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Abstract

There are examples of entry in two-sided markets, where first entrants occupy a ‘central location’

and serve agents with ‘intermediate tastes’, while later entrants are niche players. Why would the

first entrant choose to become a ‘general’ platform, given that later entrants will not have enough

room for differentiation, resulting in an intense price competition? This one-sided market logic

may not apply in a two-sided market. A key difference in a two-sided market, stemming from the

presence of cross-group network externalities, is stronger demand creation. We develop a model

which can deliver the above mentioned empirical observation, when the network externalities

are intermediate. On the other hand, when externalities are low, our model predicts that

differentiation will be maximum, as it would be in a one-sided market. Finally, for strong

externalities only one platform is active and locates at the center.
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1 Introduction

We examine ‘product location’ decisions of two competing platforms in a two-sided market.1 It is

well-known that in one-sided markets firms choose maximum differentiation, see d’Aspermont et.

al. (1979), to mitigate the ensuing price competition. Most of the literature on two-sided markets

has ignored the issue of product selection and usually assumes maximum horizontal differentiation

when the market has features of spatial competition, e.g., Armstrong (2006).2 This would be an

innocuous assumption if maximum differentiation could extend in a two-sided market. However,

as we argue, this may not be true.

We formulate a model with two competing platforms and two groups of agents. Each agent

receives higher benefit when more members from the other group join the platform (cross-group

network externality). We show that when the cross-group network externalities are weak, platforms

differentiate maximally. On the other hand, strong externalities result in minimum differentiation,

where only one platform is active. Finally, for intermediate externalities a pure strategy loca-

tion equilibrium does not exist. Then, we assume that platforms make their location decisions

sequentially. The first-mover locates in the middle and the follower locates at an extreme point

(asymmetric location equilibrium). Both platforms have positive but asymmetric market shares,

with the first mover having a higher market share.3

There are examples of sequential entry into a market, where the first mover occupies a ‘central’

location, i.e., the most attractive location, whereas the follower positions its product at a niche

location. Consider, for example, the market for online video websites and in particular two impor-

tant players in this market: YouTube and Hulu. YouTube, which was launched before Hulu, carries

a huge number of diverse videos and clips, while Hulu serves those who watch commercial movies

and TV shows. Our asymmetric location equilibrium can shed some light into these markets. One

can view the platform that moves first, YouTube in this case, as a general video-sharing website

that mostly caters to agents with intermediate preferences, while the follower, Hulu, can be viewed

1Two-sided (or multiple-sided) markets are markets that are organized around intermediaries or “platforms”

with two (or multiple) sides who should join a platform in order for successful exchanges (trade) to take place, see

Armstrong (2006), Caillaud and Jullien (2003) and Rochet and Tirole (2006). For example, videogame platforms

(e.g., Nintendo, Sony, Microsoft) need to attract both gamers and game developers. Newspapers need to attract

advertisers and readers. Credit cards need merchants and users. More formally, a two-sided market is defined as one

where the volume of transactions between end-users depends on the structure of the fees and not only on the overall

level of fees charged by platforms [Rochet and Tirole (2006)].
2Exceptions are the papers by Gabszewicz et. al. (2002), Peitz and Valletti (2008) and Kind et. al. (2007).
3We present our results in terms of the strength of the network externality, but, alternatively, we can vary the

degree of differentiation (transportation cost) for any fixed positive externality. The two are inversely related, i.e.,

high externality is equivalent to low degree of differentiation and vice versa.
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as a more specialized TV and commercial movie website. Consistent with our model predictions,

YouTube has a higher market share than Hulu.4

Early entrants in the online dating market were mostly interested in attracting the ‘average’ man

and woman (for example, Match.com which was launched in April of 1995, according to the Online

Dating Magazine). Later entrants into this market entered as niche players aiming at signing up

people from specific groups, e.g., online dating services for busy professionals, or for millionaires.

Other examples of asymmetric location configurations include academic journals, where earlier

entrants are typically general interest journals, while later entrants are usually specialized journals

and search engines on the Internet, e.g., Google, Yahoo vs. Google Scholar.

The driving force behind the product selection decisions is demand creation. When network

externalities are weak, price competition dominates demand creation. No platform wants to be a

‘general’ platform because if one platform locates at the most attractive (central) location product

differentiation is reduced which creates stiff price competition. In contrast, when externalities are

not weak, demand creation is important. A platform in this case benefits by being ‘general’ and

attracting many agents from both sides of the market with intermediate preferences. The rival

platform serves a niche market. The tension between demand creation and price competition is

at the heart of most models with endogenous location decisions, regardless of whether the market

exhibits one or two-sidedness. For instance, one can mitigate the intensity of price competition, and

hence create a less than maximum differentiation, by changing the transportation cost functions,

as in Economides (1986), or by allowing for multiple purchases, as in Kim and Serfes (2006), both

in a one-sided framework. What we do in this paper is to identify a mechanism that can make

demand creation stronger, and this is the cross-group externality in a two-sided market.5

Our duopoly model can also be used to understand the geographic locations of physical markets.6

When externalities are low (or equivalently transportation cost is high), markets will locate at the

4According to “Disney’s Hulu Deal Raises Questions About YouTube Model,” Wall Street Journal, April 30, 2009,

YouTube had 100 million viewers in March of 2009, while in the same time period Hulu had 41 million viewers.
5Our conjecture is that the stronger demand creation effect would also be present in a one-sided model with

direct network externalities. For a model with direct network externalities and horizontal differentiation, but with

fixed locations, see Griva and Vettas (2004). In that paper, when both firms have the same quality, (and consumer

expectations are affected by prices, as it is the case in our model) either the market is shared equally, or one firm

dominates the market, depending on the intensity of the network externality. With exogenously given asymmetric

qualities, an asymmetric sharing equilibrium, i.e., where both firms have strictly positive but unequal market shares,

can be obtained. One difference between Griva and Vettas (2004) and our model is that because we allow platforms to

endogenously choose their spatial locations we obtain an asymmetric sharing equilibrium even with ex-ante symmetric

firms.
6Jin and Rysman (2009) investigate the pricing decisions of sportcard conventions. These conventions are two-

sided markets since they try to attract both consumers and dealers. An important decision of these conventions is

where to locate, given the competition they face from rival conventions.
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periphery, i.e., far apart from each other. For very strong externalities (or low transportation costs)

only one market will be active and will locate at the center, while for intermediate externalities

(transportation costs) there will be two active markets, one at the center and the other at the

periphery. One implication of our model is that as the network externalities become stronger (or

the transportation cost decreases) market shares will become more asymmetric and eventually one

platform will dominate.

Gabszewicz et. al. (2002) develop a model of media (newspapers) competition that features

readers who have horizontal preferences with respect to the political ideology of a newspaper and

advertisers who are vertically heterogeneous. They show that when advertising revenue is important

the two newspapers will choose the same political ideology (minimum differentiation). Without the

advertising side the two newspapers differentiate maximally with respect to their political messages.

An assumption that is made is that readers are indifferent to advertisements. Peitz and Valetti

(2008) and Kind et. al. (2007) build on the Gabszewicz et. al. (2002) model by assuming that

readers/viewers are not neutral about ads. They show that differentiation need not be maximal.

We differ from the aforementioned papers in that: i) both groups of agents in our model have

horizontal preferences and as a consequence ii) we allow platforms to choose locations with respect

to both groups of agents and not only with respect to one group (readers/viewers in those two

papers). A new prediction of our analysis is the asymmetric location equilibrium.

The rest of the paper is organized as follows. We present the model in the next Section. In

Section 3, we solve the model and in Section 4 we solve the social planner’s problem (first-best)

and the problem of a multiproduct monopolist. In Section 5, we perform a robustness check where

we allow platforms to choose locations only with respect to one group of agents. We conclude in

Section 6. All proofs can be found in the Appendix.

2 The description of the benchmark model

There are two groups of agents  = 1 2 and two horizontally differentiated platforms  = .7 We

will denote the “other” group of agents by . We capture platform differentiation as follows. There

is a continuum of agents of group  that is uniformly distributed on the [0 1] interval. Platform

 is located at point  and platform  is located at point , with 0 ≤  ≤  ≤ 1. We assume
that transportation cost is quadratic in the distance  an agent has to ‘travel’ from his location to

7Our benchmark model follows closely the model in Armstrong (2006). We differ in that we endogenize the

locations of the two platforms.
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the location of the platform, 2, where the parameter   0 measures the per-unit cost of travel.

We assume that each agent joins only one platform (single-homing). Each member of a group who

joins a given platform cares about the number of members from the other group who join the same

platform. Denote by  the number of participants from group  that platform  attracts. The

maximum willingness to pay for a member of group  if he joins platform  is given by  +,

where  is a stand-alone benefit each agent receives independent of the number of participants

from the other group on platform . The parameter   0 measures the cross-group network

externality for group  participants. For simplicity, we assume that 1 = 2 = . The indirect

utility of an agent from group  who is located at point  ∈ [0 1] is given by,

 =

½
 +  −  (− )

2 − , if he joins platform 

 +  −  (− )
2 − , if he joins platform 

(1)

where  is platform ’s lump-sum charge to group  participants and  denotes the expectations

agents from group  have about how many agents from group  will join platform . We assume

that  is high enough which ensures that the market is covered. Prices cannot become negative

and marginal cost is zero.8 As it is usual in these models (e.g., Armstrong (2006)) we assume that

horizontal differentiation is more important than the cross-group network externality,   .

The timing of the game is as follows. In stage 1, the two platforms make their location deci-

sions, either simultaneously or sequentially. In stage 2, the platforms make their pricing decisions

simultaneously. Finally, in stage 3, the agents decide which platform to join.

One assumption of the main model is that platforms are forced to change their attributes with

respect to both group of agents the same way. While this is certainly true when location is, for

example, geographic, or the attribute affects both groups the same way, e.g., political ideology, it

may not be an adequate representation in other cases. To better illustrate this, consider two rival

online video websites which are differentiated with respect to the technical standards they have

adopted. Furthermore, the degree of differentiation on the one side of the market may be different

from the differentiation on the other side. That is, the way one side (viewers) downloads online

videos may be different from the way the other side uploads them. The model becomes very messy

if we allow platforms to change their locations in each group of agents separately, i.e., 1, 2 for

platform  and 1, 2 for platform . As a compromise, in Section 5, we allow platforms to choose

their locations with respect to only one group of agents. In particular, we assume that the locations

of the platforms for group 2 are fixed at 0 and 1. Platforms can only choose the locations for group

1. Our main results are robust.

8 In most cases negative prices are unrealistic and create perverse incentives (see also Armstrong (2006) for a

discussion on this issue).
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3 Analysis

We look for a subgame perfect Nash equilibrium. We solve the game backwards.

3.1 Stage 3: Agent decisions and market shares

The marginal agent in group 1 can be found as follows.

 + 2 −  (− 1)
2 − 1 −

³
 + 2 −  (− 1)

2 − 1

´
= 0

⇒ ̂1 =
1 − 1 + 

¡
2 − 2

¢−  (2 − 2)

2 (− )
. (2)

The fraction of agents from group 1 that joins platform  is 1 = ̂1 and the fraction from

group 1 that joins platform  is 1 = 1− ̂1. Similarly, we can find the marginal agent in group

2.

 + 1 −  (− 2)
2 − 2 −

³
 + 1 −  (− 2)

2 − 2

´
= 0

⇒ ̂2 =
2 − 2 + 

¡
2 − 2

¢−  (1 − 1)

2 (− )
. (3)

The fraction of agents from group 2 that joins platform  is 2 = ̂2 and the fraction from

group 2 that joins platform  is 2 = 1− ̂2.

In equilibrium, it must be that expectations are confirmed, that is, 1 = 1, 1 = 1,

2 = 2 and 2 = 2. Using (2) and (3), this defines a system of four equations in four

unknowns, 1 1 2 and 2. By solving the system we obtain the market shares as a function

of prices and parameters.

1 =
 (− ) (1 − 1 − ) +  (2 − 2) +

2
h
2 (− )2 − 2

i (4)

1 =
 (− ) (1 − 1 + ) +  (2 − 2)− 2

¡
3 + 3

¢
+ 

2
h
2 (− )2 − 2

i (5)

2 =
 (− ) (2 − 2 − ) +  (1 − 1) +

2
h
2 (− )2 − 2

i (6)

2 =
 (− ) (2 − 2 + ) +  (1 − 1)− 2

¡
3 + 3

¢
+ 

2
h
2 (− )2 − 2

i (7)
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where  ≡ 
¡
2 − 2

¢ − 2 + 2
¡
3 + 3

¢ − 2 (+ ) and  ≡ − ¡2 − 2
¢
+ 2 (+ ) +

22
¡
2 + 2

¢− 2 − 42.

3.2 Stage 2: Platforms’ pricing decisions

Platform  chooses 1 and 2 to maximize its profits

 = 11 + 22,

where ,  = 1 2 and  = , are given by (4), (5), (6) and (7). The profit functions are strictly

concave in a platform’s own prices if

   (− ) . (8)

Alternatively, the above condition can be written as

  − 


or   +




.

If (8) is satisfied, then the first order conditions are also sufficient for profit maximization. The

equilibrium prices then are given by

1 = 2 =
 (− )

3
(2 + + )−  and 1 = 2 =

 (− )

3
(4− − )− . (9)

The equilibrium market shares, by substituting (9) into (4), (5), (6), and (7), are given by

 =
 (− ) (2 + + )− 3

6 ( (− )− )
and  =

 (− ) (4− − )− 3
6 ( (− )− )

,  = 1 2.

Note that if (8) is satisfied, then the denominators in the above expressions are positive. For

an interior equilibrium we need the market shares to be in (0 1). It turns out that  ∈ (0 1) if
and only if

  min

½
 (− )

3
(4− − ) ,

 (− )

3
(2 + + )

¾
(10)

or, equivalently, for  to be less than one (which implies that  is greater than zero) we must

have

 
 (− )

3
(4− − )⇔   ̃ ≡ −1



³
−2+

p
3+ 42 − 42 + 22

´
(11)

and for  to be greater than zero (which implies that  is less than one) we must have

 
 (− )

3
(2 + + )⇔   ̂ ≡ −1



³
−

p
−3+ 2 + 22 + 22

´
. (12)
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For any given location  of platform  the market tips, either in favor of  or in favor of ,

when platform  locates close enough to platform , as the above thresholds indicate. The interior

equilibrium profits as a function of the platforms’ locations, after we substitute (9) into the profit

functions, are9

 ( ) =
( (− ) (2 + + )− 3)2

9 ( (− )− )
and  ( ) =

( (− ) (4− − )− 3)2
9 ( (− )− )

. (13)

It can be easily verified that when  = 0 (no cross-group network externality) the equilibrium

profits reduce to those in d’Aspermont et. al. (1979), where it is each platform’s dominant strategy

to locate at the extreme points (maximum differentiation). As we show next, this is not always the

case when   0.

3.3 Stage 1: Platforms’ location decisions

Platforms choose their locations  and  to maximize profits as they are given by (13). We assume

that they do so simultaneously. We make the assumption that when the market tips it is the

platform that is closer to the middle point, 12, that attracts all the agents. If they are equidistantly

located from the middle,  = 1− , then all agents join platform .

Fix the location of platform  at a specific point . Let’s examine the profits of platform  when

it moves from  = 0 to  = . Two effects arise: i) price competition intensifies and ii) the platform

attracts more agents from both groups. Initially, the intensified competition effect is stronger,

but eventually demand creation dominates. The latter is due to the cross-group externality. The

Lemma below summarizes the result.

Lemma 1 The profit function of platform , for any fixed location  of platform , exhibits a

U-shape.

The above Lemma suggests that platform  will either locate at 0 or right next to platform .

Symmetrically, the same is true for platform . This property of the profit functions will be used

in the proofs of the remaining Propositions.

To gain a better intuition about the properties of the profit functions as a function of the

locations, let’s look at Figures 4 and 5 where the profit of platform  is depicted as its location 

varies for a fixed location  of platform . The difference between the two figures is that in Figure

4 the location of platform  is farther away from the most attractive point (the center) than in

9We will deal with the tipping solution next when we will analyze the location game.
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
0 t3t 125t

Low network externality: 
Maximum differentiation

Intermediate network 
externality: Asymmetric 
location equilibrium

High network externality: 
Minimum differentiation with 
only one platform active

Figure 1: Equilibrium locations of the two platforms

Figure 5. When  is farther away from the center, as in Figure 4, prices and profits initially fall,

but after a threshold, namely ̃, the market tips in favor of  and its profits rise. In contrast, when

 is closer to the center, as in Figure 5, the market tips in favor of  after a certain threshold,

namely ̂. When  moves closer to the center, that is when it exceeds 1 − , the market tips

again but now in favor of . These properties are quite intuitive. For a high degree of horizontal

differentiation the market is shared and any movement closer to the rival intensifies competition.

After a certain point, however, tipping happens. The question then is: which is the platform that

attracts all the agents? The answer is that it is the one closer to the most attractive location: the

center.

Figure 1 summarizes the equilibrium locations as a function of the network externality . These

outcomes are presented formally in Propositions 2, 3 and 4.

Next, we examine whether an equilibrium with maximum differentiation,  = 0 and  = 1,

exists. The next Proposition summarizes the result.

Proposition 2 (Maximum differentiation) A maximum horizontal differentiation equilibrium,

where  = 0 and  = 1, exists if and only if  ≤ 3. The market is shared equally between the two

platforms.

When the cross-group network externalities are weak, a platform has no incentive to move close

to the rival platform in order to become the dominant platform. The benefit from differentiation is

minimized, when the two platforms are close to each other, and the dominant platform is only able

to benefit from the larger market share. Since the externalities are weak, so is the benefit from the

larger market share. Equilibrium prices are given by (9) after we set  = 0 and  = 1, i.e., prices

are equal to − .
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The next Proposition presents the result when the cross-group network externality is high.

Proposition 3 (Minimum differentiation) Suppose  ∈ [512 ). The location equilibrium
entails minimum horizontal differentiation and tipping in favor of one platform. In particular,

 =  = 12 and platform  attracts all the agents. If  ∈ (3 512) a location equilibrium in

pure strategies does not exist.

The intuition behind the minimum differentiation result is as follows. When the cross-group

network externalities are important, less than maximum differentiation makes tipping more likely

and benefits the platform that is able to attract all agents. The dominant platform has an incentive

to locate in the middle for two reasons: i) there is no room for the rival platform to differentiate

itself enough by moving to an extreme and attract some agents and ii) the rival platform cannot

move closer to the middle point and attract all agents. Indeed, the rival platform makes zero

profits regardless of where it chooses to locate and for the equilibrium to exist we assume that it

also locates at the middle point. So, the two platforms are not differentiated and in this case we

assume that all agents coordinate and join one platform, platform . Platform  charges prices

equal to  and ’s prices are zero. Recall that we do not allow for negative prices.

3.3.1 Platforms locate sequentially

When an equilibrium in pure strategies does not exist, we restore existence by assuming that

platforms move sequentially, with platform  moving first. The next Proposition summarizes the

subgame perfect Nash equilibrium.

Proposition 4 (Asymmetric location equilibrium) Suppose  ∈ (3 512). Platform 

moves first and locates at  = 12. Platform  moves second and locates at  = 1. Both platforms

attract agents in equilibrium (sharing equilibrium). Platform  attracts more agents than platform

. The equilibrium profits are

 ( = 12  = 1) =
(7− 12)2
72 (− 2) and  ( = 12  = 1) =

(5− 12)2
72 (− 2) .

Platform  moves first and locates in the middle. Given that the externality is not as strong

as in Proposition 3, platform  can attract some agents and make strictly positive profits when it

locates at the extreme. Platform  has no incentive to move away from the middle point, because

in this case  has a profitable deviation to locate closer to the middle point than  and leave 

9



with zero agents and profits.10 The equilibrium prices, using (9), are given by

1 = 2 =
7

12
−  and 1 = 2 =

5

12
− .

In the absence of network externalities, even if platforms move sequentially, the first mover

will always locate at an extreme point to mitigate the ensuing price competition. Hence, the

fact that the first mover in our model locates at the center, when the network externality is not

weak, is a direct consequence of the network externalities. Furthermore, the equilibrium outcomes

when platforms move simultaneously for  ∈ (3 512), which is covered in Propositions 2 and
3, continue to hold even when platforms move sequentially (details are omitted and are available

upon request).

One can draw an analogy between the present model and earlier literature on direct network

externalities. One important issue in that literature was the trade-off between ‘standardization’

and variety, e.g., Farrell and Saloner (1986). Having only one platform in our model can be viewed

as having one technical standard, at the expense of product variety. So, Proposition 4 predicts that

for intermediate network externalities, there will be two ‘standards’ in equilibrium, with one being

superior to the other. Note also that in our model the ‘type’ of the standard is not given but it is

being determined endogenously. When externalities are low, as in Proposition 2, neither standard

is superior to the other. Finally, when externalities are strong, as in Proposition 3, there will be

only one standard in equilibrium.

4 Welfare analysis

A social planner chooses the locations  and  of the two platforms and the number of agents

from each group that should join a platform to maximize the difference between aggregate network

externality and aggregate transportation cost. We denote by  the number of agents from group

1 that join platform  and by  the number of agents from group 2 that join platform . Total

10Tyagi (2000) examines location decisions of two firms, in a one-sided model, that enter sequentially and have

different costs. If the second mover has lower cost, then it locates close to the most attractive location, while the first

mover locates far away from the most attractive location. Our asymmetric location equilibrium result has a similar

flavor, but it is the first mover in our model that locates at the most attractive location. Moreover, the underlying

mechanisms between the two models are different and in our model firms are ex-ante symmetric.

10



welfare is given by

 =

Z 

0

³
 −  (− )2

´
 +

Z 1



³
 (1− )−  (− )2

´
 +Z 

0

³
−  (− )2

´
 +

Z 1



³
 (1− )−  (− )2

´


= 4+ 2 − 2+ 2 − 2 + 2− 2− 2 (14)

−2
3
+ 2− 2 − 22 + 2− 2 + 2.

The next Proposition summarizes the solution to the social planner’s problem.

Proposition 5 (First-best) For  ≤ 8, the optimal locations are  = 14 and  = 34 and the

agents are split equally between the two platforms. Total welfare is equal to  =  − 24. For

 ≥ 8, all agents from both groups join one platform which is located at the middle point 12.

Total welfare is equal to  = 2− 6.

The intuition is simple. Aggregate network externality is maximized when all agents join one

platform. On the other hand, total transportation cost is minimized when the platforms are located

at the first and third quartiles. When the externality is weak, transportation cost is relatively more

important and the social planner splits the agents equally between the two platforms. For strong

externalities one platform is chosen to dominate the market, since externalities are now relatively

more important.

Comparing the first-best with the non-cooperative outcome, we can see that the two coincide

only when network externalities are strong, i.e.,  ≥ 512, Proposition 3. For low externalities,
horizontal differentiation is higher than in the first-best, i.e., ‘too much’ differentiation, as it is

also the case in a one-sided Hoteling-type model. The two platforms differentiate maximally,

while the social planner wants them at the first and third quartiles, as in a one-sided model. When

externalities are intermediate, the degree of horizontal differentiation the platforms choose is higher

than the first-best, Proposition 4.

4.1 Multiproduct monopolist

We examine when a multiproduct monopolist will find it profitable to switch from offering two

products to offering only one. The price the monopolist can charge is one that leaves the marginal

agent with zero surplus. We assume that  is high enough, so that the monopolist finds it optimal to

serve all agents. The next Proposition, the proof of which is omitted, summarizes the monopolist’s

location choices.

11



Proposition 6 (Multiproduct monopolist) When  ≤ 38, the monopolist launches two plat-
forms: one located at  = 14 and the other at  = 34. Total profits are Π = 2 +  − 8. The

agents are split equally between the two platforms. When  ≥ 38, the monopolist launches one
platform located at 12. Total profits are Π = 2 + 2− 2.

The monopolist cannot extract all the surplus from the inframarginal agents, and that is why

he has insufficient incentives, relative to the first-best, to launch only one platform. Only for rela-

tively strong cross-group externality, i.e., greater then 38, the locations chosen by the monopolist

coincide with the first-best locations. This can be seen by comparing the above Proposition with

Proposition 5. This has interesting implications for merger policy. When  ≥ 8, the first-best en-

tails only one platform being active, locating at the center and attracting all agents. If  ≤ 512,
the non-cooperative equilibrium is inefficient since both platforms have strictly positive market

shares, see Propositions 3 and 4. Therefore, for  ∈ [38 512] a merger between the two plat-
forms improves social welfare because the merged entity will launch only one platform instead of

two, mimicking the first-best. Of course, this prediction should be viewed with caution because

aggregate demand in our model is fixed.

5 Robustness check: Locations for one group are fixed

We assume that the locations of the platforms for group 2 are fixed at 0 and 1. Platforms can only

choose the locations for group 1. The results do not change at all qualitatively.

The equilibrium prices when both platforms have strictly positive market shares are

1 =
 (− )

3
(2 + + )− , 2 = −  and 1 =

 (− )

3
(4− − )− , 2 = − .

The equilibrium profits functions  ( ) and  ( ) are lengthy and are omitted. The profit

functions are strictly concave in a platform’s own prices if

2  2 (− ) . (15)

By comparing (8) with (15), we can see that it is easier to satisfy the concavity condition when

the locations on the one side are fixed. The equilibrium market shares are

1 =
2 (− ) (2 + + )− 32

6 (2 (− )− 2)
and 2 =

 (− ) (3− (1− − ))− 32
6 (2 (− )− 2)

(16)

1 =
2 (− ) (4− − )− 32

6 (2 (− )− 2)
and 2 =

 (− ) (3+ (1− − ))− 32
6 (2 (− )− 2)

. (17)
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The market share of platform  in group 1, 1, is positive, which implies that 1 is less than

one, if and only if

  ̂1 ≡ 1


³
−+

p
2 + 22 + 22 − 32

´
. (18)

The price 1 is positive if and only if (12) holds. Observe that ̂1  ̂, suggesting that for

 ∈ (̂ ̂1), 1 becomes negative, while 1 is positive.

The market share of platform  in group 1, 1, is positive, which implies that 1 is less than

one, if and only if

  ̃1 ≡ 1


³
2−

p
42 − 42 + 22 + 32

´
. (19)

The price 1 is positive if and only if (11) holds. Observe that ̃1  ̃, suggesting that for

 ∈ (̃ ̃1), 1 becomes negative, while 1 is positive.

Since we do not allow for negative prices, we set the prices equal to zero when  ∈ (̂ ̂1)
or  ∈ (̃ ̃1). In this case the threshold for  below which the market is shared decreases. For
example, if we set 1 = 0 when  ≥ ̂ the threshold ̂1, above which platform  has no market

share in group 1, decreases. We will use this argument in the proofs of Propositions.

It turns out that ̂1 ≥ ̃1 if and only if  ≥ ̄0 ≡ 12+2
¡
22
¢
. Note that ̄0 is less than ̄ from

(22).

The market share of platform  in group 2, 2, is positive if and only if

  ̂2 ≡ − 1


µ
−1
2
+

3

2
2 − 1

2

p
94 − 123 − 63+ 123+ 22 − 422 + 4222

¶
.

The market share of platform  in group 2, 2, is positive if and only if

  ̃2 ≡ − 1


µ
−1
2
− 3

2
2 +

1

2

p
94 + 123 + 63− 123+ 22 − 422 + 4222

¶
.

It turns out that ̂2 ≥ ̃2 if and only if  ≥ ̄0 ≡ 12+2
¡
22
¢
. Moreover, ̃1 ≤ ̃2 and ̂1 ≥ ̂2

if and only if  ≥ ̄0 ≡ 12 + 2
¡
22
¢
. Therefore, we have two cases.

Case 1:  ≥ ̄0. The binding threshold is ̃1. For any   ̃1 the equilibrium is interior. At

 = ̃1 the market for group 1 tips in favor of platform . Given that ̃1 ≤ ̃2, and our assumption

that   , the market for group 2 does not tip.

Case 2:  ≤ ̄0. The binding threshold is ̂1. For any   ̂1 the equilibrium is interior. At

 = ̂1 the market for group 1 tips in favor of platform . Given that ̂1 ≤ ̂2, and our assumption

that   , the market for group 2 does not tip.
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Corner (tipping) solution. The market for group 1 has tipped in favor of platform .

Platform ’s price in group 1 is zero. The indirect utility of the marginal consumer from group 1,

who is located at 1 and joins platform , is given by

1 =  −  (− 1)2 + 2 − 1.

Similarly, the indirect utility of the marginal consumer from group 1 who joins platform  is

1 =  −  (− 1)2 + 2.

The market share of platform  in group 2 is

 −  (0− )2 + − 2 =  −  (1− )2 − 2 ⇒  = 2 =
2 − 2 + + 

2

Platform  will set its price 1, using 2, so that the marginal agent in group 1 is indifferent

between the two platforms, 1 = 1. This yields

1 =
−22 + 22+ 2 − 2 + 2 + 22 − 22


.

The profit functions, using the above 1, are

 = 1 + 22 and  = 22.

Taking the first order conditions with respect to 2 and 2 and solving we obtain

2 = 2 = −  and 1 =
−22 + 22+ 2 + 22 − 22


. (20)

The equilibrium profits are

 =
−222 + 42+ 2 + 222 − 42+ 2

2
and  =

(− )2

2
. (21)

We can see that   0 for all   1, suggesting that when tipping occurs, platform 

has an incentive to locate next to platform . We also examined unilateral deviations from (20),

using the interior market shares (16) and (17), to ensure that  has no incentive to lower its price

in group 2 to attract more agents in group 1 and that  has no incentive to raise its price in group

1. The first order conditions of platform , when the prices of  are fixed at (20), evaluated at

1 = 0 and 2 = − , are given by



1
= −  (− )

2 (2 (− )− 2)
 0 and



2
= 0.
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Platform  would like to lower its price in group 1, but negative prices are not allowed. The

above first order conditions indicate that platform  does not find a local deviation profitable.

Given that the profit function is strictly concave, see condition (15), a global deviation is unprof-

itable as well. Similarly, a deviation on part of platform  is unprofitable.

The results below are very similar to their counterparts from the main analysis. There are only

quantitative differences. More specifically, for low externalities,  ≤ ¡√2− 1¢ , platforms differen-
tiate maximally; for intermediate externalities,  ∈ ¡¡√2− 1¢ √156¢, we obtain an asymmetric
location equilibrium; and for  ∈ £√156 ¢, differentiation is minimum. One difference from our

benchmark model is that the range of parameters for which maximum differentiation holds has

expanded from [0 3] to
£
0
¡√
2− 1¢ ¤. This is quite intuitive. When locations on the one side of

the market are fixed, the demand creation effect is weaker. Hence, the incentives to locate at the

center are weaker. Following this argument, tipping is easier when locations for both groups are

changing:
£√
156 

¢
when one side is fixed to [512 ) when both sides are flexible.

Lemma 7 The profit function of platform  for any fixed location  of platform  exhibits a

U-shape.

Proposition 8 (Maximum differentiation) A maximum horizontal differentiation equilibrium,

where  = 0 and  = 1, exists if and only if  ≤ ¡√2− 1¢ .
Proposition 9 (Minimum differentiation) Suppose  ∈ £√156 ¢. The location equilibrium
entails minimum horizontal differentiation and tipping in favor of one platform. In particular,

 =  = 12 and platform  attracts all the agents. If  ∈ ¡¡√
2− 1¢ √156¢ a location

equilibrium in pure strategies does not exist.

Proposition 10 (Asymmetric location equilibrium) Suppose  ∈ ¡¡√2− 1¢ √156¢. Plat-
form  moves first and locates at  = 12. Platform  moves second and locates at  = 1. Both

platforms attract agents in equilibrium (sharing equilibrium). Platform  attracts more agents than

platform . The equilibrium profits are

 ( = 12  = 1) =
−1442 + 1213 − 2402 + 2883

144 (2 − 22) and

 ( = 12  = 1) =
−1442 + 973 − 1922 + 2883

144 (2 − 22) .

Based on the results from this extension of our benchmark model, we conjecture that our main

predictions would not change much qualitatively even if we gave each platform the choice to change
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its locations for each group of agents separately. More precisely, for low cross-group externalities

platforms would maximally differentiate, for intermediate externalities we would expect to observe

the asymmetric location equilibrium and for high externalities minimum differentiation.

6 Conclusion

We examine location decisions of two horizontally differentiated competing platforms in a two-sided

market. Our model can yield both symmetric and asymmetric location equilibria, depending on the

strength of the cross-group network externality and the sequence of moves. There are two effects

when a platform moves closer to the location of the rival: i) platforms become less differentiated

and prices tend to decline and ii) its market share increases. Because of the positive externality

each group of agents exerts on the other, the market share effect is stronger than in a one-sided

market, hence there is a tendency for less than maximum differentiation. In particular, we show that

when the cross-group externality is weak, the principle of maximum differentiation holds. However,

for strong externalities the two platforms locate at the center and the market tips in favor of

one platform. Finally, for intermediate externality, a pure strategy location equilibrium does not

exist (when platforms move simultaneously). With sequential moves, we obtain an asymmetric

location equilibrium, where the first mover locates at the center and the follower at an extreme

location. Both platforms have strictly positive market shares. Our model offers an explanation for

the coexistence (see the Introduction for examples) of ‘general’ platforms (first mover) that cater

to agents with intermediate tastes with niche platforms (follower) that serve agents with extreme

tastes. A merger between the two competing platforms can be social welfare enhancing.

Finally, we would like to highlight the role of ‘product’ selection. It is also true that even

with fixed locations at the extremes the market tips when the externalities are strong enough (e.g.,

Armstrong (2006)). This is typical in models with cross-group network externalities. Nevertheless,

when locations are fixed, we do not obtain asymmetric market structures where both platforms are

active, which is the case when locations are endogenized (see Proposition 4). In that sense, a testable

implication of our model is that market shares evolve ‘more continuously’ as the degree of network

externalities (or the degree of differentiation) varies, starting from symmetric market structures

when externalities are low, then moving to asymmetric market structures when externalities become

stronger, and eventually, for very strong externalities, the market is dominated by one platform.
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7 Appendix

7.1 Proof of Lemma 1

The thresholds (12) and (11) are very important at this stage. It turns out that ̂ ≥ ̃ if and only

if

 ≥ ̄ ≡ 1
2
+



2
 (22)

Symmetrically, we can define the thresholds for platform  for a fixed location  of platform .

When ̂ ≥ ̃ the binding threshold is the ̃. In this case, as it will become evident below, the other

threshold is irrelevant. The opposite is true when ̂ ≤ ̃.

We make the assumption that when the market tips it is the platform that is closer to the

middle point, 12, that attracts all the agents. If they are equidistantly located from the middle,

 = 1− , then all agents join platform . In what follows, we assume that  ≤ . In the proofs of

the Propositions, we allow   , but in this case the roles of the platforms are reversed and the

profit functions and the thresholds can be obtained via a simple relabeling.

When  ≥ ̄, as platform  increases  it attracts all agents when  = ̃ ≥ 1−  (market tips).11
After this point, the market remains tipped in favor of  until  = . Figure 2 depicts this case.

When  ≤ ̄, platform ’s market share becomes zero when  = ̂ ≤ 1− .12 After this point,

the market will tip in favor of  when  = 1 −  (symmetric locations). The market will remain

tipped in favor of  until  = . Figure 3 depicts this case.

When    the roles of the platforms are reversed ( becomes  and  becomes ). The

analysis in this case will follow from the above two cases and it will be equivalent to fixing  and

allowing  to vary. This in turn is equivalent to the above two cases after we set  = 1− .

The second order condition (8) is always satisfied when the market has not tipped, i.e., when

  min {̃, ̂}.The derivative of platform ’s profit function (13) with respect to  is

 ( )


=

¡
2− 2+ − 4+ 4+ 32+ 2

¢ ¡
2− 2− 3− 2+ 2

¢


9 (− − )2
.

11 It can be shown that ̃ ≥ 1−  if and only if  ≥ ̄.
12 It can be shown that ̂ ≤ 1−  if and only if  ≤ ̄. In addition, ̂ = 0, when

 ≤ −1 +
√
2 + 3


 ̄.

This suggests that when platform  moves closer to the middle after the above threshold platform ’s market share

will be zero even when  = 0.
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Figure 2: Type of equilibrium as the location  of platform  varies from 0 to , with the location

of platform  fixed at  ≥ ̄
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Figure 3: Type of equilibrium as the location  of platform  varies from 0 to , with the location

of platform  fixed at  ≤ ̄

Note that
 ( = 0 )


=

¡
− 2+ 2

¢ ¡
2− 3+ 2

¢
9 (− )2

 0

if  
³
−+√3+ 2

´
.13 So, the derivative of the profit function at  = 0 is always strictly

negative when the market is shared.

13There are four roots when we solve

 ( = 0 )


=


− 2+ 2

 
2− 3+ 2


9 (− )

2
= 0

with respect to . One is negative and the other is greater than one, so we rule them out. The remaining two are

1 ≡ 1




−+


3+ 2


and 2 ≡ 1




−


−+ 2


.

It can be shown that 1 ≥ 2 if and only if  ≥ , which we have assumed holds. It can be computed that ̂ (from

(12)) becomes zero when  ≤ 1 ≡
−+√3+ 2


. Therefore, the other feasible root, root 2, becomes irrelevant

since when  ≤ 1 the market tips.

18



0 1
2

1 b bb1 a~2a

Figure 4: Profit function of platform  as its location  varies from 0 to  for a fixed location  of

platform  at  ≥ ̄

For any  now, the derivative  ( )  becomes zero at

 = 1 ≡ −1


³
−

p
−3+ 2 + 22 + 22

´
(23)

 = 2 ≡ 1

3

³
−− 2+ 2+

p
− 8+ 2 + 22 + 42 + 22

´
(24)

 = 3 ≡ −1


³
+

p
−3+ 2 + 22 + 22

´
 = 4 ≡ 1

3

³
−− 2+ 2−

p
− 8+ 2 + 22 + 42 + 22

´
.

Roots 3 and 4 are negative, so we rule them out.14 Also note that 1 = ̂, where ̂ is given

by (12). As we have mentioned before, we have ̂ = 1 ≥ ̃ if  ≥ ̄ ≡ 12 + 2 and ̃ ≥ 1 = ̂,

if  ≤ ̄. This implies the following about the profit function of platform  for any fixed location 

of platform 

Case 1:  ≥ ̄ ≡ 12 + (2). Figure 4 depicts this case, where we have assumed that 2 ≤ ̃.

Whether this holds or not depends, as we explain below, on the magnitude of .

We have that ̂ = 1 ≥ ̃, so only root 2 may be relevant. Given that it is the only relevant

14Root 3 is clearly negative. Root 4 is negative because at  = 0, 4 becomes

− (2− )

3
 0

and the derivative of 4 with respect to  is

1




−1
6

+ 8− 8√
− 8+ 2 + 22 + 42 + 22

− 2

3


which is always negative for  ∈ [0 1].
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Figure 5: Profit function of platform  as its location  varies from 0 to  for a fixed location  of

platform  at  ≤ ̄

root coupled with the fact that the profit function of platform  is strictly decreasing at  = 0

when sharing takes place, the profit function must attain a local minimum at  = 2, if 2 ≤ ̃. The

two platforms share the agents (no tipping) when   ̃. As platform  moves closer to platform 

its prices fall (see (9)) but the market shares after a certain point may increase. This may happen

after  = 1−  where platform  is closer to the middle point 12 than . That is why a minimum

may be attained at  = 2 and after this point the profit function increases. This is not always

true as 2 may be greater than ̃, in which case the profit function of platform  is decreasing

until  = ̃. Platform  is losing market share and at  = ̃ tipping occurs in favor of . Profits

increase for  as it moves closer to  because its distance to the marginal agents, who are located

at 1, decreases. When    the platforms reverse roles. Overall, the profit function of platform 

as a function of its location  is U-shaped up to  =  when  ≥ ̄.

Case 2:  ≤ ̄ ≡ 12 + (2). Figure 5 depicts this case.

Given that platform ’s profit function is strictly decreasing at  = 0 when the market is shared

and that ̂ = 1 is now a relevant root, root 2 becomes irrelevant. This is because at  = ̂ = 1

the market tips in favor of  and the slope of ’s profit function becomes zero. This implies that

2 cannot be less than ̂ = 1, since if that was the case there should be one more root in that

range. Hence, in this case it must be that 2  ̂ = 1 and therefore 2 is irrelevant. The two

platforms share the market when   ̂, unless  ≤
³
−+

√
3+ 2

´
, in which case platform

’s market share is zero at  = 0. As platform  moves closer to  both prices and market shares

fall (because now  is closer to the middle than in case 1 above) and at  = ̂ the market tips in

favor of . Then, at  = 1−  the market tips in favor of . As in case 1 above, the profit function
is U-shaped up to  = .
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The above two cases will be used in the proofs of Propositions 2 and 3. These cases illustrate

that the profit function will also be U-shaped when   . This follows because the case of   

is a simple relabeling of the above two cases.

7.2 Proof of Proposition 2

We set  = 1 and examine how the profit function of platform  behaves as  ranges from 0 to 1.

Because  ≥ ̄, only the ̃ threshold is relevant. As we proved in Lemma 1, the profit function of

 exhibits a U-shape pattern with respect to  (see also Figure 4). This implies that any interior

location  ∈ (0 1) yields lower profits than the extreme locations. For an interior pricing equilibrium
we need (11),   ̃, to be satisfied. When  = 0, we have that  ( = 0  = 1)  = −3  0,
which implies that platform  has no incentive to locally deviate from  = 0, when platform  is

at  = 1. (This is the standard result from one-sided markets). But  can deviate globally and

induce tipping in its favor.

Next, we examine the tipping case. This case arises when  ≥ ̃. When  = 1, this amounts to

 ≥ ̃ ≡ −1


³p
3+ 2 − 2

´
.

When  ≥ ̃, platform ’s market shares and prices are zero. The marginal agents from both groups

are located at 1. Platform  has attracted all the agents. The indirect utility of the marginal agent

from group  if he joins platform  is  , while if he joins platform  instead his indirect utility

becomes  +  −  (1− )2 − . So, platform  will set its price to keep the marginal agent

indifferent between the two platforms. This yields

 = −  (1− )2 .

Prices and profits for platform  increase in . Platform  then locates at  = 1, charges

 =  and dominates the market. Platform ’s profits are

 ( = 1  = 1) = 2.

On the other hand when  = 0 the market is shared. Hence, from (13), platform ’s profits are

 ( = 0  = 1) = − .

Platform  has no incentive to deviate from  = 0 if and only if −  ≥ 2⇒  ≤ 3.

If   3, then platform  has an incentive to locate at  = 1 and dominate the market.

Platform  in this case earns zero profits. Hence, a maximum horizontal differentiation equilibrium

does not exist.
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7.3 Proof of Proposition 3

We look for a location equilibrium when   3. In Proposition 2, we proved that platform 

has an incentive to locate at  = 1, when  is located at  = 1 and   3. But this location

configuration cannot be an equilibrium. Platform ’s profits are zero, and if platform  deviates

to  = 0, and assumes the role of platform , its profits will become strictly positive. This is

because when differentiation is maximum the equilibrium is always sharing, given our assumption

that   . Hence,  = 1 cannot be part of an equilibrium when   3.

To this end, we fix   1 and we examine the properties of  (   1). We have the following

two cases.

Case 1:  ≥ ̄. Figure 4 in Lemma 1 depicts this case.

Case 2:  ≤ ̄. Figure 5 in Lemma 1 depicts this case.

For any fixed  we either have sharing or tipping. The above two cases suggest that if the

equilibrium involves sharing the optimal location of  is either at  = 0 or at  = 1, as the

platform wants to move away from the rival. Without loss of generality let’s assume that  ≥ 12.
Hence, platform  will either locate at zero (given that  ≥ 12,  = 0 is optimal when the

equilibrium involves sharing) or it will induce tipping in its favor and locate at  = . Note that if

   the market will tip in favor of . If  = 0, platform , as we showed in Proposition 2, will

have an incentive to also locate at zero. If it is  =   12, platform  makes zero profits and can

move to a location that is closer to the middle in order to attract all the agents and enjoy strictly

positive profits. If it is  = 12  ,  will have an incentive to move to  = . Hence, the only

possible equilibrium is  =  = 12, with platform  attracting all agents. To be an equilibrium,

platform  must not be able to secure strictly positive profits even when it locates at the extreme.

We had showed that ̂ = 0 (from (12)), when

 ≤ −1 +
√
2 + 3


 ̄.

If

−1 +
√
2 + 3


≥ 1
2

then platform  cannot obtain positive profits regardless of where it moves if  is located at 12.

The above inequality holds if and only if  ≥ 512. Here, the roles of  and  are reversed: 

is located at 12 and  chooses where to locate in order to make strictly positive profits. With

a simple relabeling, the above discussion implies that platform  cannot obtain strictly positive

profits regardless of where it locates.
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If   512 a location equilibrium in pure strategies does not exist. Platform  will have an

incentive to move to  = 1, but then platform  will have an incentive to locate at  = 1 and so

on.

7.4 Proof of Proposition 4

Fix  ≤ 12 and look at the optimal location of platform . We showed in Lemma 1 that platform

’s profit function is U-shaped with respect to  for any  ≥ . Via a simple relabeling the same

holds for platform ’s profit function with respect to  for any fixed  ≤ . Hence, if   12,

platform ’s profit is decreasing starting from  = 1 until  = 1− . After that point, the market

tips in favor of  and its profits tend to 2 as  tends to , independent of where  is. These profits

are higher than the profits platform  obtains if it stays at  = 1. This can be seen as follows.

When  = 0, 2 is higher than the profits of platform  when  = 1 (which are  − ) if and

only if   3. Moreover, as  increases both the (interior) prices of platform  and its market

shares decrease. Therefore, moving away from  = 1 and locating arbitrarily close to  will yield

higher profits for . This suggests that a location configuration with   12 and  = 1 cannot

be an equilibrium. Platform  has a profitable deviation and platform  makes zero profits. The

subgame perfect equilibrium is for platform  to locate at  = 12 and  to locate at  = 1.

Given  = 12, platform  has no profitable deviation. In addition, following from the proof of

Proposition 3, platform  attracts agents (sharing equilibrium). Platform  has no incentive to

locate to   12 because in that case platform  can locate closer to the middle point and attract

all the agents, leaving  with zero profits.

The profits of platform  are

 ( = 12  = 1) =
(7− 12)2
72 (− 2)

and of platform  are

 ( = 12  = 1) =
(5− 12)2
72 (− 2) .

7.5 Proof of Proposition 5

We differentiate (14) with respect to    and . There is only one interior solution to the system

of first order conditions

 =  =
1

2
and  =

1

4
  =

3

4
.
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The interior solution yields welfare equal to = −24. The corner solution is the one where the
social planner has only one platform serving all agents (tipping). If we set  =  = 1, for example,

then it is easy to verify that welfare is maximized at  = 12 and is equal to  = 2 − 6.

Finally, it can be easily verified that the interior solution dominates the corner solution if and only

if  ≤ 8.

7.6 Proof of Lemma 7

The derivative of platform ’s profit function with respect to  is

 ( )


= −

¡
322 + 22− 42− 22+ 22 + 2 + 42

¢ ¡
22 + 22− 22− 22 + 32

¢
18 (2 (− )− 2)

2


Note that

 ( = 0 )


= −

¡−22+ 22 + 2
¢ ¡−22 + 32 − 22

¢
18 (2 − 2)

2
 0

if  
³
−+√32 + 2

´
.15 So, the derivative of the profit function at  = 0 is always strictly

negative when the market is shared.

For any  now, the derivative  ( )  becomes zero at

 = 1 ≡ 1


³
−+

p
2 + 22 + 22 − 32

´
(25)

 = 2 ≡ 1

32

³
−2 + 22 − 22 +

p
4 + 24 + 44 + 24 + 22 − 822

´
(26)

 = 3 ≡ 1

2

³
−2 −

p
4 + 24 + 24 − 322

´
 = 4 ≡ 1

32

³
−2 + 22 − 22 −

p
4 + 24 + 44 + 24 + 22 − 822

´
.

Roots 3 and 4 are negative, so we rule them out.16 Also note that 1 = ̂1, where ̂1 is

given by (18). As we have mentioned before, we have ̂1 = 1 ≥ ̃1 if  ≥ ̄0 ≡ 12 + 222 and

15There are four roots when we solve

 ( = 0 )


= − 

−22+ 22 + 2
 −22 + 32 − 22


18 (2 − 2)

2
= 0

with respect to . One is negative and the other is greater than one, so we rule them out. The remaining two are

1 ≡ 1




−+


32 + 2


and 2 ≡ 1




−


−2 + 2


.

It can be shown that 1 ≥ 2 if and only if  ≥ , which we have assumed holds. It can be computed that ̂1
(from (18)) becomes zero when  ≤ 1 ≡

−+√32 + 2

. Therefore, the other feasible root, root 2, becomes

irrelevant since when  ≤ 1 the market tips.
16Root 3 is clearly negative. Root 4 is negative because at  = 0, 4 becomes

− (2− )

3
 0
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̃1 ≥ 1 = ̂1, if  ≤ ̄0. Following the analysis from Lemma 1 we can conclude that the profit

function of platform  for any fixed location  of platform  is U-shaped

7.7 Proof of Proposition 8

We set  = 1 and examine how the profit function of platform  behaves as  ranges from 0 to

1. Because  ≥ ̄0, only the ̃1 threshold is relevant. Overall, the profit function of  exhibits a

U-shape pattern with respect to . This implies that any interior location  ∈ (0 1) yields lower
profits than the extreme locations. When  = 0, we have that  ( = 0  = 1)  = −6  0,
which implies that platform  has no incentive to locally deviate from  = 0, when platform  is

at  = 1. (This is the standard result from one-sided markets). But  can deviate globally and

induce tipping in its favor.

Next, we examine the tipping case. The profits of platform  are given by (21). Platform 

then locates at  = 1 and dominates the market. Platform ’s profits are

 ( = 1  = 1) =
2 + 2

2
.

On the other hand, when  = 0 the market is shared. Hence, from (13), platform ’s profits are

 ( = 0  = 1) = − .

Platform  has no incentive to deviate from  = 0 if and only if  −  ≥ ¡2 + 2
¢
2 ⇒  ≤¡√

2− 1¢ . If  
¡√
2− 1¢ , then platform  has an incentive to locate at  = 1 and dominate the

market. Platform  in this case earns zero profits. Hence, a maximum horizontal differentiation

equilibrium does not exist.

7.8 Proof of Proposition 9

We now investigate the case where  
¡√
2− 1¢ . In Proposition 8, we proved that platform 

has an incentive to locate at  = 1, when  is located at  = 1 and  
¡√
2− 1¢ . But this

location configuration cannot be an equilibrium. Platform ’s profits are zero, and if platform 

deviates to  = 0, and assumes the role of platform , its profits will become strictly positive. This

is because when differentiation is maximum the equilibrium is always sharing, given our assumption

and the derivative of 4 with respect to  is

1

2


−4
3
− 1

6

163 + 22− 162√
4 + 24 + 44 + 24 + 22 − 822


which is always negative for  ∈ [0 1].
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that   . Thus,  = 1 cannot be part of an equilibrium when  
¡√
2− 1¢ . To this end, we fix

  1 and we examine the properties of  (   1). We have the following two cases.

Case 1:  ≥ ̄0. Figure 4 depicts this case.

Case 2:  ≤ ̄0. Figure 5 depicts this case.

For any fixed  we either have sharing or tipping. The above two cases suggest that if the

equilibrium involves sharing the optimal location of  is either at  = 0 or at  = 1, as the

platform wants to move away from the rival. Without loss of generality let’s assume that  ≥ 12.
Hence, platform  will either locate at zero (given that  ≥ 12,  = 0 is optimal when the

equilibrium involves sharing) or it will induce tipping in its favor and locate at  = . Note that if

   the market will tip in favor of . If  = 0, platform , as we showed in Proposition 8, will

have an incentive to also locate at zero. If it is  =   12, platform  makes zero profits and can

move to a location that is closer to the middle in order to attract all the agents and enjoy strictly

positive profits. If it is  = 12  ,  will have an incentive to move to  = . Hence, the only

possible equilibrium is  =  = 12, with platform  attracting all agents. To be an equilibrium,

platform  must not be able to secure strictly positive profits even when it locates at the extreme.

We had showed that ̂1 = 0 (from (18)), when

 ≤ −1 +
√
2 + 32


 ̄0.

If

−1 +
√
2 + 32


≥ 1
2

then platform  cannot obtain positive profits regardless of where it moves if  is located at 12.

The above inequality holds if and only if  ≥ √156. Here, the roles of  and  are reversed: 

is located at 12 and  chooses where to locate in order to make strictly positive profits. With

a simple relabeling, the above discussion implies that platform  cannot obtain strictly positive

profits regardless of where it locates. If  
√
156 a location equilibrium in pure strategies does

not exist. Platform  will have an incentive to move to  = 1, but then platform  will have an

incentive to locate at  = 1 and so on.

7.9 Proof of Proposition 10

Fix  ≤ 12 and look at the optimal location of platform . Platform ’s profit function is U-

shaped with respect to  for any  ≥ . We showed in Lemma 7 that platform ’s profit function

is U-shaped with respect to  for any  ≥ . Via a simple relabeling the same holds for platform
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’s profit function with respect to  for any fixed  ≤ . Hence, if   12, platform ’s profit

is decreasing starting from  = 1 until  = 1 − . After that point, the market tips in favor of 

and its profits tend to 2 as  tends to , independent of where  is. These profits are higher than

the profits platform  obtains if it stays at  = 1. This can be seen as follows. When  = 0, 2 is

higher than the profits of platform  when  = 1 (which are  − ) if and only if  
¡√
2− 1¢ .

Moreover, as  increases both the (interior) prices of platform  and its market shares decrease.

Therefore, moving away from  = 1 and locating arbitrarily close to  will yield higher profits for

. This suggests that a location configuration with   12 and  = 1 cannot be an equilibrium.

Platform  has a profitable deviation and platform  makes zero profits. The subgame perfect

equilibrium is for platform  to locate at  = 12 and  to locate at  = 1. Given  = 12, platform

 has no profitable deviation. In addition, following from the proof of Proposition 9, platform 

attracts agents (sharing equilibrium). Platform  has no incentive to locate to   12 because

in that case platform  can locate closer to the middle point and attract all the agents, leaving 

with zero profits.

The profits of platform  are

 ( = 12  = 1) =
−1442 + 1213 − 2402 + 2883

144 (2 − 22)
and of platform  are

 ( = 12  = 1) =
−1442 + 973 − 1922 + 2883

144 (2 − 22) .
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