −dπ0L− dπM ≥ 0 and dπR > 0. Therefore, if platform A

has no incentive to increase its prices, it will certainly have incentives to lower them, which implies

that strictly positive prices in the middle two segments cannot be an equilibrium.

Next we prove that pcAM1 > 0, pcAM2 = 0, pcBM1 = 0 and pcBM2 > 0, for c = 1, 2 cannot be an

equilibrium either.

The logic is the same as above, except that when pcAM1 decreases, there is not only gain in the

right segments (as above), but also gain in the second middle segment, which will strengthen our

argument.

Claim 3: When t ≤ αN
2 , zero prices in the middle two segments constitute an equilibrium. The

prices in the remaining segments are limit prices that drive the rival platform out of the incumbent

platform’s territory. Hence, pcAs = 0 for all s = M1, ...,N and pcBs = 0 for all s = 1, ...,M2.

Moreover, pcAs = t − 2ts
N , for s = 1, ...,m1 and pcBs = t − 2ts

N , for s = m2, ..., N , c = 1, 2. By

summing up all segments we can derive the candidate equilibrium profits

πk =
t

2
− t

N
.
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To sum up, our symmetric candidate equilibrium involves zero prices in the middle two segments

and limit prices in all the remaining segments where the incumbent platform drives the rival out

of the markets in its own turf. In the absence of indirect externalities this is not an equilibrium.

A platform would have incentives to unilaterally raise its middle prices above zero [as in Liu and

Serfes (2004)]. What may prevent a platform from doing so is the loss of market share in the

middle segments and the resulting loss of profits in all the remaining segments due to the cross-

group externalities. To prove that such a deviation is indeed unprofitable we take a shortcut. When

a platform deviates in the middle two segments we allow the indirect externality to affect only the

adjacent segments. Below, we explain how we check for such a deviation.

Due to symmetry, consider only platform A’s deviation. Fix platform B’s prices. Let pdevcAM1

and pdevcAM2
, c = 1, 2, denote platform A’s deviating prices in the two middle segments. Platform A

does not have incentives to change its prices in the left or right segments. In the left segments it

is capturing all the segment demand, while in the right segments its prices and market share are

zero.

Note that platform A can only increase its prices in the first middle segments by charging

pdevcAM1
> 0, c = 1, 2. In the second middle segments a price increase will clearly be unprofitable

(since the segment is in platform B’s own territory). When platform A increases its prices in the

first middle segments, it will loose market share in those segments. It may also loose market share in

other segments as well. We assume that platform A deviates in the first middle two segments (one

for each group of agents) and we also consider the feedback effect in the adjacent two segments

m1, i.e., in the segments that are adjacent to the left of the first middle segments. We ignore

the feedback effect in the remaining segments. The resulting profits are denoted by π̂devA , while

the “true” deviation profits are denoted by πdevA . Because the feedback effect can only hurt the

deviating platform’s profits we have π̂devA ≥ πdevA . Then we show that π̂devA is strictly concave in

pdevcAM1
, c = 1, 2. We calculate firm A’s deviating profit π̂A,dev as a function of pdevcAM1

and then

calculate dπ̂devA
dpcAM1

. We find that

dπ̂devA

dpcAM1

¯̄̄̄
¯
pcAM1

=0

≤ 0, c = 1, 2, when t ≤ αN

2
.

The above condition is sufficient (but not necessary) for a local deviation to be unprofitable.

Since π̂devA = πdevA when pdevcAM1
= 0, c = 1, 2 we can identify the above threshold. Since π̂devA is

concave no global deviation is profitable either. Finally, the fact that π̂devA ≥ πdevA ensures that no

deviation is profitable when we consider the true deviation profits. Hence, our candidate equilibrium

is indeed an equilibrium.
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