
 
 

NET Institute* 
 

www.NETinst.org 
 
 
 

Working Paper #09-03 
 

January 2009 
 

Recommendation Networks and the Long Tail of Electronic Commerce 
 

Gal Oestreicher-Singer  
Tel-Aviv University and New York University 

 
Arun Sundararajan 

New York University 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
* The Networks, Electronic Commerce, and Telecommunications (“NET”) Institute, 
http://www.NETinst.org, is a non-profit institution devoted to research on network 
industries, electronic commerce, telecommunications, the Internet, “virtual networks” 
comprised of computers that share the same technical standard or operating system, and 
on network issues in general. 



Recommendation Networks and the Long Tail of Electronic Commerce1
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Summary: It has been conjectured that the peer-based recommendations associated with electronic

commerce lead to a redistribution of demand from popular products or "blockbusters" to less popular or

"niche" products, and that electronic markets will therefore be characterized by a "long tail" of demand

and revenue. In this paper, we develop a novel method to test this conjecture and we report on results

contrasting the demand distributions of books in over 200 distinct categories on Amazon.com. Viewing

each product as having a unique position in a hyperlinked network of recommendations between products

that is analogous to shelf position in traditional commerce, we quantify the extent to which a product is

in�uenced by its recommendation network position by using a variant of Google�s PageRank measure of

centrality. We then associate the average level of network in�uence on each category with the inequality

in the distribution of its demand and revenue, quantifying this inequality using the Gini coe¢ cient

derived from the category�s Lorenz curve. We establish that categories whose products are in�uenced

more by recommendations have signi�cantly �atter demand distributions, even after controlling for

variations in average category demand, the category�s size and measures of price dispersion. Our

empirical �ndings indicate that doubling the average in�uence of recommendations on a category is

associated with an average increase in the relative demand for the least popular 20% of products by

about 50%, and a average reduction in the relative demand for the most popular 20% by about 12%. We

also show that this e¤ect is enhanced when there is assortative mixing in the recommendation network,

and in categories whose products are more evenly in�uenced by recommendations. The direction of

these results persist across time, across both demand and revenue distributions, and across both daily

and weekly demand aggregations. Our work o¤ers new ideas for assessing the in�uence of networks on

demand and revenue patterns in electronic commerce, and provides new empirical evidence supporting

the impact of visible recommendations on the long tail of electronic commerce.
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1. Introduction and Related Work

An important by-product of the sustained recent increase in electronic commerce and interaction is

the visible emergence of a number of hyperlinked networks that connect products and their consumers.

These include social networks like Facebook which link consumers, business networks like LinkedIn

which link professionals, and co-consumption networks like those created by Amazon.com and YouTube

which link products or content. Much like shelf position does in traditional commerce, it seems likely

that position in the latter networks of interconnected products will in�uence a product�s demand. After

all, if one imagines the process of browsing an ecommerce site as being analogous to walking the aisles

of a physical store, then the aisle structure of an online retailer is de�ned by a network of interconnected

products whose landing pages link to each other, and the "position" of a product in this graph is thus

analogous to its virtual shelf placement.

Perhaps the oldest example of a electronic and visible network of peer products is the "copurchase"

network of Amazon.com4, which, for many years now, has presented its consumers with links to comple-

mentary products made visible under the label �Consumers who bought this item also bought. . . �. This

is illustrated in Figure 1.1. While consumers have always co-purchased complementary products, and

these complementary products by de�nition in�uence each others�demand levels, the central conjecture

of this paper is that the explicit visibility of these relationships is likely to redistribute the attention that

each product receives from its potential consumers. This conjecture is in line with recent ideas that the

wide product selection, costless search, unbundling and peer-based recommendations associated with

ecommerce increase consumer awareness of relatively obscure products and cause ecommerce demand

distributions to have a long tail, whereby less popular products constitute a larger fraction of total sales

(Anderson, 2006, Brynjolfsson el at., 2006).

Anticipating a redistribution of attention and thus of demand on account of recommendation net-

works seems quite natural. However, the direction of this redistribution is not immediately intuitive. As

predicted by the trade press, recommendation networks could increase the demand for niche products

by making items that consumers might otherwise have not been aware of visible to them. In contrast,

4Such "co-consumption" networks are not unique to Amazon.com. Barnes and Noble has a similar feature; more
recently, YouTube introduced a similar graphical network of �co-viewed�videos.
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Figure 1.1: Illustrates the outgoing copurchases links for a sample book

however, visible recommendations based on copurchasing patterns might also increase the level of atten-

tion paid to popular products. Since they are frequently purchased, these products are also more likely

to be co-purchased, and thus more likely to receive consumer attention via a recommendation link. Ev-

idence about the anticipated and realized distribution of demand documented in the small but growing

"long tail" literature thus far (Elberse and Oberholzer-Gee, 2006, Tucker and Zhang, 2008, Fleder and

Hosanagar, 2008; more on these later) is actually mixed, suggesting a need for further investigation.

In this paper, we provide a new approach and new evidence that connects the position of products

in recommendation networks to aggregate outcome patterns in ecommerce. Speci�cally, we study the

extent to which the position of products in this kind of network will a¤ect their relative demand and

revenue. The idea is that the visibility of the network redirects the �ow of consumer attention, which

results in a redistribution of tra¢ c, demand and eventually revenue. We analyze this empirically by

relating the in�uence of Amazon�s recommendation network to the demand distribution for over 200

categories of books, comprising over 250,000 titles sold on Amazon.com, over 25 days in 2007. We

model the in�uence of the network on each book by computing each book�s PageRank, which measures

the "centrality" of its network position. We then quantify the "evenness" of each category�s demand
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and revenue distributions by constructing their Lorenz curves5 and computing their associated Gini

coe¢ cient, a measure of inequality that is normalized for size and average magnitude.

Our empirical results present signi�cant and persistent evidence that categories whose books are

more highly and evenly in�uenced by visible networks have consistently �atter demand and revenue

distributions, even after controlling for the average demand in the category as well as the number of

products in the category. We estimate that doubling of the average network in�uence on a category

is associated with an increase in the relative demand for the least popular 20% of products by about

50%, and a reduction the relative demand for the most popular 20% by upto 12%. We also show that

this e¤ect is enhanced when there is more assortative mixing in the network, or when a large fraction

of recommendations terminating within a category also originate from the category. Further, categories

whose products are more evenly in�uenced by the network have �atter demand distributions. The

direction of these results persist across all 25 days, across both demand and revenue distributions, and

across both daily and weekly demand aggregations.

Put simply, our �ndings imply that the in�uence of visible recommendation networks is associated

with the widely documented phenomenon of the "long tail" of demand. The visibility of recommendation

networks is one fundamental way in which ecommerce di¤ers from traditional face-to-face commerce, and

our �ndings suggest that their presence might explain some of the documented di¤erences in demand

patterns between the two settings.

We add to a small but growing literature in information systems and marketing documenting the

drivers and extent of the "long tail". Early work (Anderson, 2006; Brynjolfsson et al. 2003; Clemons et

al., 2006) has emphasized the role of wider product variety in driving sales away from popular products

and towards the "tail" of the demand distribution. More recently, Brynjolfsson el at. (2006) compare

sales of identical products online and via catalogs, and provide evidence supporting the theory that

reduced search costs foster diversity in demand. Bailey, Gao and Lucas (2008) suggest that the demand

for niche products may be systematically underestimated due to a bias in research that focuses on larger

retailers, or in other words, after accounting for smaller retailers, the long tail may in fact be longer

5The Lorenz curve is a widely used depiction of distributional equality, most commonly used to compare income
distributions across regions and time.
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than we think.

Current evidence, however, has suggested that the long tail e¤ect may not be as simple as originally

conjectured, and other e¤ects may play a role in expanding demand for both hit and niche products.

For example, Elberse and Oberholzer-Gee (2006) contrast the distribution of DVD sales between 2000

and 2005. They �nd evidence of a "lengthening" of the tail of demand in 2005, documenting a doubling

of the number of products in the tail which regularly sold a small number of copies. However, in

parallel, they provide evidence of an ampli�cation of the "superstar" e¤ect: there are fewer products

in the highest selling quantiles, each of which has a higher individual demand level. Similarly, Zhao

et al. (2008) study the in�uence of word-of-mouth on hit and "non-hit" products, documenting how

positive word-of-mouth has a higher impact on hit products than non-hit products, while negative word-

of-mouth a¤ects non-hit products more. Their paper takes a novel "micro" approach to the analysis,

although not controlling for the amount of attention due to word-of-mouth relative to the product�s

absolute demand. Goh and Bockstedt (2008) examine how the unbundling of music online impacts the

relative demand for popular and niche products, showing that the disagrregation of digital goods may

actually shift demand towards more popular products and away from niche products that previously

received a lot of their demand on account of being bundled with hits. Tucker and Zhang (2008) use a

combination of research methods to show that the marginal bene�ts of visible popularity information

(the number of consumers who have previously visited) is higher for niche products, and this in turn

may contribute to a more prominent long tail.

Further, two recent papers provide theoretical arguements linking recommendation networks to the

long tail of demand. Fleder and Hosanagar (2008), simulate the e¤ects of recommendation systems

on the distribution of demand and predict that recommender systems that base recommendation on

sales and ratings reinforce the popularity of already popular products. They do so with the caveat

that their results do depend heavily on assumptions about how the recommender system works. In

contrast, Hervas-Drane (2008) shows that while recommendations largely bene�t mainstream consumers,

when recommender systems based on social �ltering are introduced alongside traditional word-of-mouth

recommendations, there is a positive impact on consumers interested in niche products, since such

recommenders are more likely to draw attention to niche products. The mixed predictions of these
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theory papers further motivate our empirical assessment.

In contrast with Elberse and Oberholzer-Gee (2006), we document variations in demand distributions

as well as associating these with a conjectured driver of this shift, the in�uence of a recommendation

network. This driver of the long tail we focus on also di¤erentiates our work from Brynjolfsson et al.

(2007), whose focus is on reduced search costs and an online-o­ ine comparison. Tucker and Zhang

(2008) study the in�uence of a di¤erent kind electronic visibility on demand patterns; our work is

di¤erent in its focus on recommendation networks, detailed inter-category comparisons, as well as a

more nuanced measurement of in�uence. Our work is further distinguished from the prior literature

on the long tail in a couple of salient ways. First, our study focuses entirely on products sold online,

contrasting the demand distributions of categories based on the extent to which they are in�uenced by a

recommendation network. Second, we use a measure of centrality (PageRank) to quantify this in�uence

while controlling for total demand levels; accounting for the intrinsic popularity allows us to focus more

carefully on variations in the distribution of demand across categories.

Our work also draws from and adds to other related streams of prior work in information systems

and marketing. First, while our results provide a new association between online network position

and variations in observed demand/revenue, the idea that "position" a¤ects demand is fairly well-

established in the context of traditional bricks-and-mortar retailing, a point made repeatedly in the

literature on shelf positioning and placement (this literature started with Cox, 1964 and Curhan, 1972;

a more detailed survey of this literature is available in Oestreicher-Singer and Sundararajan, 2008).

In contrast with this literature, we treat network position as given, focusing instead on assessing the

demand in�uence garnered from how central this position is, rather than addressing programmatic or

strategic allocation to positions. This distinction actually highlights an interesting di¤erentiating feature

of "position" that is de�ned by co-purchases: the virtual aisle location of a product is determined,

in part, endogenously and collectively by consumers rather than being chosen based on fees paid by

manufacturers, or explicit strategic considerations by the retailer. This contrasts our work with the

extensive literature on slotting allowances/fees6. Proponents of these fees emphasize its power as a

6Payments by manufacturers to persuade retailers to stock and display new products more prominently.
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signaling tool when manufacturers have better demand information than retailers7. However, there

is a tradeo¤ when delegating this decision because slotting fees can increase the channel power of

retailers relative to smaller manufacturers (Sha¤er, 1991) and bias demand distributions in favor of

large manufacturers (Bloom, et al., 2000). Our data suggests that this tradeo¤ can be addressed by

indirectly delegating slotting to the consumers by basing it on their observed shared purchasing patterns.

Simply put, delegating slotting decisions "collectively" to the consumers (through the use of copurchase

links) seems far more e¤ective in mitigating issues of information asymmetry than delegating it to

manufacturers; our evidence suggests that such a move also might mitigate the demand bias in favor

of large manufacturers, because the resulting recommendation network redistributes attention towards

niche products.

We also add to an extensive literature in the social sciences that provides evidence of the bene�ts

garnered from an advantageous network position and other structural properties of one�s local network,

which might include the resources of one�s direct network (Lin, 2001), the number and strength of ties

(Bell et. al., 2007; Granovetter, 1973), closure or local clustering (Coleman 1990; Lin, 2001), along with

other more subtle structural properties like the extent to which actors in a network span structural

holes (Burt, 1992). A survey of this literature is beyond the scope of this paper; for more information,

see Wasserman and Faust (1994).

A more recent literature has associated network properties with a variety of adoption and di¤usion

outcomes in organizations and markets. Within this literature, some work studies the in�uence of

social networks on the di¤usion of word-of-mouth (for example, Goldenberg et al, 2001, Van den Bulte

and Wuyts, 2007), while other papers have paid closer attention to identifying agents that hold speci�c

roles. For example, network positioning and properties of the network have been used to identify opinion

leaders (Watts and Dodds, 2007; Keller and Berry, 2003) and innovators (Valente, 1996). Other papers8

have studied the role of spatial proximity in the process of products and service adoption (Barrot et

7Chu (1992) and Desai (2001) compare slotting favorably to advertising e¤orts in this regard. Lariviere and Padmanab-
han (1997) relate slotting fees to wholesale prices and retailer �xed costs, suggesting that signaling and cost compensation
are the primary motivation for slotting allowances. Other advantages documented are of risk shifting, e¢ cient shelf space
allocation and enabling retail price reductions (Bloom, et al., 2000).

8See Bradlow et al. (2005) for a survey of spatial models in marketing, and Nair et al. (2006) for a detailed survey of
the literature about peer e¤ects in marketing.
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al., 2008, Garber et al., 2004), and the extent to which network position and information di¤usion

a¤ects the productivity and performance of employees in organizations (Aral et al., 2007) Features

based on network structure have been shown to improve the predictions of data mining models used

for targeted marketing (Hill, Provost and Volinsky, 2006). A recent literature on "network games" (for

example, Bramoulle and Kranton, 2005, Galeotti et. al., 2008, Sundararajan, 2007) has begun studying

theoretically how the properties of the equilibria of speci�c classes of IT-related games played on a graph

depend on network structure. A more detailed survey is available in Sundararajan (2007).None of these

papers view network position in the way that we do, or study its e¤ects on aggregate demand patterns,

across as extensive a range of titles, or over time. Further, rather than studying social in�uence between

individuals in the context of adoption of one product or service, we consider the unique case of a network

of products that is constructed by aggregating decisions made by individuals9.

2. Overview of data and how it is collected

We use a large time series of recommendation networks for over 250,000 books sold on Amazon.com.

Each product on Amazon.com has an associated webpage. These pages each have a set of �copurchase

links� which are hyperlinks to the set of products that were copurchased most frequently with this

product on Amazon.com. This set is listed under the title �Customers who bought this also bought:�.

This was illustrated in Figure 1.1.

Conceptually, the copurchase network is a directed graph in which nodes correspond to products

and edges correspond to directed copurchase links. We collect data about this graph using a Java-based

crawler, which starts from a popular book and follows the copurchase links using a depth-�rst search

algorithm. At each page, the crawler gathers and records information for the book whose webpage it is

on, as well as the copurchase links on that page, and terminates when the entire connected component

of the graph is collected. This is repeated daily. A sample part of the graph is illustrated in Figure 2.1.

The algorithm used for data gathering is provided in Appendix A.

We have chosen to focus on books because they have, by far, the largest number of individual titles,

9A couple of papers do study in�uence in "product" networks although with fairly di¤erent questions. Mayzlin and
Yonagarasimhan (2008) study hyperlinked competing blogs, and Oh et al (2008) study a network of videos on YouTube.
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Figure 2.1: Illustrates a subset of paths in the graph

the product set is relatively stable (compared to electronics, for instance), and because the in�uence of

recommendations based on shared purchasing patterns (that reveal underlying product similarities not

easily observable in expressed product characteristics) is likely to be signi�cant for this category.

The data collection began in August 2005 and is currently ongoing. The graph is traversed every

day. Apart from the copurchases, each book�s ISBN, list price, sale price, category a¢ liation, secondary

market activity, author, publisher, publication date, and consumer ratings are gathered. An additional

script collects the demand information for all books on the graph every 3 hours for the 24-hour period

following the collection of the graph10.

The following data is available for each book on the copurchase graph, for each day.

ASIN: a unique serial number given to each book by Amazon.com. Di¤erent editions and di¤erent

versions have di¤erent ASIN numbers.

List Price: The publisher�s suggested price.

Sale Price: The price on the Amazon.com website that day.

10The demand for books is computed using SalesRank information provided by Amazon.com. More details are available
in Appendix B.
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Copurchases: ASINs of the books that appear as its copurchases.

SalesRank: The sales rank is a number associated with each product on Amazon.com, which

measures its demand of relative to other products. The lower the number is, the higher the sales of that

particular product.

Category A¢ liation: Amazon.com uses a hierarchy of categories to classify its books. Thus,

each book is associated with one or more hierarchical lists of categories, starting with the most general

category a¢ liation, and ending with the most speci�c one. For example:

Subjects > Business & Investing > Biographies & Primers >Company Pro�les

(for �The Search�by John Batelle).

Author: The name of the author or authors of the book.

Publisher: The name of the publisher of the book.

Publication date: The date of publication of the book (by that publisher).

As illustrated in Figure 2.2 for a sample month, the component of the copurchase network we study

changes substantially over time. It contains new nodes every day (over 6500 per day, on average) and

there are frequent daily changes to the edges between existing nodes. The occasional large shifts in the

component�s size are due to one or more clusters of nodes detaching from the large connected component;

this was often accompanied by a di¤erent set of clusters of nodes attaching to this component. There

was also a signi�cant redistribution of edges in the graph in the middle of the month, probably because

of the seasonal demand spike associated with Valentine�s Day. Despite the variation in the graph�s

composition, its in-degree distribution remained quite stable through the month. Between 18% and

20% of the books have one incoming link, a little over 30% have two or three incoming links, roughly

the same fraction have between 4 and 7 incoming links, and the in-degree distribution of the remaining

15% or so follows a power-law distribution.

3. Network position and demand distributions

This section describes how we construct our variables relating to network position/in�uence and the

distribution of demand/revenue. Recall that Amazon.com uses a hierarchy of categories to classify its
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Figure 2.2: Summarizes the evolution of the copurchase network � the connected component of the
graph I study. (A) plots the variation in the size of the graph and the di¤erences between the identities
of the nodes day-over-day. The changes to the edges on successive graphs are categorized in (B). The
degree distribution (in-degree) is plotted after logarithmic binning of the data for February 1st (C),
10th (D), 19th (E) and 28th (F).
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books. Thus, each book is associated with one or more hierarchical lists of categories, starting with the

most general category a¢ liation, and ending with the most speci�c one. For example:

Subjects > Business & Investing > Biographies & Primers >Company Pro�les

(for �The Search�by John Batelle).

Using the second level of the hierarchy, there are 1472 such categories across all books sold, of which

between 203 and 225 have 100 or more nodes represented in our copurchase network.

In order to relate the network position of a product to variation in its demand, we follow the following

sequence of steps

1. Quantify the distribution of demand. We characterize the demand distribution of each category

by constructing its Lorenz curve and measuring its Gini Coe¢ cient (more on this later).

2. Characterize the extent to which the position of a book in the copurchase network is related to

the in�uence of the network on the book�s demand by using PageRank, a measure of centrality.

3. Associate variation in (2) with variation in (1) at both a product-speci�c level of analysis and

at a group-speci�c level of analysis. This is repeated for 25 di¤erent instances of the copurchase

network. We have also repeated the same analysis for four distinct composites of seven daily graph

instances, and 22 overlapping composites of seven daily graph instances, with a remarkable level

of stability across our empirical �ndings.

3.1. Quantifying the distribution of demand: the Gini coe¢ cient

To quantify the demand distribution and comparing it across groups of books, we �rst have to partition

the set of books. As mentioned earlier, Amazon.com places its books into a hierarchy of categories. We

use this exogenous categorization as a natural grouping for comparing demand distribution across books.

We have chosen the second level of the categorization hierarchy. There are over 1400 such categories

across all books in our data set, of which between 203 and 225 have 100 or more books represented in

our copurchase network, the minimum category size we analyze.

We quantify the shape of the demand distribution within categories in a way that is comparable
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across categories by calculating the Gini coe¢ cient of each category of books (Gini, 1921). The Gini

coe¢ cient is a measure of distributional inequality, a number between 0 and 1, where 0 corresponds

to perfect equality (in our case: where all the books in that category have the same demand) and 1

corresponds to perfect inequality (where one book in the category has all the demand, and all other

books in the category have zero demand).

The Gini coe¢ cient is based on the Lorenz curve (Lorenz, 1905), a widely used depiction of distrib-

utional equality, most commonly used to compare income distributions across regions and time. In our

analysis, the Lorenz curve of a category�s demand (revenue) ranks the products in increasing order of

sales (revenue), then plots the cumulative fraction L(�) of sales (revenue) associated with each ascending

rank percentile �, where 0 < � � 1. More precisely, de�ne N = f1; 2; 3; :::; ng as the set of all books in

a category of size n, and de�ne q(i) is the demand for book i. To compute the Lorenz curve, we de�ne,

for each book i, R(i) as the size of the set fx : x 2 N; q(x) � q(i)g, which is the set of all products with

demand less than or equal to that of i. R(i) is thus simply the (inverse) rank of the product within its

category, with the product with the lowest demand having the lowest rank. Next, de�ne

S(r) = fy 2 N;R(y) � rg; (3.1)

which is the set of product indices whose rank is less than or equal to r. Then, for each percentile �

(which corresponds to the books ranked �n or lower), the Lorenz curve is de�ned by:

L(�) =

P
y2S(n�)

q(y)P
y2N

q(y)
: (3.2)

Notice that the Lorenz curve is increasing and piecewise (weakly) convex.

The Gini coe¢ cient is computed as twice the area between the Lorenz curve L(�) and the 45-degree

line between the origin and (1; 1). We calculate it for each category by �rst computing the entire area

above the Lorenz curve, the Lorenz upper area:

LU =

nX
y=1

[1� L(y=n)] ; (3.3)
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Figure 3.1: Illustrate the Lorenz curves for the "Computers and Internet: Web Development" and
"Science: Chemistry" categories respectively. L(r) plots the fraction of the category�s total demand
from the books whose sales ranks are in the category�s lowest r2 percentile. (The data has been binned
for illustrative purposes in the �gure). The size of the dotted area is proportionate to (and is one half of)
the category�s Gini coe¢ cient. The category�s Gini coe¢ cients are 0.751 (A) and 0.502 (B) respectively.
Notice that a category whose demand is more highly concentrated on the higher-ranked products has a
higher Gini coe¢ cient.

and then using the identity

Gini = 2(LU)� 1: (3.4)

Figure 3.1 illustrates this computation for two categories in our data set.

The Gini coe¢ cient is especially suitable for this study for a variety of reasons. Most importantly,

it measures inequality in the demand distribution regardless of the category�s size or average demand

(popularity), which facilitates comparing di¤erent categories despite their intrinsic di¤erences and in-

dependent of their scale.

3.2. Measuring network in�uence: Weighted PageRank

Our measure of the in�uence the recommendation network has on a product is calledWeightedPageRank .

This is a measure of the global in�uence of the recommendation network on outcomes. It is based on

(and essentially identical to) PageRank as computed by Google�s original algorithm (Brin and Page,

1998; Brin et al., 1999). It iteratively computes the in�uence of the entire network on each product over

time. It can operate on either an individual daily graph, or on an �average graph�, constructed as a
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weighted composite of a time series of copurchase networks. The original PageRank algorithm provides

a ranking of the �importance� of web pages based on the link structure of the �web� created by the

hyperlinks between the pages, based on the following model:

PageRank(i) =
(1� �)
n

+ �
X
j2G(i)

PageRank(j)
OutDegree(j; k)

; (3.5)

PageRank is based on a simple model of behavior � consumer who "surfs" the recommendation

network randomly. This surfer follows any one of the links on a page with equal probability or jumps

to a random page with probability (1��) (this probability is also referred to as the �dumping factor�,

and is what di¤erentiates PageRank from a commonly used notion of "centrality" in social network

theory). The algorithm divides a page�s PageRank evenly among its successors in the network. The

ranking of a page ends up being the long run steady-stage probability that a random surfer who starts

at a random page will visit the speci�c page. Thus, a page can gain a high ranking by either having

many pages pointing to it or having few highly ranked pages pointing to it. The PageRank of all pages

in the network is computed iteratively, until some convergence estimator is met. For mare information

about the PageRank algorithm see Appendix C.

We adapt the PageRank algorithm to account for the fact that one might wish to measure the

average in�uence the network has on a product over a weighted composite of networks. In this adapted

model:

WeightedPageRank(i) =
(1� �)
n

+ �
X
j2G(i)

Weight(j; i)
WeightedPageRank(j)P
k2F (j)

Weight(j; k)
; (3.6)

where Weight(j; i) is the fraction of the days that the link was present on the copurchase graph11.

It is important to note that while this kind of measure of centrality is widely used as a measure

of importance in ranking algorithms (such as Google�s), we are exploiting the fact that fundamentally,

Weighted PageRank measures the probability that a �random surfer�will arrive at a hyperlinked page if

he were to traverse just the hyperlinks of the network. In other words, a product with a higher Weighted

PageRank is more likely to get tra¢ c from the network than one with a lower Weighted PageRank, and

11When computed on a single copurchase networks, Weight(j; i) = 1.
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this therefore measures the extent to which the network we are interested in �the copurchase network

�in�uences the product in question.12

4. Analysis and Results: Recommendation Networks and the Long Tail

Having de�ned our two main variables �PageRank and Gini �we now turn to motivating our empirical

analysis. We do so by presenting a very simple model of how the presence of a recommendation network

might change the distribution of demand, and by examining how an increase in its in�uence might

enhance or diminish the long tail of ecommerce demand.

Consider a category with two products labeled 1 and 2. In the absence of the recommendation

network, suppose the level of attention (for example, number of pageviews) that product i gets is �I(i),

and the conversion rate associated with this attention is cI < 1. The demand for product 1 and 2 are,

respectively:

qI(1) = cI�I(1); (4.1)

qI(2) = cI�I(2):

Without any loss in generality, assume that �I(2) > �I(1). It follows from (3.1) that S(1) = f1g; S(2) =

f1; 2g, and after using (3.2) and (3.3) to compute the Lorenz upper area, one can show that the Gini

coe¢ cient for the category in the absence of the recommendation network is:

GiniI =
qI(2)� qI(1)
qI(2) + qI(1)

; (4.2)

which can be rewritten as:

GiniI =
1� qI(1)

qI(2)

1 + qI(1)
qI(2)

; (4.3)

Now, suppose the presence of the recommendation network has two e¤ects. First, it introduces a new

source of network attention �N (1) and �N (2) for the two products. Since this is a di¤erent attention

source, we assume it has a di¤erent associated conversion rate cN . Further, suppose the presence of

12For a survey on the use of PageRank in the literature, see Langville and Mayer, 2005.
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the network also changes the conversion rate from intrinsic attention from cI to c0I . It follows that the

demand for the two products when they receive both intrinsic and network attention will be:

qN (1) = c0I�I(1) + cN�N (1); (4.4)

qN (2) = c0I�I(2) + cN�N (2);

and correspondingly (following (3.1-3.4) and a sequence of analytical steps similar to those described

above) the new Gini coe¢ cient of the category is13:

GiniN =
1� qN (1)

qN (2)

1 + qN (1)
qN (2)

: (4.5)

It follows from (4.3) and (4.5) that GiniN < GiniI if and only if

qN (1)

qN (2)
>
qI(1)

qI(2)
; (4.6)

or if

c0I�I(1) + cN�N (1)

c0I�I(2) + cN�N (2)
>
cI�I(1)

cI�I(2)
: (4.7)

Equation (4.7) can be rearranged as

[cI�I(2)][c
0
I�I(1) + cN�N (1)] > [cI�I(1)][c

0
I�I(2) + cN�N (2)]; (4.8)

which, upon multiplying out and rearranging, reduces to:

�N (1)

�N (2)
>
�I(1)

�I(2)
: (4.9)

One can use (4.7) to show that the condition in () holds if and only if the following condition holds:

�N (1)

�N (2)
>
c0I�I(1) + cN�N (1)

c0I�I(2) + cN�N (2)
; (4.10)

13This assumes that the presence of the recommendation network does not reverse the ordering of popularity of the two
products. We return to this later.
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Figure 4.1: Plots SalesRank versus PageRank for a sample of the data. Illustrates the fact that while
they are weakly (negatively) correlated, there are factors beyond network position that a¤ect a product�s
demand.

or equivalently, if

�N (1)

�N (2)
>
qN (1)

qN (2)
; (4.11)

The above condition intuitively implies that the presence of the network will �atten the demand distri-

bution of a category if the distribution of attention from the recommendation network is more "even"

than the distribution of observed demand in the presence of the network.

For a random sample of books across categories, Figures 4.1 and 4.2 contrast the PageRank distribu-

tion with the distribution of demand. Both comparisons illustrate that rather than being proportionate

to demand, PageRank is more evenly and randomly spread among books. Since we have argued that

PageRank is a measure of the "network attention" received by products, the condition in (4.11) from

our illustrative model leads us to hypothesize that the presence of the recommendation network will

lower the Gini coe¢ cient or reduce the inequality in demand across products.

Addtionally, di¤erent categories are in�uenced di¤erentially by the presence of the recommendation

network. We quantify this di¤erence by assessing the average PageRank of books in a category, based on

the idea that a category with a higher average PageRank recieves, on average, more attention from the

network. Returning to our illustrative model, suppose the level of attention �owing from the network to
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Contrasts the PageRanks (ascending line) of a randomFigure 4.2: Contrasts the PageRanks (ascending line) of a random sample of books across all categories
with their corresponding demand levels (dark spikes), with the maximum PageRank and demand levels
in the sample normalized to 1. The correlation coe¢ cient between demand and PageRank across the
entire data set averaged 0.03 across the 28 days.

a category�s products increases by a factor of � > 1. The analysis above indicates that this increase will

lower the category�s Gini coe¢ cient if and only if it leads to an increase in the ratio
h
qN (1)
qN (2)

i
. Rewriting

(4.4) to re�ect the introduction of �:

qN (1)

qN (2)
=
c0I�I(1) + �cN�N (1)

c0I�I(2) + �cN�N (2)
; (4.12)

this in turn suggests that if the derivative of the RHS of (4.12) with respect to � is positive, an overall

increase in the level of attention from the network (an increase in average PageRank) will reduce the

category�s Gini coe¢ cient and increase demand for the "tail". We examine this by di¤erentiating both

sides of (4.12) with respect to �:

d

d�

�
qN (1)

qN (2)

�
=

cN�N (1)

c0I�I(2) + �cN�N (2)
� [c

0
I�I(1) + �cN�N (1)]cN�N (2)

[c0I�I(2) + �cN�N (2)]
2

; (4.13)

which simpli�es to

d

d�

�
qN (1)

qN (2)

�
=
cNc

0
I [�N (1)�I(2)� �N (2)�I(1)]
c0I�I(2) + �cN�N (2)

: (4.14)
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The RHS of (4.14) is positive if its numerator is positive, or if

�N (1)�I(2) > �N (2)�I(1); (4.15)

which is precisely the condition of equation (4.9). In our illustrative model, we have therefore shown that

if the distribution of attention to products generated by the network is more even than the intrinsic

distribution of attention (the condition of equation (4.9)), then an increase in the in�uence of the

network on a category (an increase in � in our model, or an increase in average PageRank) will reduce

the Gini coe¢ cient of the category, or shift demand from the popular products to the "tail". This is

our main testable conjecture.

To test this main conjecture, we estimate the relationship between a category�s Gini coe¢ cient

(GINI ) and the average PageRank of its books (AVGPAGERANK ) using ordinary least-squares re-

gression. We use a logarithmic transformations of all our variables to facilitate easily interpreting their

coe¢ cients as percentage changes, and because the empirical distributions of the transformed variables

are more suitable for OLS. We use the variance in PageRank across the category�s books (PAGER-

ANKVAR), the category�s average demand (AVGDEMAND), the number of books in the category

(SIZE ), and the fraction of copurchase links to the category�s books that are from other books within it

(MIXING) as control variables. We also used average price and the variance of price within a category

as controls but these were never statistically signi�cant. We thus report on our estimation the following

reduced-form equation:

Log[GINI] = a+ b1Log[AV GDEMAND] + b2Log[AV GPAGERANK]

+b3Log[PAGERANKV AR] + b4Log[SIZE] + b5Log[MIXING]

We estimate this equation independently for 25 randomly chosen days. Summary statistics for our data

across the 25 days are provided in Table 4.1.
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Variable Range Mean StdDev

GINI 0:36� 0:97 0:67 0:12

AV GDEMAND� 0:81� 71:51 3:48 4:50

AV GPAGERANK�� 2:00� 10�6 � 7:32� 10�6 3:82� 10�6 7:69� 10�7

PAGERANKV AR�� 1:72� 10�12 � 7:66� 10�10 6:92� 10�11 8:56� 10�11

SIZE 100� 10; 657 1; 002 1; 543

MIXING 0:01� 0:82 0:32 0:18

Table 4.1: Summary statistics

The results of this estimation are summarized in Figure 4.3 and are strikingly consistent. We

illustrate detailed results for one day in Table 4.2, and explain these results in some detail below.

Variable Estimated Value (SE)

Constant �2:52���(0:68)

AV GDEMAND 0:21���(0:01)

AV GPAGERANK �0:21���(0:08)

PAGERANKV AR 0:04���(0:01)

SIZE 0:03���(0:01)

MIXING �0:03���(0:01)

R2 = 0:83; n = 208

� signi�cant with p � 0:05

�� signi�cant with p � 0:01

��� signi�cant with p � 0:001
Table 4.2: Coe¢ cient estimates for one sample day

Recommendation Networks and the Distribution of Demand: On each of the 25 days,

categories with a higher average PageRank are associated with a signi�cantly lower Gini coe¢ cient.

In other words, demand across categories with higher average PageRank is more evenly distributed.

The coe¢ cient value of the AVGPAGERANK variable ranged from -0.122 to -0.186, with the following

interpretation: a doubling of the average PageRank of a category�s books is associated with a 12.2%
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to 18.6% decrease in the Gini coe¢ cient of the category. (Across the 25 days, the highest average

PageRank of a category was between 2.6 to 3.3 times higher than that of the lowest average PageRank,

thus a doubling of average PageRank is a realistic notion.) Our results therefore establish that, based

on a comparative analysis across over 200 categories of books, an increase in the extent to which the

network structure is in�uential is associated with �atter demand, or an increase in the relative demand

for niche (rather than blockbuster) products. Figure 4.3 further illustrates the shift in the fraction of

demand obtained by the most and least popular books for a candidate doubling of in�uence of the

recommendation network.

The coe¢ cients of many of our control variables are consistently signi�cant and are worth mentioning

since they each strengthen our central �nding.

Category Size and Average Demand: We �nd that categories whose books have a higher

average demand (measured by the variable AVGDEMAND) are less likely to have evenly distributed

demand, perhaps because their higher average demand is on account of having a higher number of very

popular products. Similarly, categories with more products (measured by the variable SIZE) are more

likely to contain very popular products.

The categories in our data have between 100 and over 10,000 books in them. It is natural to assume

that when all else is equal, a category with over 10,000 books is more likely to have higher variance in

the demand for its books than a category with about 100 books. Further, the average demand of the

category has a positive e¤ect on the Gini coe¢ cient of the category. A straightforward interpretation of

these results is that as the intrinsic demand increases, the added demand due to network tra¢ c has a

lower relative e¤ect on the distribution of demand. To understand this result, consider two categories,

both with the same average PageRank: Category A, with low average demand and Category B, with high

average demand. Since both categories have the same average PageRank, they receive the same tra¢ c

from the copurchase network (the same number of consumers ��owing in�). This means they sell the

same number of books to consumers who arrived at the books�pages via the copurchase network. The

network tra¢ c has a �attening e¤ect in both cases. In other words, the fraction of demand which can

be attributed to the best selling books, is lower. However, the impact that same number of additional

copies sold will have on the fraction of demand that come from the best selling books will be lower
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Figure 4.3: Results of model estimation. The top two �gures depict the estimated coe¢ cients of the
regression equation, on two separate graphs with di¤erent scales for clarity. Only coe¢ cients that are
signi�cant at least at the 5% level are plotted. Figures (C) through (E) further illustrate how the
Gini coe¢ cient measures the distribution of demand across more and less popular books in a category.
Consider a category with a Gini coe¢ cient of 0.75. A doubling of the average PageRank of its books
will, on average, be associated with a decrease of about 16% in its Gini coe¢ cient, to about 0.63.
Contrasting the corresponding demand fractions associated with these two Gini values, this suggests a
marked decrease in of the fraction of demand realized by the 20% of titles that are most popular, from
about 80% of total demand to about 70%,. Similarly, it corresponds to an increase of about 50% (from
about 2% to 3%) of the fraction of demand realized by the 20% of titles that are least popular, and
again, of about 50% (from 8% to 12%) of the fraction of demand realized by the titles in the lower half.
While this example is for illustrative purposes, it is based on our empirical data, and indicates that the
di¤erences in demand fractions from more and less popular products across categories with di¤erent
average PageRanks is economically quite substantial.
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for category B. Thus, since the tra¢ c from the network accounts for a smaller fraction of category B�s

sales, the �attening e¤ect will be smaller in magnitude.

Assortative Mixing: The MIXING variable represents the number of copurchase links that both

originate from and terminate at books in the category (Newman, 2003). It is measured as a fraction of

the total number of outgoing copurchase links from books in the category that terminate at books in

that category, and is a simple measure of assortative mixing within categories. We �nd that a higher

level of assortative mixing is associated with lower Gini coe¢ cient. In other words, demand within

categories with higher assortative mixing is more evenly distributed. A possible explanation is that

when a category�s recommendations are largely to and from products from within the same category,

the redistribution of tra¢ c stays largely within the category and therefore has a higher impact on

�attening demand. On the other hand, recommendations across categories are, on average, likely to

terminate at more popular products, and thus, a high level of disassortative mixing in the category

is indicative of a substantial fraction of the �ow of tra¢ c from the category being to more popular

products outside it.

Variance in Network In�uence: Similarly, an increase in the variance of PageRank within a

category (measured by the PAGERANKVAR variable, an inverse measure of how equally the network�s

in�uence on a category is distributed among its books) is associated with an increase in its Gini coe¢ -

cient. That is, after controlling for di¤erences in average PageRank, a higher variance in the ranking is

associated with increased demand inequality. To understand this result, consider two categories, both

with the same average PageRank: Category A, where all books have the same PageRank and Category

B, where there are a few books with a much higher than average PageRank, and correspondingly a num-

ber of books with a lower than average PageRank. It seems reasonable to conjecture that the demand

�attening e¤ect will be stronger for category A than for category B. After all, most of the tra¢ c that

goes into category B goes to the same few books and is likely to enhance the inequality in demand, thus

increasing the Gini coe¢ cient. In contrast, all books in category A get the same additional tra¢ c from

the network, so the relative di¤erences in demand decrease, thus �attening the demand distribution.

Revenue versus Demand Distributions: We have replicated each of these results above for a

model that studies the distribution of revenue rather than demand across categories. Strikingly, the
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results are directionally extremely similar. That is, an increase in the in�uence of the network �attens

the distribution of revenue across products as well. This is an important observation because it indicates

that the demand redistribution is not simply on account of niche products being inexpensive. These

results are available on request.

Other extensions: We recognize that there may be sources of heterogeneity in the distribution of

demand across books in a category that we do not observe (for example, the category may simply not

produce bestsellers, or feature a diverse set of subtopics with distinct user bases). Towards accounting

for these unobserved sources of variation across categories, we created a panel data set spanning on 28

consecutive days in February 2007, and estimated the relationship between Gini and average PageRank,

using each of the control variables used earlier, and controlling for unobserved heterogeneity between

categories using the �xed-e¤ects transformation. The signs of the regression coe¢ cients are identical to

those reported in Figure 4.3, although the �xed e¤ects transformation combined with our logarithmic

transformation of the regression variables makes interpreting their magnitude di¢ cult.

It is possible that the redirection of attention by a copurchase link may cause demand changes over

a period of days rather than merely in the succeeding 24 hours. We explore this further by constructing

composite weighted graphs for each of 22 overlapping seven-day intervals in February 2007, with weights

on edges corresponding to the fraction of days they were present, implementing the WeightedPageRank

measure on these networks, and estimating the relationship between the in�uence of the network and

the demand distribution measured over these overlapping week-long intervals. We did the same for

four distinct 7-day composites. The results are strikingly similar to those summarized above, and are

available on request.

5. Concluding Remarks

The long tail of ecommerce demand has been documented in a number of product categories sold online.

It has been conjectured that many factors could be responsible for this demand redistribution, including

an increase in product variety, lower search costs, and the redirection of attention due to outcome-based

recommendations (Anderson, 2006; Brynjolfsson et al., 2006). Our paper provides empirical evidence

that relates the in�uence of one such recommendation network to the �attening of the demand and
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revenue distributions across 200 categories of books comprising a total of over 250,000 titles. We have

used a global measure to quantify the in�uence of such networked recommendations, and computed

measures of demand and revenue equality that control for variations in absolute demand levels and

category sizes. To the best of our knowledge, this paper is the �rst study of its kind.

Our key �ndings are summarized below:

� We �nd that an increase in the in�uence of the recommendation network is consistently associated

with a more even distribution of both revenue and demand across the books within a category. On

average, a doubling of in�uence can increase the demand for the bottom two deciles by upto 50%

and reduce the demand for the top two deciles from about 80% to about 70% of total demand.

� Product categories with a higher number of titles and with a higher average demand display

a "shorter tail" even with the same level of in�uence from the recommendation network. This

is consistent with a theory that smaller categories with less popular products will have a more

pronounced demand tail when in�uenced by recommendations.

� Holding average in�uence constant, the association between the in�uence of the network and �atter

demand distributions is enhanced when the in�uence is spread more evenly across the books in

the category, rather than being concentrated on a few books (popular or otherwise) within the

category.

� The association between the in�uence of the network and �atter demand distributions is enhanced

when there is assortative mixing within the category�s recommendations. Intuitively, when the

recommendations originate and terminate from within the category itself, the redistribution of

attention they cause evens out demand more within the category, rather than redirecting demand

to a popular book in a di¤erent category.

We acknowledge that our estimates do not provide scienti�c evidence of causation, and what we

report are associations between the in�uence of the recommendation network and �atter demand distri-

butions. In a related paper (Oestreicher-Singer and Sundararajan, 2008), we have provided a framework

and a detailed set of estimates that allow us to make causal statements about the extent to which in�u-
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ence from one�s immediate neighbors a¤ects demand at the individual product level. An ideal research

setting for extending this to making stronger causal claims about changes in demand distributions

might involve studying the introduction of a recommendation network at a new ecommerce �rm. We

are exploring this possibility, and it remains an excellent direction for further research.

It is possible that the demand distributions of products in the last century �which often featured

a high concentration of demand on a few popular products � were merely a historical aberration,

and the �atter demand distributions that preceded the dominance of mass media are now returning.

Redistribution of this kind seem important for progress in general, because it can increase creative and

scienti�c e¤orts by enabling a subset of innovators whose creations are not "blockbusters" to bene�t

from their innovation more easily. Further, hyperlinked content networks such as Google�s Scholar are

becoming an increasingly accessed medium for aggregating and evaluating topic-speci�c research papers.

The implicit acknowledgment of scienti�c in�uence and of having a shared topic that is embedded in

scienti�c citations are converted into explicit hyperlinks by such networks; our �ndings suggest that an

increase in the in�uence of these networks could lead to more equitable dissemination of the knowledge

they aggregate.
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A. Algorithms for Data Collection

We use two computer programs for data collection. The �rst collects graph information and the second

collects sales rank information. Both use the Amazon.com�s XML data service. This service is part

of the Amazon Web Services, which provides developers with direct access to Amazon�s platform and

databases.

Graph Collection: The program (crawler) which collects the graph starts at a popular book. It

then traverses the co-purchase network using a depth-�rst search. Intuitively, in a depth-�rst search one

starts at the root (in our case, the one popular book chosen) and traverses the graph as far as possible

along each branch before backtracking. At each page, the crawler gathers and records information for

the book whose webpage it is on, as well as the co-purchase links on that page. The ASINs of the

co-purchase links are entered into a LIFO stack. If the algorithm �nds it is on the page of a product

that it has visited already, it �backtracks� and returns to the most recent product it hadn�t �nished

exploring. The program terminates when the entire connected component of the graph is collected.

For example, in the graph on Figure B.1, the nodes are numbered in the order in which the crawler

will traverse the graph. In this case, the collection starts at node 1. Its co-purchase links are nodes

2, 6, 7. Therefore, those numbers are added to a LIFO stack. The script will then proceed to node 2,

whose co-purchases are nodes 3, 4, 5 and thus, those numbers will be added to the LIFO stack, which

will now include: 3, 4, 5, 6, 7. The script will continue to node 3. Since there are no co-purchase links

to that node, it will move to node 4. In the same way, the script will collect data about node 5, node 6

and node 7.

Since node 7 has co-purchase links �nodes 8 and 9, they will be added to the stack. After visiting

nodes 8, 9 and 10, the data collection will terminate. As can be seen, the script only stops once it

collected information about the entire connected component. The collection of the entire connected

component on Amazon.com takes between four and �ve hours. The script is run each day at midnight.

Sales Rank Collection: A second computer program collects the demand information for all

books on the graph every 3 hours for the 24-hour period following the collection of the graph. This

script collects the Sale Rank of all the books which have appeared on the graph. Therefore, it follows
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Figure A.1: Illustrates depth-�rst search used for graph traversal

the sales of some books that are no longer on the graph.

B. Converting Sales Ranks to Demand

SalesRank is a number associated with each product on Amazon.com and measures its demand relative

to that of the other products sold on Amazon.com. The lower the number is, the higher the sales of

that particular product. The sales rank of a book is updated each hour to re�ect recent and historical

sales of every item sold on Amazon.com.

A formula to convert SalesRank information into demand information was �rst introduced by Cheva-

lier and Goolsbee (2003). Their goal was to estimate demand elasticity. Their approach was based on

making an assumption about the probability distribution of book sales, and then �tting some demand

data to this distribution. They choose the standard distributional assumption for this type of rank

data, which is the Pareto distribution (i.e., a power law). In the Pareto distribution, the probability

that an observation�s value exceeds some level S is an exponential function

Pr(s > S) =

�
k

S

��
; (B.1)
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where k and � are the parameters of the distribution. The more important parameter is �, the shape

parameter that indicates the relative frequency of large observations. If � is 2, for example, the prob-

ability of an observation decreases in the square of the size of the observation. With a value of 1, it

decreases linearly.

For a given book, the number of books that have sales greater than that book is just one less than

the books�rank. Therefore, the fraction of all books that have sales greater than a particular book is

just [SalesRank�1]=TotalNumberOfBooks. If there are a su¢ cient number of books to eliminate the

approximation introduced by discreteness, then one can replace the equation above with:

[SalesRank � 1]
TotalNumberOfBooks

=

�
k

Demand(j)

��
: (B.2)

Taking logs on both sides, and substituting � with �1=b, this translate ranks into sales as follows:

Log[Demand(j)] = a+ bLog[SalesRank(j)]: (B.3)

The parameters a and b were estimated by Goolsbee and Chevalier using a couple of parallel methods: by

using data from the Wall Street Journal book sales index, which gives the actual quantity sold; by using

sales information given by a publisher, who sells on Amazon.com; and by conducting an experiment,

buying copies of books with a steady SalesRank.

In a later study, Brynjolfsson, et al. (2003), used data provided by a publisher selling on Amazon.com

to conduct a more robust estimation of the parameters of the formula. They estimate the parameters

as: a = 10:526, b = �0:871.

C. A more detailed description of PageRank

Let u be a web page. Let F (u) be the set of pages u points to and B(u) be the set of pages that point

to u. Let N(u) = jF (u)j be the number of links from u and let c be a factor used for normalization (so

that the sum of rank across all web pages is constant). A simple ranking, R(u), is de�ned as:

34



R(u) = c
X

v2B(u)

R(v)

N(v)
(C.1)

This is a simpli�ed version of PageRank. The rank of a page is divided among its forward links evenly

to contribute to the ranks of the pages they point to. Note that c < 1 because there are a number of

pages with no forward links and their weight is lost from the system. The equation is recursive but it

may be computed by starting with any set of ranks (commonly, equal rank for all pages) and iterating

until convergence.

Stated another way, let A be a square matrix with the rows and column corresponding to numbered

web pages. Let A(u; v) = 1
N(u) if there is an edge from u to v and A(u; v) = 0 otherwise. If we treat

the rankings as a vector R over the linked pages, we have

R = cAR (C.2)

So R is an eigenvector of A with eigenvalue c. In fact, the interesting one is the dominant eigenvector

of A. It may be computed by repeatedly applying A to any non-degenerate start vector.

There is a small problem with this simpli�ed ranking function. Consider two web pages that point

to each other but not to any other page. Suppose there is some web page which points to one of them.

Then, during iteration, this loop will accumulate rank but never distribute any rank (since there are no

outgoing edges). The loop forms a sort of trap which is called a "rank sink". To overcome this problem

of rank sinks, the �dumping factor�(1� �) is introduced. The normalization factor c is then set to �.

Thus, the full ranking formula is:

R0(u) = �
X

v2B(u)

R0(v)

N(v)
+ (1� �) (C.3)

For further details and extensions, see Langville and Meyer (2005).
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