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ABSTRACT 

Online price comparison agents (shopbots) allow consumers to instantaneously receive price and 

other information from many online retailers. Online consumer clickstream data from ComScore Inc. 

demonstrate that consumers are increasingly using shopbots to conduct search. This phenomenon raises 

such questions as “how do shopbots change consumers’ search behavior?” and “do they reduce 

consumers’ online search?” Conventional wisdom suggests that consumers are expected to search less 

because shopbots have displayed prices and other relative information from retailers on the search result 

page(s). Surprisingly, this study demonstrates the opposite result. That is, consumers are actually visiting 

more online retailer web sites after using shopbots. This finding suggests that after searching for an item 

through a shopbot and receiving the price information, consumers will continue to look for detailed 

information about the online retailers by visiting their web sites. The empirical finding is explained by an 

analytical model, which shows that on the one hand shopbots reduce the marginal benefit of searching 

additional online stores; on the other hand they reduce the cost of search. Therefore whether shopbots 

reduce consumer search depends on the cost of reducing per unit of risk, which is decided by a number of 

factors, such as marginal search costs, price dispersion and quality differentiation among stores, price and 

quality correlation, and consumers’ relative preference for service quality. The model also gives sufficient 

and necessary conditions under which shopbots increase consumer surplus. 

 

Key words: Sequential Search; Online Behavior; Shopbots; Internet Retailing; Clickstream Data; Service 

Quality. 
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1. INTRODUCTION 
As online businesses grow, consumers have more choices of stores to shop, which challenges 

consumers’ ability to find the optimal one. Therefore, consumers, who have a specific item to purchase in 

mind, still have to engage in a great deal of search in order to find a store with appropriate price and 

satisfactory product and service quality to purchase from. The more searches a consumer conducts, the 

more ideal combination of price and quality offers she expect to find. However, searching online stores is 

time-consuming and therefore costly. The existence of search cost has been ascribed as a main reason for 

price dispersion across Internet retailers (Brynjolfsson and Smith, 2000; Clay, et al. 2001). For example, 

Hong and Shum (2006) estimated search cost ranging from $1.31 to $29.40 by applying theoretical search 

models to online price data for several economics and statistics textbooks. Therefore consumers will not 

sample an infinite number of online stores, for example, with the 1997 – 1998 ComScore data, Johnson et 

al. (2004) found that consumers search only one or two online stores for a purchase even though hundreds 

of competing web stores are just “a click away”.  

The advent of shopbots has made it almost costless for prospective buyers to see the prices of 

many online sellers. Shopbots, also called price comparison engines, are software agents that 

automatically query a multitude of online vendors to gather and collate product and service information of 

a specified product. Since it is easier for shopbots to collect and compare price information rather than 

other attributes like service quality, reliability and so on, shopbots are currently designed primarily to 

aggregate and display prices from major online retailers (Harrington and Leahey, 2006; Smith, 2002). 

Shopbot web sites like BizRate.com, Dealtime.com, PriceWatch.com, and BudgetLife.com are used to 

search for various categories of consumer goods and services, ranging from computer hardware to 

mortgages. Figure 1 shows a search result page for a 30GB iPod MP3 player at Dealtime.com. 

=============INSERT FIGURE 1 ============================ 

Shopbots adoption has observed a substantial increase from 0.1% in June 1997 to 5.7% in May 

2002 (Montgomery, et al. 2004). Our online consumer clickstream data sample over the period of July to 
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December of 2001 shows that 45.7% of the online computer hardware shoppers and 7% of the online 

book shoppers visited at least one shopbot of the corresponding category before purchasing. The fast 

increasing adoption of shopbots raised numerous interesting questions to researchers and practitioners. 

For example, will the presence of shopbots significantly alter consumer search behavior? Will shopbots 

reduce consumers search intensity? Will consumers benefit from searching through shopbots?  

Before the emergence of shopbots, economic studies such as Stigler (1961), Stahl (1989) and 

Weitzman (1979) and marketing theories such as Lynch and Ariely (2000), Urbany, et al. (1989) and 

Zwick et al. (2003) have modeled consumers’ search behavior as a compromise of the anticipated price 

reduction and the additional search cost. In most of the models, consumers were assumed to be searching 

for price information only and the search products were supposed to be homogenous in all attributes other 

than price. Ellison and Ellison (2004) supported that assumption by providing some empirical evidence 

with respect to the dramatically high demand elasticity on the online market for computer hardware. 

Built based on the above search models and given the current shopbot design, most analytical 

studies on shopbots have also assumed that consumers are searching for a perfectly homogeneous 

product, comparing only prices and will buy from the retailer that offers the lowest price they can find 

(Smith 2002, Greenwald and Kephart 1999 and Iyer and Pazgal 2003, Chen and Sudhir 2004). If that is 

the case, then shopbots will ease consumers’ effort in searching across many web sites because after 

observing the pricing information for the searched item at a shopbot website, consumers can click through 

the link of a retailer on the search page to go directly to its web store to purchase. However, a couple of 

recent studies (Brynjolfsson and Smith, 2000; Montgomery, et al., 2004; Smith, 2002; Smith and 

Brynjolfsson, 2001) have found the above assumption does not hold. When using shopbots, consumers 

consider not only prices, but also such factors as shipping services, return policies, privacy protections, 

and brand reputation. Most of these attributes are not feasible for shopbots to collect within seconds and 

display in a tabular format to compare. Thus after obtaining a list of prices from the shopbot web sites, 

consumers will have to search each individual store for those unlisted attributes. Thus it is unclear 

whether shopbots reduce consumers’ searching intensity or not and what benefits shopbots bring to 
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consumers.  

To address the above questions and to formally examine the impact of shopbots on consumer 

search, this paper builds a richer model on consumers’ online search behavior to derive the optimal search 

strategy and tests it with the ComScore clickstream data. The paper makes three primary contributions: 

First, it analytically models consumer search behavior incorporating both price dispersion and service 

quality differentiation; and proposes an optimal search strategy for shopbot users based on the model. 

Second, it compares consumer search intensity and surplus with and without using shopbots and 

analytically identifies the conditions under which shopbots can reduce consumer search and increase 

consumer surplus. Third, we empirically show that contrary to conventional wisdom about shopbots, 

consumers visit more online book and computer stores while searching through shopbots, which implies 

that consumers do consider reputation, service quality and reliability of stores, and online stores differ 

significantly with respect to those quality attributes. Taken together, the above contributions shed light on 

understanding the impact of shopbots on online consumer search, help online retailers choose pricing and 

quality differentiation strategies to compete in the Internet market with shopbots, and provide suggestions 

to shopbot managers on how to improve the design of shopbots.  

The paper proceeds as follows: §2 presents the analytical model and proposes the insights from 

the model results, §3 describes the study’s empirical data and introduces the empirical results, and §4 

discusses the paper’s contributions and implications for theory and practice.  

2. CONSUMER ONLINE SEARCH MODELS 

Conducting business on the Internet requires very low cost compared with in the traditional 

physical world, which encourages the entry of e-tailers with varied brand names and service qualities. 

Those e-tailers with inferior brands or bad reputation for services tend to charge a lower price than those 

with a respected brand name. Thus, price is not the only factor that consumers care for: consumers are not 

choosing the e-tailer that offers the lowest price, but actually balancing the price and other quality factors 

(for example, shipping service, product availability, and retailer reputation) in making their purchase 
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decisions. This section builds theoretical models to derive the consumer optimal search strategies without 

the presence of shopbot (Section 2.1) and the case with shopbot (Section 2.2).  

2.1. Sequential Searching without Shopbots 

There are n  retailers in this product market. When a consumer searches online without shopbots, 

she must first discover the identity of a retailer (e.g., its web address) before being able to visit the 

retailer. A consumer who wants to purchase an item on the Internet searches the retailers’ web sites for 

both pricing and quality information. Assume that By purchasing a product of quality q at price p , a 

consumer of typeθ  obtains a utility of  

( , )u p q q pθ= − ,      (1) 

where θ  denotes the quality preference of the consumer. Suppose the constant marginal cost of 

discovering each online retailer is dc  and the constant marginal cost of sampling a retailer is sc . 

Suppose the price-quality pairs at the online retailers follow a (joint) distribution ( , )F p q , with 

density ( , )f p q . The utility for consumer ( )uθ provided by each retailer thus also follows a distribution, 

denoted by ( )H u (which is essentially the convolution of the marginal distributions of p and q ) defined 

on ( , )u ū , say.1 Therefore, the consumer's sequential search for the price and quality of a retailer reduces 

to sequential search for its utility only. 

It is well known that the consumer will stop search if and only if the expected benefit from 

continued search does not exceed the expected marginal cost. Suppose the consumer's reservation utility 

for stopping search is û . Then û  is the unique solution to 

ˆ
ˆ( ) ( )

ū

d su
u u dH u c c− = +∫ , 

which is equivalent to (after integrating the LHS by parts) 

   
ˆ
(1 ( ))

ū

d su
H u du c c− = +∫ .      (1) 

                                                 
1 Here ū  and u  may be infinite. 
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The number of online stores searched before she stops (search depth) in this case N0 follows 

Geometric distribution 1
0 ˆ ˆPr( ) ( ) (1 ( ))nN n H u H u−= = − . The mean search depth is thus 

      2 1
0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) [1 ( )] 2 ( )[1 ( )] 3[ ( )] [1 ( )] ... [ ( )] [1 ( )]nE N H u H u H u H u H u n H u H u−= − + − + − + + −  

         =  2 1ˆ ˆ ˆ ˆ[1 ( )](1 2 ( ) 3[ ( )] ... [ ( )] )nH u H u H u n H u −− + + + +   

        =  2

1ˆ[1 ( )]
ˆ[1 ( )]

H u
H u

−
−

 

         =  1
ˆ[1 ( )]H u−

.          (2) 

We assume that the price p and the quality q found from one store is independent and identically 

bivariate normal (BVN) distributed with correlation ρ , that is, 
2

2~ ( , )p p pq

q pq q

p
N

q
μ σ σ
μ σ σ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 where 

pq p qσ ρσ σ= .2 Thus, for a consumer of typeθ , the utility from purchasing the item from a store follows 

normal distribution, that is, 2~ ( , )u uu N μ σ  where ( )u q pE uμ θμ μ= = − , and 

2 2 2 2( ) 2u q p pqVar uσ θ σ σ θσ= = + − . Given this distribution, Equation (1) can be transformed to  

ˆ (1 ( )
u

u

d s
u

u

c cz dzμ
σ σ
∞

−
+

−Φ =∫ .      (3) 

Let ( ) (1 ( )
x

g x z dz
∞

= −Φ∫ , then the stopping utility û  can be solved by  

1ˆ ( )d s
u u

u

c cu gμ σ
σ

− +
= + ,      (4) 

and the probability density of search depth is  

1 1 1
0Pr( ) ( ( )) (1 ( ( )))nd s d s

u u

c c c cN n g g
σ σ

− − −+ +
= = Φ −Φ .    (5) 

1
0( ) ( ( ))d s

u

c cE N g
σ

− +
= Φ      (6) 

                                                 
2 This assumption significantly simplifies the solution to the problem, while we need to assume that the majority of the random 
variables take a positive value. 
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 The above results suggest that the ratio of marginal cost of search and standard deviation of utility 

d s

u

c c
σ
+ , which is a measure of the uncertainty of search, influences the expected gain from search as well 

as search depth. We, hence, extract this important indicator and name it “cost of risk” in search. The lower 

the cost of risk, the higher the expected search depth and reservation utility of search are. 

2.2. Searching with shopbots 

We now examine sequential search at a shopbot. Shopbots allow consumers to search the web for 

a fully specified product and then to tabulate the sites where the product can be bought with their prices. 

When the consumer types the product name into the shopbot, the shopbot will return a list of retailers and 

their prices. In general the qualities of the retailers are not directly revealed by the shopbot, as discovering 

quality information often requires the consumer to visit and explore each retailer's website. Some 

shopbots may provide some quality information such as the availability, shipping cost and/or tax of the 

searched item. Some recent studies, (Harrington and Leahey, 2006; Smith, 2002), however, still show that 

the current design of shopbots does not provide enough quality information to consumers.  

We assume that all online retailers in this product market register at the shopbot. Such a 

consolidating feature of the shopbot spares the consumer the costs of discovering the retailers. The 

relevant marginal search cost is thus only the cost of sampling each retailer, sc .3 Most importantly, 

because the consumer observes the prices of all retailers before initiating search, her optimal search 

sequence is no longer random. 

After observing a price of the search item p offered by a store, consumers can follow the link on 

the search page to visit the web store for the quality information q (Smith and Brynjolfsson, 2001). 

Specifically, after observing price ip  of firm i (1 )i n≤ ≤ , the consumer learns the conditional density of 

firm i's quality: 

                                                 
3 We ignored the slight difference between the sampling cost when using the shopbot and that when the shopbot is not used in 
searching. 
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 |
( , )( | )
( , )

i
Q P i

i

f p qf q p
f p q dq

∞

−∞

=
∫

.     (7) 

and the corresponding conditional probability distribution | ( | )Q P iF q p . To simplify notation, we let 

|( ) ( | )i Q P iG q F q p≡ . 

Therefore, with the list of prices at the shopbot, the consumer faces n retailers each with a distinct 

(conditional) quality distribution ( )iG q . She must now decide the order of sampling these retailers, as well 

as when to terminate search. We first compute the reservation quality associated with firm i, iq , which is 

the unique solution to 

 ( ) ( )
i

i i sq
q q dG q cθ

∞
− =∫ .      (8) 

 The corresponding reservation utility of firm i ( [1, ]i n∈ ) is  

i i iu q pθ= − .       (9) 

We index the n firms in decreasing order of their reservation utilities, i.e., (1) (2) ( )... nu u u≥ ≥ ≥ . 

Theorem 1 (Optimal Search Rule at the Shopbot): After observing a price vector 1( ,..., )np p  at the 

shopbot, (1) consumer θ will continue to search if and only if (1) 0;u >  (2) if (1) 0u > , then her optimal 

search sequence is to visit the retailers in decreasing order of their reservation utilities; (3) she stops 

search as soon as either the maximum realized utility exceeds the highest unsampled reservation utility or 

all retailers with positive reservation utilities have been sampled. 

Suppose that the realized price vector is such that all retailers confer positive reservation utilities 

for consumer θ  (i.e., ( ) 0nu > ). We now compute her expected number of searches. According to 

Theorem 1, she indeed will sample some or all retailers. Search stops after 1 draw if and only if 

(1) (2)u u≥ , which has a probability 

 (2) (1)
1 (1) (2)1 ( )

p p
w G q

θ
−

≡ − − .      (10) 
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Search stops after k  (1 )k n< <  draws if and only if (1) (2)u u< , (1) (2) (3)max( , )u u u< , …, and 

(1) ( ) ( 1)max( ,..., )k ku u u +≥ . This has a probability 

 

(1) (2) (1) ( 1) ( ) (1) ( ) ( 1)

(2) (1) ( ) (1) ( ) ( 1)
(1) (2) (1) ( ) ( 1) ( )

( 1) (1)
(1) ( 1) ( ) ( 1)

Pr{ }...Pr{max( ,..., ) }Pr{max( ,..., ) }

[ ( )]...[ ( )... ( )]

[1 ( )... (

k k k k k

k k k
k k k

k
k k k

w u u u u u u u u

p p p p p p
G q G q G q

p p p
G q G q

θ θ θ

θ

− +

−
−

+
+ +

≡ < < ≥

− − −
= − − − ⋅

−
− − − ( 1) ( )

1
( 1) ( ) ( 1) ( )

( 1) ( 1)
1 1 1

)]

( ) 1 ( )

k k

k i k
i j k i

j i i k
i j i

p

p p p p
G q G q

θ

θ θ

+

−
+ +

+ +
= = =

−

− −⎛ ⎞⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏∏ ∏

  (11) 

Finally, search stops after n draws if and only if (1) (2)u u< , (1) (2) (3)max( , )u u u< ,…, and 

(1) ( 1) ( )max( ,..., )n nu u u− < , which has a probability 

(1) (2) (1) (2) (3) (1) ( 1) ( )

(2) (1) (3) (1) (3) (2)
(1) (2) (1) (3) (2) (3)

( ) (1) ( ) ( 1)
(1) ( ) ( 1) ( )

(

Pr{ }Pr{max( , ) }...Pr{max( ,..., ) }

[ ( )][ ( ) ( )]...

[ ( )... ( )]

(

n n n

n n n
n n n

j i

w u u u u u u u u

p p p p p p
G q G q G q

p p p p
G q G q

G q

θ θ θ

θ θ

−

−
−

≡ < < <

− − −
= − − −

− −
− −

=
1

( 1) ( )
1)

1 1

)
n i

i j

i j

p p
θ

−
+

+
= =

−
−∏∏

  (12) 

When the consumer observes a price vector 1( ,..., )np p , her expected search depth in this case N1 is thus 

 1 1 2
1

( ) 2 ...
n

n k
k

E N w w nw kw
=

= + + + =∑ .     (13) 

 Assume the BVN distribution of price and quality we made in Section 2.1, the mean and variance 

of Gi(q) given a price pi is: ( )| | ( )
i

q
q p i q i p

p

E q p p
σ

μ μ ρ μ
σ

= = + −  and 2 2 2
| ( | ) (1 )

iq p i qVar q pσ ρ σ= = − . 

Equation (8) can be transformed to 

|

| |

(1 ( ))i q pi

q p ii

s
q

q p

cz dzμ

σ θσ
∞
− −Φ =∫ ,      (14) 

and the stopping quality iq  after observing price pi is given by 
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1
| |

|

( )
i i

i

s
i q p q p

q p

cq gμ σ
θσ

−= + .     (15) 

When searching through the shopbot, the reservation utility defined in (9) is therefore expressed as 

2 1

2
[ 1 ( )] ( 1)

1
q qs

i q p q i
p pq

cu g p
σ σ

θ μ ρ μ ρ σ θρ
σ σθ ρ σ

−= − + − + −
−

.  (16) 

Given the BVN distribution assumption of price and quality of online stores, Theorem 1 implies 

the optimal search rule when using the shopbot is to (1) when p

q

σ
ρ

θσ
≤ , follow an ascending order of the 

posted prices and stop at the first store with a service quality greater than or equal to the reservation 

quality given the price; (2) otherwise, follow a descending order of the listing prices.  

Note the above optimal search rule is single-directional, that is, consumers search the stores for 

quality-related information following a uniform order of the listing prices. This result is closely related to 

the i.i.d. distribution of price and quality random variables. If a consumer has a favorable store (non-

identical mean) or there are heterogeneous correlations of price and quality across the stores, the optimal 

search rule can be bi-directional: the consumer searches in a mixed order of increasing and decreasing 

prices. 

Given the BVN assumption about the distribution of price and quality, from Equations of (10) to 

(12), we have  

(2) (1)1
1 2 2

1
( 1) ( )1

2 2
1 1

( 1) ( )1

2 2
1

1

2

1 ( ( ) (1 ))
1 1

( ( ) (1 ))
1 1

1 ( ( ) (1 ))
1 1

( ( )
1

qs

pq q

k i
i j qs

k
i j pq q

k
k i qs

i pq q

s
n

q

p pcw g

p pcw g

p pcg

cw g

σ
θρ

σθ ρ σ θ ρ σ

σ
θρ

σθ ρ σ θ ρ σ

σ
θρ

σθ ρ σ θ ρ σ

θ ρ σ

−

−
+−

= =

+−

=

−

−
≡ −Φ − −

− −

⎛ ⎞−
⎜ ⎟= Φ − − ⋅
⎜ ⎟− −⎝ ⎠

⎛ ⎞−
⎜ ⎟− Φ − −
⎜ ⎟− −⎝ ⎠

= Φ −
−

∏∏

∏
1

( 1) ( )

2
1 1

(1 ))
1

n i
i j q

i j pq

p p σ
θρ

σθ ρ σ

−
+

= =

−
−

−
∏∏

   (17) 
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Comparing this density function with Equation (5) which is the density of search depth without using 

shopbots, since s s dc c c< + , 21 q uθ ρ σ σ− ≤ , and ( ) ( )

2
(1 ) 0

1
i j q

pq

p p σ
θρ

σθ ρ σ

−
− >

−
 for i > j, there is no 

conclusive result regarding the impact of shopbots on the expected search depth. Using the shopbot can 

potentially increase or decrease consumer search depth: 

1) Shopbots reduce the cost of discovering an online retailer. This effect alone will encourage 

consumers to search more stores. 

2) Shopbots provide pricing and some quality information of the stores on the result page, which 

reduces the variance (uncertainty) of consumer search. This effect alone will give consumers less 

incentive to search and therefore reduces search depth. 

3) Consumers maximize utilities by trading off price and quality. When all the prices are given, 

consumers, who are searching for information regarding service quality, can rank the stores by 

their posted prices and search them in an optimal sequential order. The existence of price 

differentiation discourages consumers’ search and reduces search depth. 

 We then empirically examine the impact of shopbots on consumer search using the ComScore 

web behavior database. 

3. EMPIRICAL EVIDENCE 

Information technologies enable in-depth study of consumers’ search and purchasing behavior 

through their web site navigating and purchasing logs tracked using server-side or client-side programs. 

To verify some of the results from the above theoretical analysis, we employ consumer clickstream data 

collected by the Internet marketing company ComScore Media Matrix to examine the consumers’ online 

search behavior before making a purchase. The company uses a client-side program installed on the 

recruited households’ home computers to collect detailed website visiting data, transaction data (i.e., 

records of online purchasing) and demographic data of these households. The ComScore database used in 

this research captures 100 million website visits and 342,706 transactions conducted by 100,000 
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households across the United States during a 6-month time period from July 2002 to December 2002 and 

demographical data of these households.  

We chose to study book and computer hardware categories of goods because 1) they were 

frequently purchased online --- they were among the top-5 frequently purchased product categories in our 

database; 2) there are many specialized shopbots for these two categories; 3) they had been studied by 

previous research (Johnson et al. 2004, Montgomery et al. 2004) so that we can easily compare the 

difference between research results of this study and previous research results without controlling 

category-related factors.  

For each product category, the corresponding retailer and shopbot websites were chosen 

according to previous studies, for example, Johnson et al. 2004, Montgomery et al. 2004 and Broida 

2005; Internet sources, for example, retailer websites listed by BizRate.com, and shopbot websites from 

Google Directory of Price Comparison Websites (Google Directory - Home > Consumer Information > 

Price Comparisons); and websites in each category that appeared in our data sample. We finalized with 24 

retailer websites and 21 shopbots in computer hardware and 16 retailer websites and 10 shopbots in the 

book category.4 Table 1 lists these retailer websites, the number of visits experienced by each site during 

the research periods, as well as shopbots for each category. 

=============INSERT TABLE 1 ============================ 

To examine consumers’ search behavior, we need to define search sessions. This paper adopted 

this monthly-level search session defined in Johnson et al. (2004) which examined households’ search 

behavior using the 1997 ComScore database. That is, a search session is a series of store visits over a span 

of days, which eventually leads to a purchase. Specifically, they defined a search session covering one 

calendar month. The key justification of using the monthly-level search session definition in Johnson’s 

study – less than 1% of month-long sessions containing more than one transaction – still holds in the 2002 

ComScore database used in our study.  

                                                 
4 To avoid inflating the number of sites visited during a purchase, we narrowed the web site list to those of specialized retailers in 
each category and removed those general-purposed retailer web sites such as Yahoo.com and eBay.com. 
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In the consumer web log data, we queried the number of unique retailer websites within a product 

category visited during a search session leading to a purchase. Combining those search data with the 

transaction data and household demographic data, we obtained our final data sample for studying the 

factors affecting consumers’ searches that lead to a final purchase. Table 2 (a,b) and Table 3 (a,b) show 

the descriptive summaries of the variables for book and computer hardware categories respectively in our 

empirical research. There are 6623 and 2878 households who had made at least one purchase in the book 

and computer hardware category respectively during the study period. On average, consumers search 2.66 

book stores and 3.26 computer hardware stores before making a purchase in the corresponding category. 

The results have increased dramatically compared with the search depths reported in Johnson et al. 

(2004). Only 7% of the computer hardware shoppers and 21.7% of the book shoppers are loyal to one 

retailer website throughout the research period while, in Johnson’s study, 70% of the book shoppers were 

loyal to one retailer website.  

=============INSERT TABLES 2a, 2b, 3a and 3b===================== 

The historical shopbot adoption rates reported by Montgomery, et al. (2004)5 indicate that 

shopbots are adopted by consumers at a dramatic speed, increasing from 0.1% to 5.7% over a five-year 

period. Using the data sample in our study period, we also find that 45.7% of the online computer 

hardware shoppers and 7% of the online book shoppers visited at least one shopbot of the corresponding 

category before purchasing. Another interesting finding is that even though the households in our data 

sample shopped around visiting multiple web retailers, they demonstrated great loyalty to the shopbots 

they used. One average, those shoppers who used shopbots only visited 1.61 unique computer shopbots 

and 1.44 unique book shopbots during a search session.  

The theoretical comparison of consumer search with and without shopbots gives the conditions 

under which consumers will search more or less when using shopbots (Section 2.3). Here with the 

consumer clickstream data, we can test the impact of shopbots on consumer search with the following 

regression model: 
                                                 
5 Their shopbot list included Dealtime, Bottomdollar, Pricescan, or MySimon. 
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ln Shopbot  

         Connection_Speed Household_Income + Household_Education
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ij ij ij i j

i i i

i i i

N p Nβ β β β

β β β
β β β

= + + +

+ +

+ + +

                      (19) 

Model (19) is applied to book and computer hardware categories separately. We use a variable Shopbotij 

to represent the number of book or computer hardware shopbots consumer i visited to search online book 

or computer hardware stores before purchasing an item in the same category in search session j. Some 

other factors are used as control variables: price of the item pij, last period number of stores searched in 

the same product category Ni,j-1, Internet connection speed Connection_Speedi (high-speed Internet-1 or 

not-0), level of total income of the household (<15k-1, 15k-25k-2, 25k-35k-3, 35k-50k-4, 50k-75k-5, 75k-

100k-6, >100k-7) Household_Incomei, the highest education level Household_Educationi (below high 

school-0, high school-1, college without a degree-2, associate degree-3, bachelor-4, graduate-5), the 

oldest age of the household members Household_Oldest_Agei, whether there are children in the 

household Child_Presenti, and number of household members Household_Sizei. The results are provided 

in Table 4.6  

For both product categories, we find that households visit more retailer websites after visiting 

shopbots: on average, they visit 0.86 and 1.86 more retailer websites respectively after visiting one more 

book and computer hardware shopbot. This result can be explained by the analytical result in Section 2 as 

shopbots can lower the cost of (reducing each unit of) risk, which has several possible implications: 

consumers still consider service quality when choosing online stores; there still exists prevalent service 

quality differentiation on the Internet (Brynjolfsson and Smith, 2000); moreover, the cost of searching an 

online store following the links given by the shopbot website is significantly low, even when we take into 

account the search cost per unit of risk.  

Empirical results in Table 4 also show that price level, previous search intensity and broadband 

Internet connection have a positive impact on online store searches for both product categories. They can 

be explained by the model conclusions in Section 2: more valuable goods tend to have higher price and 

                                                 
6 Since the Condition Indices (CI) of all the regression models are greater than 25, multi-collinearity does not significantly exist. 
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quality variances, and broadband Internet connection reduces marginal search cost; and both high product 

uncertainty and low search cost lead to more stores to search.  

We also find that higher income households search fewer book stores but more computer 

hardware stores before making a purchase in the corresponding category. This is because high-income 

households tend to have higher preference to quality, and according to results in Section 2.2, optimal 

search depth increases with quality preference when quality uncertainty is comparable with price 

dispersion. Thus those high-income households are more sensitive to the higher price and quality 

variances offered by computer hardware stores than book stores. Younger households are found to search 

more computer hardware stores is because they are more skillful in navigating the Internet and incur 

lower search cost.  

4. Discussion and Conclusion 

Consumers’ online search, especially the changes in consumer search behaviors due to the 

emergence of shopbots, has received relatively less attention than searching in the traditional non-

electronic market. However, due to the fast growing of e-commerce and online search technologies, both 

business and practitioners have realized the increasing importance of understanding consumers’ search 

behavior on the Internet.  

4.1 Key Findings 
Shopbots were initially expected to drive all consumers to the lowest priced retailer and therefore 

increase the pressure on retailers’ sales margins. However, in this study, shopbot users are found not to be 

completely satisfied with the price information provided on the shopbot search result pages. Instead, they 

search more retailer web sites than other Internet customers do before making a purchase. Those 

consumers are not choosing a retailer that offers the lowest price, but actually balancing the price and 

other critical quality factors, for example, product availability, shipping services, retailer brand names and 

reputation, in making their purchase decisions. Based on that empirical evidence, we have built a richer 

model of consumers’ online search, incorporating multiple search factors to derive the optimal search 
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strategy. 

The theoretical conclusions in this paper suggests that consumers’ search intensity depends on 

their cost of risk, which is the ratio of marginal search cost and the standard deviation of the utility from 

searching and purchasing. Therefore lower search cost and higher price and quality uncertainties induce 

consumers to search more online retailers. 

When consumers search online stores without a shopbot, they incur the risks from both price and 

quality uncertainties. A shopbot brings queried price information and web addresses to the search result 

page, which decreases both the uncertainty from price variation and marginal search cost. Therefore 

whether shopbots will reduce the number of stores to search depends on the remaining uncertainty in 

quality dispersion and the degree of search cost reduction. Given the optimal level of search without using 

shopbots, consumers are better off with the usage of shopbots when the degree of search cost reduction 

relative to variance reduction is large enough. 

Our consumer clickstream data suggest that shopbot adoption has increased at a dramatic speed, 

and shopbot users have demonstrated great loyalty to a particular shopbot but are less loyal to retailers 

than that reported in Johnson et al. (2004). Our empirical results show consumers search additional book 

and computer hardware retailers even when they use shopbots for a purchase, which implies that 

1. Consumers put a significant weight on service quality attributes when they evaluate the retailers in 

purchase decision, which mitigates their price sensitivity. 

2. There are still significant variations in service quality among the book and computer hardware retailers 

3. The reduction in search cost provided by shopbots encourages consumers to visit each individual 

retailer for more information. 

The above results have important implications to consumers, online retailers, shopbot designers 

as well as academic researchers. 

4.2 Managerial Implications 
Implication for Consumers 
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Balancing the tradeoff of cost and expected gains from search, consumers will choose an optimal 

number of stores to sample before making a purchase decision. Consumers gain from search by reducing 

the risks in prices and quality of stores at a cost. The higher the variance of consumers’ value in search 

due to price dispersion or quality differentiation, the higher the marginal value consumers will receive 

from sampling n number of stores and the greater number of stores they will search. Besides, when search 

cost becomes lower, for example, adopting broadband Internet connection, improving web site navigating 

skills, consumers are expected to search more intensively. Thus, consumers’ optimal search depth 

depends on the cost of reducing each unit of risk. 

When price dispersion is high, for example, computers usually have a higher price variance than 

books, shopbots will be more attractive to consumers because they can help consumers obtain the prices 

of retailers within seconds. Nonetheless, shopbots may not necessarily reduce consumers’ search depth. 

Since online retailers were found to avoid fierce price competition by differentiating in quality attributes, 

and stores with lower service level or inferior brand names tend to charge a lower price, consumers who 

use shopbots may still need to look further at each individual online store’s detailed service level and 

policy, and they may end up with engaging a more intensive search.  

Shopbots reduces both consumers’ search cost and uncertainty of search. Therefore consumers 

need to evaluate both in order to decide whether to use a shopbot. They will benefit from using a shopbot 

when degree of search cost reduction is large, quality differentiation is small, or price-quality correlation 

is large. 

Implication for Retailers 

Shopbots have been regarded as a threat to retailer profits. This study shows that shopbots do 

reduce the cost and risks in searching. However, the lower cost of risk reduction provided by shopbots 

encourages consumers to investigate more stores rather than stop searching and choose the lowest priced 

one. Thus shopbots do not necessarily discourage consumer search and result in retailers’ fierce price 

competition. 
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Empirical evidence in this study suggests that consumers care more about quality attributes than 

simply price when choosing a store to purchase. Therefore, rather than competing by cutting profit 

margins, retailers can invest in improving service quality, building up reputation and advertising to 

promote brand names to attract consumers and to avoid head-to-head price competition. As a result, more 

than the mixed pricing strategies proposed by Baye and Morgan (2001), Iyer and Pazgal (2003) and 

Greenwald and Kephart (1999), a mixed strategy with both price and quality differentiation is expected to 

be optimal for online retailers.  

Implication for Shopbot Designers 

Most shopbots earn revenue from advertising fees and commissions. Advertising revenue 

depends on the number of viewers visiting the shopbot website, and these commissions depend on the 

participation and sales of the retailers through the shopbot website. To maximize shopbot profits, they 

should balance the attraction of users and participation of retailers. To attract users, shopbots should strive 

to reduce search cost by developing better algorithms for quick and accurate responses. To ease consumer 

search, shopbots can display more quality attributes in addition to prices and organize them in an efficient 

way. However, too many attributes will increase the delay of searching and the cognitive cost of the 

consumers (Montgomery et al. 2004), and they will prevent consumers’ click-through to more websites 

for more information and therefore discouraging the retailers’ participation. As a result, shopbot designers 

should choose an appropriate number of product attributes to display.  

Shopbots can also rank the search results by other attributes than price. For example, many 

shopbots have adopted a fee-for-placement strategy, which allows a retailer to be ranked higher in the 

search list at a cost. This strategy increases shopbots’ revenue and reduces the tension in price 

competition. Similar to this, shopbots can also use a combination of price, shipping and other quantitative 

quality measures to rank retailers. It will ease consumer search and mitigate price competition. 

Implication for Academic Researchers 

 The contributions to academic research are threefold 
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1. This study extends the traditional search model into a two-attribute search model and discusses 

the impact of the correlation of the two attributes on search results. Empirical evidence that consumers are 

not only searching for prices but also for service quality attributes have been reported in Brynjolfsson and 

Smith (2000), Montgomery, et al. (2004), and Smith and Brynjolfsson (2001), but so far there has not 

been a model formally investigating this phenomenon. This paper fills in the gap by presenting a multi-

attribute search model and deriving the optimal search strategies. 

2. This study formally models consumer search strategy while using shopbots and theoretically 

compares the optimal search strategy with the scenario that search without using shopbots. We give 

analytical conditions under which shopbots can reduce consumer search and increase consumer surplus. 

3. It empirically studies the impact of shopbots on consumer search activities with our consumer 

clickstream data. The empirical finding that consumers are searching more stores while using shopbots 

sounds surprising according to previous theories, but it can be explained with our theoretical results. 

4.3 Limitations and Suggestions for Future Research 
First the cost function is assumed to be linear in number of websites searched. In order to make 

the solution neat and meaningful, we ignored the economy of scale in searching. One way to solve this 

problem is to assume an exponential term in the number term of the cost function. We believe most of the 

analytical results will still be qualitatively the same except for the exact forms of the conditions. 

Secondly, the consumers are assumed to be risk-neutral. In reality consumers could be either risk-

averse or risk-loving. Presumably, risk-averse consumers will spend more effort to search in order to 

reduce the risk level, while risk-loving consumers will search less. It could be more interesting to discuss 

them in future research. 

Thirdly, we assume that consumers at a shopbot randomly select a store to visit for more service 

quality and reputation information. By doing that, we ignore that some shopbots can sort the stores by 

their offering prices in the search result page. Observing the price ranking, consumers can visit the stores 

from the store with the lowest price and then to the next lowest priced one. We did not model consumers’ 

search behavior that way because 1) consumers were found not to search from the lowest priced store 
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(Smith and Brynjolfsson 2001); 2) many shopbots are currently replace the price ranking by paid 

placement, that is, they charge retailers for a fee for a priority placement in the search result list. For 

example, in the result page in Figure 1, the retailer list returned by DealTime.com for a search of a 30GB 

iPod MP3 player has a random order of prices charged. Therefore our current assumption about consumer 

searching on shopbots is valid given empirical evidence about consumer browser at shopbots and the 

current shopbot design. 

Fourthly, the way of dividing consumers search session by monthly web log data is not very 

rough. Further studies in computer science and marketing are expected to improve on this to get a more 

accurate estimate about consumer searches.  

Overall, this study provides both analytical conclusions and empirical evidence to reveal and 

predict how shopbots affect consumers’ online search. By extending the previous research (Johnson et al. 

2004 Montgomery et al. 2004 and Steckel et al. 2005) in the same direction, it derives more managerial 

insights in understanding consumer online search behaviors through combining research methodologies 

from economics, marketing and computer science. 
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Figure 1. An example search page at a shopbot DealTime.com.  
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Table 1 Retailer and Shopbot Websites in book and Computer Hardware Categories. 

Book  Computer hardware 

Retailer Websites Visits Shopbots  Retailer Websites Visits Shopbots 
Amazon.com 16042 a1books.com  Dell.com 5641 dealtime.com 
Columbiahouse.com 3942 addall.com  HP.com 1607 bizrate.com 
CDnow.com 3023 allbookstores.com  Bestbuy.com 1341 pricegrabber.com 
BMGmusic.com 1504 bestbookdeal.com  Officedepot.com 1001 nextag.com 
Bestbuy.com 1362 bibliofind.com  Apple.com 796 pricescan.com 
MP3.com 1260 bookfinder.com  Tigerdirect.com 728 streetprices.com 
Buy.com 678 evenbetter.com  Circuitcity.com 646 calibex.com 
CDuniverse.com 560 ISBN.nu  Sears.com 643 ibuyer.net 
BN.com 301 kelkoo.co.uk  Compaq.com 422 pricingcentral.com 
Fye.com 203 studentmarket.com  CompUSA.com 414 pricewatch.com 
Samgoody.com 190  Sonystyle.com 404 thepricesearch.com 
Mymusic.com 36  Compgeeks.com 220 productopia.com 
CDnowpbc.com 35  IBM.com 201 mysimon.com 
Hmv.co.uk 16  Outpost.com 192 gomez.com 
CDEurope.com 8  Vikingop.com 192 ciao.co.uk 
Musicblvd.com 3  Computers4sure.com 153 comparestoreprices.co.uk
    Digikey.com 137 shopping.com 
    Epson.com 137 cairo.com 
    PCconnection.com 83 planetonline.com 
    Mwave.com 73 pricecomparison.com 
    Warehouse.com 73 ucompareit.com 
    Insight.com 32  
    Accessmicro.com 29  
    Futureshop.ca 11  

 



 

 23

Table 2a. Descriptive Statistics for Book Category 
 

Variables Mean N Std Dev Maximum Minimum 
Nij 2.66 9380 1.60 14 1 
Shopbot 0.07 9380 0.31 4 0 
log(pij) 3.41 9380 0.98 6.86 0 
Ni,j-1 0.83 9380 1.58 12 0 
Household_income 4.48 9380 1.64 7 1 
Connection_speed 0.45 9380 0.50 1 0 
Household_Education 3.06 6738 1.38 5 0 
Household_oldest_age 6.75 9380 2.61 11 1 
Child_present 0.45 9380 0.50 1 0 
Household_size 2.99 9380 1.37 6 1 

 
Table 2b. Correlation Matrix for Book Category 

 

  Nij log(pij) Ni,j-1 Shopbot 
Household_ 
Education 

Household 
_Income 

Connection 
_Speed 

Child_ 
Present 

Household 
_Size 

Household_ 
Oldest_Age 

Nij 1          
log(pij) 0.027 1         
Ni,j-1 0.279 -0.004 1        
Shopbot 0.181 0.040 0.057 1       
Household_ 
Education -0.040 0.071 -0.005 0.004 1      
Household 

_Income -0.013 0.061 -0.002 -0.007 0.212 1     
Connection 
_Speed 0.054 0.013 0.025 -0.002 0.004 0.028 1    

Child_ 
Present 0.035 -0.001 -0.007 0.010 -0.040 0.098 0.008 1   
Household 

_Size 0.043 0.012 -0.0002 0.020 -0.042 0.124 0.025 0.671 1  
Household_ 
Oldest_Age 0.015 -0.015 0.054 -0.009 0.060 0.119 -0.083 0.003 -0.030 1 
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Table 3a. Descriptive Statistics for Computer Hardware Category 
 

Variables Mean N Std Dev Maximum Minimum 
Nij 3.26 3322 1.82 20 1 
Shopbot 0.72 3322 1.04 7 0 
log(pij) 4.43 3322 1.87 11.05 0 
Ni,j-1 0.38 3322 1.60 17 0 
Household_income 4.46 3322 1.66 7 1 
Connection_speed 0.48 3322 0.50 1 0 
Household_Education 2.85 2420 1.41 5 0 
Household_oldest_age 6.82 3322 2.60 11 1 
Child_present 0.48 3322 0.50 1 0 
Household_size 3.07 3322 0.35 6 1 

 

 
Table 3b. Correlation Matrix for Computer Hardware Category 

 

 Nij Shopbot log(pij) Ni,j-1 
Household_ 
Education 

Household 
_Income 

Connection 
_Speed 

Household 
_Size 

Household_ 
Oldest_Age 

Child_ 
Present 

Nij 1          
Shopbot 0.389 1         
log(pij) 0.084 0.044 1        
lag_nij 0.236 0.099 -0.041 1       
Hoh_ 

Education 0.006 0.053 0.017 0.018 1      

Household 
_income 0.053 0.027 0.115 0.033 0.269 1     

Connection 
_speed 0.072 0.040 0.047 0.009 0.041 0.053 1    

Household 
_size 0.027 0.003 0.102 -0.020 0.003 0.131 0.027 1   

Hoh_ 
Oldest_age 

-
0.058 0.013 -0.121 -0.047 0.058 0.074 -0.112 -0.079 1  

Child_ 
Present 0.040 0.010 0.077 -0.003 -0.001 0.100 0.004 0.665 -0.053 1 
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Table 4. Regression Results (Dependent Variable: Nij) 

 
Independent Variables Book Computer Hardware 

Shopbot 0.86**** 
(0.05) 

1.85**** 
(0.08) 

log(pij) 0.04** 
(0.01) 

0.09**** 
(0.02) 

Ni,j-1 0.27**** 
(0.01) 

0.31**** 
(0.02) 

Connection_Speed 0.15**** 
(0.03) 

0.24*** 
(0.08) 

Household_Income -0.02** 
(0.01) 

0.04* 
(0.02) 

Household_Oldest_Age 0.01 
(0.01) 

-0.04*** 
(0.02) 

Household_Size 0.04*** 
(0.01) 

-0.01 
(0.04) 

Child_Present 0.05 
(0.04) 

0.15 
(0.11) 

Intercept 2.10**** 
(0.09) 

2.83**** 
(0.20) 

N 9780 3322 
R Square 0.111 0.203 
Adj. R Square 0.110 0.201 
**** p value < 0.001, *** p value < 0.01  ** p value < 0.05, * p value < 0.1 
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