
 
 

NET Institute* 
 

www.NETinst.org 
 
 
 

Working Paper #10-20 
 

September 2010 
 

Network Effects in Alternative Fuel Adoption: 
Empirical Analysis of the Market for Ethanol 

 
Scott K. Shriver 

GSB, Stanford University 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* The Networks, Electronic Commerce, and Telecommunications (“NET”) Institute, 
http://www.NETinst.org, is a non-profit institution devoted to research on network 
industries, electronic commerce, telecommunications, the Internet, “virtual networks” 
comprised of computers that share the same technical standard or operating system, and 
on network issues in general. 



Network Effects in Alternative Fuel Adoption:

Empirical Analysis of the Market for Ethanol

Scott K. Shriver∗

September 30, 2010

Abstract

This paper investigates the importance of network effects in the demand for ethanol-compatible

vehicles and the supply of ethanol fuel retailers. An indirect network effect, or positive feed-

back loop, arises in this context due to spatially-dependent complementarities in the availability

of ethanol fuel and the installed base of ethanol-compatible vehicles. Marketers and social

planners are interested in whether these effects exist, and if so, how policy might accelerate

adoption of the ethanol fuel standard within a targeted population. To measure these feedback

effects, I develop an econometric framework that considers the simultaneous determination of

ethanol-compatible vehicle demand and ethanol fuel supply in local markets. The demand-side

of the model considers the automobile purchase decisions of consumers and fleet operators, and

the supply-side model considers the ethanol market entry decisions of competing fuel retailers.

I propose new estimators that address the endogeneity induced by the co-determination of al-

ternative fuel vehicle demand and alternative fuel supply. I estimate the model using zip code

level panel data from six states over a six year period. I find the network effect to be highly

significant, both statistically and economically. Under typical market conditions, entry of an ad-

ditional ethanol fuel retailer leads to a 12% increase in consumer demand for ethanol-compatible

vehicles. The entry model estimates imply that a monopolist requires a local installed base of

at least 204 ethanol-compatible vehicles to be profitable. As an application, I demonstrate how

the model estimates can inform the promotional strategy of a vehicle manufacturer. Counter-

factual simulations indicate that subsidizing fuel retailers to offer ethanol can be an effective

policy to indirectly increase ethanol-compatible vehicle sales.
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The problem right now is that the supply of ethanol is not anywhere near the demand. So the

vast majority of the ethanol-capable vehicles we have on the road right now do not use ethanol

simply because people don’t know where to buy it.

- Rick Wagoner, (former) General Motors Chairman

There’s a chicken-and-egg proposition here. If you don’t have enough flex-fuel vehicles, there’s

less incentive to make [ethanol] fuel and sell it at a retail level.

- Mark Hamerlinck, Minnesota Corn Growers Association

1 Introduction

The demand for many goods depends upon the availability of a complementary product. A canon-

ical example is that demand for computer hardware depends upon the availability of compatible

software (Katz and Shapiro, 1985, 1994; Farrell and Saloner, 1985; Church and Gandal, 1992). In

these systems, fulfilling consumer demand for a “whole product”(e.g., computing services) requires

provision of both a durable good (hardware) and one or more consumption goods (software) (Moore,

1995; Gupta, Jain, and Sawhney, 1999). The interdependence of demand for complementary goods

implies that firms may face a chicken-or-egg problem when a new product is introduced (Katz and

Shapiro, 1994; Caillaud and Jullien, 2003). That is, software firms will not enter the market if

few consumers have purchased compatible hardware systems, and consumers will not purchase new

hardware unless software is readily available. Complementary product suppliers may overcome

this problem by entering joint marketing agreements that align the firms’financial incentives and

coordinate their product distribution and promotion strategies. Agreements of this type are par-

ticularly attractive, since growth in the “installed base” of hardware (i.e., cumulative demand)

leads more firms to enter the market for compatible software, which in turn leads to more hardware

sales, and so on. This positive feedback cycle, or indirect network effect,1 generates demand-side

economies of scale for suppliers of the complementary goods, compounding investment returns on

costs to implement the marketing policy (Nair, Chintagunta, and Dubé, 2004; Karaca-Mandic,

2004).

In this paper, I examine the role of indirect network effects in the market for ethanol fuel.

Although ethanol is a common component in all blends of motor fuel (retail gasoline typically

contains up to 10% ethanol), my inquiry relates specifically to E85, a standard blend containing

85% ethanol and 15% regular gasoline. E85 is classified as an alternative fuel that may only be used

in flex-fuel vehicles (FFVs), which are engineered to accept high-alcohol fuels. In this market, flex-

fuel vehicles represent the hardware side of the system, whereas locations of E85 retailers define the
1The effect is deemed “indirect” as consumer utility for hardware increases with greater availability of comple-

mentary software, which depends (indirectly) on the total number of consumers that have adopted the hardware
system. By contrast, a “direct” network effect results when utility for a product increases in (direct) response to
other consumers adopting the product. Communication devices such as fax machines and cell phones are typical
examples of products that exhibit direct network effects.
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availability of software. An indirect network effect arises due to the fact that as more consumers and

fleets2 purchase flex-fuel vehicles, more fuel retailers are likely to enter the E85 market, and vice-

versa. Unlike the more commonly studied case of complementary high tech products, where utility

for hardware depends on the distance of compatible software manufacturers from the consumer’s

ideal points in product feature “space,”utility for an alternative fuel vehicle is determined by the

physical proximity of alternative fuel distributors to the consumer’s physical location. Feedback

in adoption of the ethanol fuel standard3 therefore operates within highly local markets and, due

to the relative infrequency of consumer vehicle replacement, over extended periods of time. These

factors make separate identification of the network effects from unobserved factors a challenging

empirical exercise. My first objective for the study is therefore to consistently measure each “side”

of the feedback loop: the effect of E85 availability on flex-fuel vehicle demand, and the effect of

the flex-fuel vehicle installed base on the supply of E85. My second objective is to explore the

marketing policy implications of these measurements for suppliers of flex-fuel vehicles and E85 fuel.

A third objective of the paper is to develop new methods to permit inference of simultaneous supply

and demand in markets with endogenous markets sizes, such as those governed by network effects.

To achieve these goals, I develop an equilibrium model of flex-fuel vehicle demand and E85

market entry. The model may be interpreted as a two-sided model of technology adoption, with

observations of flex-fuel demand or E85 market entry representing agent decisions to adopt the

ethanol fuel standard. I model flex-fuel demand as a utility-maximizing discrete choice of whether

or not to purchase an ethanol-compatible vehicle. Utility for flex-fuel is a function of the availability

of ethanol fuel, which I operationalize as the number of retail service stations offering E85. E85

market entry is modeled as a competitive game of complete information played amongst potentially

entering retailers, in the spirit of Bresnahan and Reiss (1991). These models infer retailer profit

functions from observations of the number of entering firms, using exogenous variation in the

market size to separately identify variable and fixed cost factors. I extend the Bresnahan and

Reiss (1991) framework to allow for an endogenously determined fuel retailer market size (the flex-

fuel installed base) and to exploit demand-side data to better pin down firms’profit functions.

This approach follows a recent marketing literature that demonstrates how empirical models of

product introduction may be enriched by augmenting demand-side information (e.g. Reiss and

Spiller, 1989; Draganska and Mazzeo, 2003; Ellickson and Misra, 2007; Musalem and Shin, 2009).

I estimate the model using an extraordinarily rich panel dataset, which encompasses the entire

population of flex-fuel vehicle purchase and E85 market entry events in roughly 7,000 zip codes over

the six year period 2001-2006. Access to zip code level data is critically important in my application,

2Fleet vehicles are owned and operated by corporations or government agencies, as opposed to individual con-
sumers. For example, vehicle fleets are operated by rental car agencies, taxicab companies, and municipal police
departments. Due to systematic differences in consumer and fleet behavior, I model demand for flex-fuel vehicles
from these populations separately.

3 In the terminology of the technology standards literature (e.g. Farrell and Saloner, 1985), the 85% (15%) blend
of ethanol (gasoline) defines a standard of interoperability between the vehicle/fuel system, in the same manner
that the DVD format defines an interoperability standard for media players and titles. Since flex-fuel vehicles are
backwardly compatible with regular gasoline, FFV owners obtain an option value arising from the ability to use either
fuel standard.
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as it provides direct observation of feedback effects that operate within highly localized markets.

Having repeated observations allows me to control for unobservables that are potentially correlated

with entry, by using a rich specification of market and period fixed effects. Additional concerns for

endogeneity may arise due to residual correlation between firms’entry decisions and market and

time-specific unobservables. I address this additional concern using tools from the econometrics

literature on panel data methods (e.g. Chamberlain, 1984; Arellano and Bond, 1991). Under the

testable assumption that past levels of E85 availability do not influence current vehicle choices,

appropriately lagged values of the number of E85 retailers are used as additional instruments for

the current number of E85 retailers in the vehicle demand equations.

Estimation proceeds in two steps. In the first step, I estimate the flex-fuel demand parameters

using the “system GMM”estimator of Blundell and Bond (1998), instrumenting for the number

of E85 retailers in the market. In the second step, I estimate the market entry model conditional

upon the first stage demand estimates. The two-step approach clarifies how the estimator works

in practice. Intuitively, access to demand data along with instruments in the first stage enables

the econometrician to consistently “back-out”the distribution of demand-side shocks. Parameters

capturing the covariance of supply-side shocks with the demand shocks can then be estimated with

the entry model parameters in the second step. Given a guess of these parameters, one can simulate

market shocks and solve the reduced form of the system for the equilibrium number of E85 retailers.

By averaging outcomes from multiple draws of the market shocks, I obtain the expected number

of E85 retailers in equilibrium, given the entry and covariance parameters. Solving the reduced

form fully accounts for the co-determination of E85 market entry and flex-fuel demand, and thus

controls for the endogeneity of the flex-fuel installed base in the entry equation. Estimation of the

entry model is then based on finding the parameter vector that minimizes the difference (in the

sum of squares sense) in the observed number of E85 retailers and the model-predicted equilibrium

number of firms. To correct for measurement error introduced in the second step estimation by

using first stage parameters, I employ a nonparametric bootstrap over the two step procedure

to obtain standard errors, in which market histories are sampled with replacement. I present

several versions of the estimator that correspond to different econometric assumptions, as well as

assumptions about firms’conduct.

I find evidence of a network effect with both statistical and economic significance. The demand

estimates suggest that, under average market conditions, entry of an additional ethanol retailer

leads to a 12.0% annual increase in consumer flex-fuel vehicle sales and a 25.6% increase in fleet

flex-fuel vehicle sales. Similarly, the market entry model implies that an ethanol retailer requires

an installed base of at least 204 consumer flex-fuel vehicles to operate profitably. The effect of

the fleet vehicle installed base on ethanol retailer market entry is weaker than for the consumer

installed base, with 7.1 fleet vehicles required to match the expected ethanol fuel consumption of

one consumer flex-fuel vehicle. I find these results are robust to a variety of assumptions, including

the competitive conduct of firms and the independence of market observations.

I use my estimates to assess three counterfactual policy scenarios. The first counterfactual
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is a descriptive exercise, aimed at quantifying the long-run impact of the network effect across a

sample of heterogeneous markets. This simulation finds that in the final period studied, 27.5% of

the installed base of flex-fuel vehicles and 9.4% of E85 market entry events result from the network

effect. The second and third policy experiments explore strategies to improve flex-fuel vehicle

manufacturer profitability by harnessing the network effect. Specifically, I evaluate two types of

subsidies paid by vehicle manufacturers to fuel retailers to encourage E85 market entry. For the

first type of subsidy, the vehicle manufacturer offers a fixed payment in each period to any fuel

retailer that offers E85. For the second policy, the vehicle manufacturer selectively offers subsidies

to markets in which the expected current period payoff is positive, i.e., profits from the incremental

number of flex-fuel vehicles sold (due to the increased E85 availability) exceeds the cost to subsidize

an additional entrant. In simulations, targeting incentive policies at the market level leads to a

50% increase in profitability over a fixed rate subsidy equal to 10% of E85 retailer average fixed

costs.

The paper proceeds as follows. In Section 2, I discuss related literature and the positioning of

my study. Section 3 describes the data collected for the analysis. I develop the econometric model

in Section 4. In Section 5, I provide details of the estimation routine. Section 6 presents the main

estimation results. In Section 7, I develop and summarize the counterfactual experiments. Section

8 concludes with a summary and a discussion of future directions for research.

2 Related literature

The study contributes to several streams of research. The most central of these is the empirical

literature on indirect network effects.4 Most studies of indirect network effects have focused on high

technology products that conform to the standard concept of a hardware/software system advanced

by Katz and Shapiro (1985). Among the products considered by these studies are VCRs (Park

(2004), Ohashi (2003)), CD/DVD players (Gandal, Kende, and Rob (2000), Basu, Mazumdar,

and Raj (2003), Karaca-Mandic (2004), Dranove and Gandal (2003)), PDAs (Nair, Chintagunta,

and Dubé (2004)), and video game consoles (Shankar and Bayus (2003), Clements and Ohashi

(2005), Liu (2006), Dubé, Hitsch, and Chintagunta (2007), Lee (2009)). Unlike these studies,

I investigate network effects that operate at a local, rather than industry, level. Whereas the

availability of ethanol fuel is determined by the physical location of retail E85 outlets, the relevant

measure of software availability in these industries is the variety of software titles available, since

the proliferation of retail and online outlets for these goods makes them essentially ubiquitous

once released. As a consequence, most of these papers use industry aggregate time series data

4The network effects literature has its theoretical foundations in the works of Katz and Shapiro (1985), Katz and
Shapiro (1986), Farrell and Saloner (1986) and Farrell and Saloner (1985). These papers formalize the concept of
network effects as positive consumption externalities and explore the role of standards compatibility in technology
adoption. Chou and Shy (1990), Church and Gandal (1992), Church and Gandal (1993), and Katz and Shapiro
(1992) develop theoretical models of indirect network effects that arise through product complementary.
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to identify the network effect. By contrast, my study exploits rich panel data for identification of

highly localized feedback loops.

Empirical research of indirect network effects arising from spatially-dependent product com-

plementarities has been less common. The literature on shopping malls examines retail demand

externalities that arise when consumers are drawn to shopping centers to reduce their search costs

for a variety of goods (e.g. Eppli and Benjamin (1994), Vitorino (2007)). The focus of these papers

is to infer the benefits of agglomeration in retail outlets to the mall operators, store owners, and

consumers. The motor fuel category I study is conceptually distinct from these works, however, as

the key benefit to consumers is not the concentrated availability of many goods, but the distributed

access to one type of good. Rysman (2004) investigates indirect network effects in the market for

Yellow Pages directories, which have spatial complementarities by nature of their circulation areas.

As in my study, Rysman (2004) measures both “sides” of a feedback loop, which in his context

operates between the supply of advertisements in a directory and consumer use of the directory.

However, Rysman (2004) does not explicitly consider firm market entry decisions, focusing instead

on the role of network effects and competition among incumbent firms. More closely related to

my model is that of Berry and Waldfogel (1999), who investigate the welfare implications of entry

in radio broadcasting. The Berry and Waldfogel (1999) model measures the market expanding

effects of station entry on the total number of radio listeners in a metro area. A limitation of the

Berry and Waldfogel (1999) model is that it requires auxiliary data in order to estimate parameters

that shift variable components of firm profits. My model is more suitable to contexts where both

fixed and variable components of profit must be inferred solely from observations of market entry.

From a policy perspective, the study adds to the burgeoning literature on the economics of

ethanol as a transportation fuel in the United States. Two recent studies include Anderson (2006),

who estimates demand for E85 and finds strong evidence of fuel-switching behavior among flex-fuel

vehicle owners, and Anderson and Sallee (2009) who present evidence that domestic automakers

produce flex-fuel vehicles primarily as a means to lower the cost of complying with federal fuel-

economy (CAFE) standards.5 In a closely related paper, Corts (2010) investigates the influence

of government fleet adoption on E85 market entry. Corts (2010) presents descriptive regressions

of the number of firms on the installed bases of government fleet flex-fuel vehicles and consumer

flex-fuel vehicles. Both studies find positive effects of the flex-fuel installed base on the number of

E85 retailers, but differ in the estimates of the number of flex-fuel vehicles required to support an

E85 retailer. These differences appear to originate in the datasets, which have similar geographic

coverage but differ in time and format (Corts (2010) uses a cross-section). I compare the results in

greater detail when presenting my results in Section 6.1.

5Vehicle manufacturers are granted generous CAFE credits for producing alternative fuel vehicles, including flex-
fuel, offsetting lower fuel economy in the remainder of their product line.
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3 Industry background and data

3.1 Flex-fuel vehicles

The Ford Model T, the first vehicle to be mass produced on an assembly line, could use blends of

ethanol and gasoline in arbitrary proportion, similar to the flex-fuel vehicles of today. Through-

out the early 20th century, service stations commonly offered blends dominated by each fuel type.

However, by the 1930’s gasoline became the de facto standard transportation fuel through declines

in production cost, and ethanol compatibility was phased out of vehicle designs. Ethanol’s resur-

gence in recent years has been spurred by a series of public policy interventions. The major policy

instrument affecting the production of ethanol-compatible vehicles is the federal Corporate Average

Fuel Economy (CAFE) standard. Enacted in the wake of the 1973 OPEC oil embargo, CAFE

standards require vehicle manufacturers to maintain an overall fuel effi ciency rating for the fleet

of vehicles they supply. The Alternative Motor Fuels Act (AMFA) of 1988 granted vehicle manu-

facturers generous CAFE credits for the production of alternative fuel vehicles (AFVs), including

those capable of utilizing ethanol. E85/gasoline flex-fuel vehicles have since become the dominant

means by which manufacturers have captured AFV CAFE credits, representing 90% of all alter-

native fuel vehicles supplied from 1998 to 2006.6 The cost of modifying an existing gasoline-only

model to accept E85 is estimated at $50-$100 per vehicle,7 implying production of E85 flex-fuel ve-

hicles is an effective means to comply with the CAFE regulation (see Anderson and Sallee (2009)).

Manufacturers tend to supply flex-fuel versions of their top selling models by category (pickup,

sedan, SUV, and van) and typically do not mark up the flex-fuel capability. The two versions of

the vehicle function identically except with respect to fuel economy. Flex-fuel vehicles running on

E85 typically get about 25-30% lower fuel economy than when running on gasoline. The lower fuel

economy is a consequence of ethanol’s lower energy density than gasoline.

3.2 E85 Fuel

Although retail service station adoption of E85 has grown rapidly since 2005, the overall penetration

of the retail fuel market remains quite small. As of September 2007, fewer than 1200 of the nation’s

135,000 service stations offered E85. In order to sell E85, fuel retailers must frequently install new

or upgrade existing dispensing infrastructure to accommodate E85’s handling requirements. The

corrosive and water-absorbing properties of alcohol require that E85 be stored in specially lined

tanks dedicated for E85 use. Specialty hoses, nozzles, and handles are also required. Some

existing tanks may be retrofitted for E85 use; otherwise, a new storage tank will be required for

the station to offer E85. The Department of Energy estimates installation costs can range from

$5,000 to more than $60,000, depending on the configuration required.8 However, E85 refueling

6Source: http://www.afdc.energy.gov/afdc/data/vehicles.html
7Source: Union of concerned scientists website, http://www.ucsusa.org.
8Available at http://www.afdc.energy.gov/afdc/ethanol/cost.html
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infrastructure has been the target of several incentive programs, both state and federal. Most

notably, the Energy Policy Act of 2005 (EPACT05) provides for reimbursement of up to 30% of the

costs to install E85 compliant tanks and dispensing pumps (up to $30,000). Thus, the fixed costs

of entering the E85 market are to a large degree offset by available subsidies. Further, with minor

modifications, E85-compliant storage tanks can generally be used to handle gasoline, implying that

storage tank costs are not fully sunk, since the station may subsequently reallocate the tank to

a gasoline product. Since service stations typically maintain a limited number of storage tanks

(which can service multiple pumps), and only one blended product may be allocated to each tank,

a major component of the cost of carrying E85 is the opportunity cost of using the tank to sell

another product.9 This opportunity cost is effectively a recurring fixed cost.

Commerical production of bulk ethanol as well as retail sales of E85 are concentrated in the

Midwest. The relative abundance of ethanol in this region may be explained by the proximity to

large amounts of corn, the primary feedstock for ethanol in the U.S., which results in low trans-

portation costs for the feedstock and processed liquid fuel. Minnesota, which has long maintained

pro-ethanol policies, has consistently led the nation in the number of public E85 outlets, with ap-

proximately 300 service stations (12% of the state total) online as of March 2007. In spite of the

relative availability of E85 in Minnesota, it comprises a small fraction of overall fuel sales in the

state. Among stations that sell E85, the average reported monthly volume from 2001-2007 was ap-

proximately 2200 gallons, about 3% of the average station volume for gasoline.10 Anderson (2006)

studies the demand for E85 in Minnesota, and finds evidence that consumers are willing to pay

a small premium for E85, presumably due to perceptions about ethanol’s environmental benefits

relative to gasoline or preferences for a domestically produced motor fuel. He also documents

evidence of fuel-switching behavior by flex-fuel vehicle owners.

3.3 Data

Data for the study are a panel of six yearly observations of 6882 Census zip code tabulation

areas11 from the states of Illinois, Indiana, Iowa, Minnesota, Texas, and California. The data span

the years 2001 to 2006. Vehicle sales data comes from R.L. Polk & Company, which compiles

vehicle registration information from state departments of motor vehicles. The records provided

9 In a technical report from the National Renewable Energy Laboratory that analyzes the business case for selling
E85, Johnson and Melendez (2007) state: “Gasoline stations in the United States have an estimated average of 3.3
underground storage tanks (USTs) each (Miller 2007). This average includes regular gasoline, premium, mid-grade,
diesel (which tend to be concentrated at large truck stops), and kerosene. Stations often dedicate two of these tanks
to regular unleaded (Kaiser 2007) and one to premium.”
10Source: Minnesota Department of Commerce website, http://www.state.mn.us/portal/mn/jsp/home.do?agency=Commerce
11Henceforth, “zip code” is taken to mean a Census 2000 Zip Code Tabulation Area (ZCTA). Zip codes, which

represent mail delivery routes, can overlap in space and are therefore unsuitable for defining unique spatial regions.
ZCTAs created by the Census solve this issue by mapping overlapping zip codes to a single spatial region. Data
from the Census is reported directly by ZCTA whereas other sources use postal zip codes. A 1999 vintage crosswalk
file is available that maps postal zip codes to ZCTAs. To map newer postal zip codes to ZCTAs, I first obtained the
zip code latitude and longitude coordinates from a public geocoding service. Next, using shapefiles containing the
coordinates of ZCTA boundaries, I assigned the zip code to a ZCTA using a point-in-polygon routine.
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are transaction level, and represent the complete population of flex-fuel vehicle registrations for

the period of study. Record attributes include the vehicle’s zip code of registration, date of

registration and registrant type (consumer or fleet). Data on E85 availability comes from the

National Renewable Energy Laboratory (NREL). These data includes the station name, station

type (retail or private access12), address, E85 introduction date, and station closure date (when

applicable).

Summary statistics are provided in Table 1. I also provide a visualization of the installed base

of flex-fuel vehicles and the number of E85 retailers in Appendix A. The maps show the spatial

distribution of the ethanol-compatible vehicles and fuel in the Midwestern states at the beginning

and end of the study. Close inspection of the maps reveals a pattern of positive correlation

between the flex-fuel installed base and the number of E85 retailers —this pattern is particularly

clear in the southwest portion of Minnesota, which is the state’s primary corn growing region.

Table 1: Summary statistics

Variable Name Obs Mean Std. Dev. Min Max
Flex-fuel vehicle registrations
consumer Q1 41292 20.67 35.36 0 553
fleet Q2 41292 5.54 40.56 0 2508
E85 stations
retail N 41292 0.03 0.20 0 4
private Ñ 41292 0.00 0.05 0 2
Consumer variables
population P1 6882 4863.53 6514.06 0 47911
rural proportion rural 6882 0.58 0.45 0 1
median household income (’000) income 6882 50.77 20.07 0 270.5
mean age age 6882 38.73 5.75 18.8 80
male percentage male 6882 50.29 3.47 31.3 100
median commute time (min) travel_time 6882 26.79 5.72 15 75
Fleet variables
persons employed P2 41292 2053.06 4135.57 0 60548
total establishments total_stablishments 41292 4907.29 8924.58 0 130757
car rental agencies auto_rentals 41292 0.22 1.01 0 49
mean employee salary (’000) avg_salary 6882 25.96 9.11 0 300
Vehicle/fuel supply chain variables
car dealerships auto_dealers 41292 0.96 2.15 0 28
gasoline stations gas_stations 41292 4.23 5.42 0 51
ethanol plants ethanol_plants 41292 0.01 0.08 0 2
corn acres planted corn_acres 6882 196.76 268.11 0 1241.7
Transportation characteristics
interstate highways interstates 6882 0.29 0.53 0 3
market area (sq mi) land_area 6882 79.44 136.81 0.01 3444.1

12Private access refueling stations are typically dedicated facilities serving a single corporate or government fleet.
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In total, I observe 853,474 consumer flex-fuel registrations, 228,867 fleet flex-fuel registrations

and 459 E85 entry events. To tease out the variation in E85 availability further, in Table 2, I

tabulate observations of the number of E85 retailers and compute the empirical probabilities of

transitions in the number of E85 retailers. The table indicates, for example, that I have 997

observations of markets with an E85 monopolist and that given a monopoly market at time t, in

the next period there is 3.2% probability of observing the firm exit the market, a 90.2% probability

the monopolist remains the sole incumbent, and so on.

Table 2: Observations of retail E85 station incumbency (Nt) and empirical Markov transitions (Nt

to Nt+1)

P (Nmt −→ Nm,t+1) transition
N Obs 0 1 2 3 4
0 40168 0.988 0.011 0.001 0.000 0.000
1 997 0.032 0.902 0.054 0.012 0.000
2 101 0.000 0.073 0.745 0.164 0.018
3 21 0.000 0.000 0.167 0.333 0.500
4 5 0.000 0.000 0.000 0.000 1.000

Total 41292

Before developing the model, I first present model free evidence for the existence of a network

effect. The expected patterns are that flex-fuel demand (Q1, Q2) is positively correlated with

the number of E85 retailers (N), and that N is positively correlated with the installed base of

consumer and fleet flex fuel vehicles. Calculation of the true installed base involves modeling

initial conditions and vehicle scrap rates,13 which I ignore for the purpose of demonstrating basic

relationships. Here, I use the cumulative number of consumer and fleet flex-fuel vehicles as proxies

for the true installed bases.

I provide two types of preliminary evidence for the presence of the network effect. First, in Table

3, I report the conditional distributions of cumulative consumer and fleet flex-fuel registrations as

a function of the number of E85 retailers, N. As expected, the installed bases increase in their

mean and median values as N increases.

Table 3: Cumulative flex-fuel vehicle registrations by retail E85 stations

Consumer FFVs Fleet FFVs
N Obs Median Mean Median Mean
0 40168 70.0 132.7 17.6 128.4
1 997 131.8 180.3 49.1 224.3
2 101 209.7 184.1 57.7 88.7
3 21 281.0 241.5 67.4 50.4
4 5 312.6 185.6 104.4 76.5

As a second source of evidence, in Table 4, I report descriptive linear regressions of the dependent

variables Q1, Q2, and N as a function of relevant covariates. I perform the regressions using the

13See Section ?? for a discussion of this issue.
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same control variables as in the main results (including fixed effects — see Section 6 for the full

specification), but for brevity I report only the key parameters of interest. The estimates provide

further prima facie evidence for the presence of a network effect: all coeffi cients have the expected

(positive) signs and are highly significant.

Table 4: Descriptive regressions of model dependent variables

Dependent variable
Q1 Q2 N

E85 retailers (N) 4.44*** 3.16***
(0.56) (1.04)

consumer FFV installed base 9.4e-05***
(1.1e-05)

fleet FFV installed base 3.8e-06***
(1.1e-06)

Observations 41292 41292 41292
RMSE 14.21 26.33 0.14
All regressions include market and period fixed effects
Significance levels: * p<0.05, ** p<0.01, *** p<0.001

4 Model

The model formalizes the interdependence of flex-fuel vehicle demand and E85 market entry. The

demand system relates flex-fuel vehicle purchases to the availability of E85 fuel, while the entry

model relates the number of retail E85 outlets to the installed base of flex-fuel vehicles. Obser-

vations of flex-fuel demand or E85 market entry represent agent decisions to adopt the ethanol

fuel standard. In this sense, the model may be interpreted as a model of technology adoption:

consumers comply with the standard by adopting flex-fuel technology, and fuel retailers comply by

adopting E85 dispensing infrastructure.

I develop the model in three stages. In Section 4.1, I provide an overview of the model and

discuss key assumptions. In Section 4.2 I present the vehicle demand system in detail, while in

Section 4.3 I develop the fuel market entry model. I close the model by formalizing the equilibrium

concept in Section 4.4.

4.1 Framework and assumptions

The model considers the decisions of three types of economic agents: fuel retailers, consumers and

fleets. In the case of fuel retailers, the population of interest is the set of firms that may potentially
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enter the E85 market. For consumers, the modeled population is the set of individuals who are

potential buyers of flex-fuel vehicles. In every period, each member of these populations makes a

discrete choice of whether or not to adopt ethanol fuel technology, either by entering the E85 fuel

market (retailers) or purchasing a flex-fuel vehicle (consumers). I model fleets in a similar fashion,

abstracting away from complexities associated with centralized decision-making and bulk buying

behavior. That is, fleets are effectively treated as individuals who have unit demand for flex-fuel

vehicles.

The conceptual framework of the model is a simultaneous move game. The game models

strategic competition among ex ante identical firms that may potentially enter the E85 market.

Firm competition is strategic due to the fact that each firm’s entry decision influences the level of

profits realized by all firms in the market. The moves taken by agents in the game are as follows:

(1) consumers/fleets choose whether or not to purchase a flex-fuel vehicle, (2) consumers/fleets who

own flex-fuel vehicles set their level of E85 consumption, (3) potential entrants decide whether or

not to enter the E85 market, (4) entering retailers compete in quantities to set E85 output.14 All

these actions are assumed to occur simultaneously. Note that the flex-fuel purchase decisions of

consumers and fleets influence firm profits, as such decisions increase the size of the market for

E85. Therefore, market equilibrium will be defined over the action space of all agents, not just

firms. I assume all agents have complete information, i.e., they have full knowledge of the process

determining market outcomes and directly observe stochastic shocks which are unobserved by the

researcher. The solution concept of the game is a symmetric Nash equilibrium in pure strategies,

which I formally define in Section 4.4.

Throughout the model development, I follow the following notational conventions. I index

markets (zip codes) by m ∈ {1, ...,M} and time periods (years) by t ∈ {1, ..., T}. I index equations
by k ∈ {1, 2, 3} for consumer flex-fuel demand, fleet flex-fuel demand, and E85 market entry,
respectively. For example, consumer and fleet flex-fuel vehicle sales are denoted by Q1mt and Q2mt.

I represent the number of retail and private access (fleet dedicated) E85 stations by Nmt and Ñmt.

These four variables comprise the endogenous quantities observed in the data. As changes to the

number of private access E85 stations are rare and not of central interest, I do not explicitly model

Ñmt, but control for its potential endogeneity in the fleet flex-fuel demand estimation through the

use of instrumental variables. Collectively I refer to predetermined market characteristics as Z.

Since prior period outcomes are predetermined in the current period, the history of market outcomes

is included in Z, i.e., {Q1mτ , Q2mτ , Nmτ}τ<t ∈ Zmt. I denote the model parameters collectively as
Θ = (θ12, θ3) , where θ12 represents all (consumer and fleet) flex-fuel demand parameters and θ3

captures the E85 market entry and error term covariance parameters.

14Under the assumption of identical firms, a price setting game results in the familiar Bertrand paradox, implying
marginal cost pricing for all firms. An output setting game avoids this complication and captures the key feature of
interest —that profits should decline in the number of entering firms.
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4.2 Flex-fuel demand

4.2.1 Consumers

Following Berry (1994) and Berry, Levinsohn, and Pakes (1995), I model consumer demand for flex-

fuel vehicles as a utility maximizing discrete choice. In each period t, the population of consumers

of market m, P1mt, choose between purchasing a flex-fuel vehicle (1) and the outside alternative (0),

which is normalized to have zero utility in expectation. The choice-specific utilities for individual

consumer i are assumed to take the following form:

U1
imt = α1Nmt + β′1Z1mt + δ1m + ω1t + ε1mt + η1

imt (1)

≡ U1mt + ε1mt + η1
imt

U0
imt = η0

imt

The utility of choice 1 appearing in equation (1) captures the consumer’s valuation of flex-fuel

technology as a function of the availability of E85 fuel, which is given by the number of E85 retailers

operating in the market, N . The associated α1 parameter is the primary coeffi cient of interest —

this parameter reflects the influence of E85 availability on consumer utility, and therefore captures

the feedback of E85 market entry on flex-fuel vehicle adoption. The β1 parameter captures the

influence of all other relevant time and market-time varying factors. The term ε1mt is a market and

period specific shock to flex-fuel utility which is common to all consumers. The terms η0
imt and

η1
imt capture individual i

′s idiosyncratic preferences for the choice options.

All consumers in a market are identical up to draws of their individual valuation components,

η0
imt and η1

imt. I assume these shocks are distributed i.i.d. extreme value. The extreme value

assumption implies that choice market shares follow the standard logit formula:

H1
1mt ≡ Pr

[
U1
imt > U0

imt

]
=

exp
(
U1mt + ε1mt

)
1 + exp

(
U1mt + ε1mt

) =
Q1mt

P1mt
(2)

H0
1mt ≡ Pr

[
U1
imt ≤ U0

imt

]
=

1

1 + exp
(
U1mt + ε1mt

) =
P1mt −Q1mt

P1mt

H1
1 and H

0
1 are the consumer choice shares of flex-fuel vehicles and the outside option, respec-

tively. In this formulation, consumers are assumed to be in the market for a flex-fuel vehicle every

period, allowing for the possibility of replacement sales.15 By algebraic manipulation of the market

15An alternative assumption, commonly used in the durable goods literature, would be that vehicles are infintely
durable and once consumers purchase a flex-fuel vehicle, they are permanently out of the market. Given the long time
span of my sample (six years), I choose to allow replacement sales. This choice is consistent with my computation of
the installed base of flex-fuel vehicles, which explicitly accounts for vehicle scrappage. In practice, this assumption
has little effect on demand estimates, as market populations are generally very large in comparision to cumulative
flex-fuel sales.
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share equations above, we may write the following estimation equation16:

H1mt ≡ ln
(
H1

1mt

)
− ln

(
H0

1mt

)
= ln

(
Q1mt

Pm −Q1mt

)
= U1mt + ε1mt (3)

The variable H1 is the log-odds ratio of consumer flex-fuel vehicle purchase. Estimation of

equation (3) is discussed in Section 5.

The utility specification (1) employs extremely strong controls for unobservables through the

inclusion of market (δ1) and period (ω1) fixed effects. The market fixed effects control for all

time-invariant market heterogeneity that may be correlated with Q1. Inclusion of market fixed

effects is particularly significant for my application, since estimation will be conducted under an

assumption of independent markets. This assumption is far more plausible when these controls

are included, since they capture all time-invariant spatial dependence in observations of consumer

flex-fuel demand. The period fixed effects control for common temporal shocks to flex-fuel demand,

such as changes in the variety of flex-fuel models, availability of federal tax credits, and average

fuel prices. With the inclusion of these fixed effects, the variation identifying the α1 parameter

will be deviations in H1 and N from the market-specific mean values (i.e., “within”deviations),

controlling for period-specific shocks common to all markets.

4.2.2 Fleets

As previously mentioned, I simplify the treatment of fleet flex-fuel demand by ignoring bulk-buying

behavior. Rather, I model fleets as individuals, who make a discrete choice of whether or not to

purchase a flex-fuel vehicle. Therefore, the fleet demand system is identical in form (but not in

specification) to the consumer demand system. The choice-specific utilities for fleet i are assumed

to take the following form:

U1
imt = α21Nmt + α22Ñmt + β′2Z2mt + δ2m + ω2t + ε2mt + η1

imt (4)

≡ U2mt + ε2mt + η1
imt

U0
imt = η0

imt

16 In empirical specifications, I calculate H1mt using H1mt = ln
(

κ+Q1mt
κ+Pm−Q1mt

)
as this avoids the technical problem

of infinite negative utility encountered when Q1mt = 0. Minimizing the occurrence of this condition motivates using
a yearly panel over one with a finer time frequency. Still, I observe no flex-fuel sales in 14% of observations, typically
in markets with small populations. For the correction I set κ = 0.5, as this value is shown by Pettigrew, Gart, and
Thomas (1986) to be the bias-minimizing value. Pettigrew, Gart, and Thomas (1986) also derive the asymptotic
bias of this empirical approximation to the true log-odds ratio, and show that it is given by 2p−1

24(np(1−p))2 + O(n3),

where p is the true individual adoption probability and n is the number of trials per observation. In my application
p ∼ .005 while n ∼ 5000, implying an asymptotic bias of order −10−5, which is clearly negligible. As a robustness
check of the potential bias introduced by this approximation, I estimated the consumer demand model setting κ = 0
and only using observations for which Q1mt > 0. The estimate of α1 from this model was consistent with the main
results within one standard deviation and 4% in absolute magnitude.
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This utility specification differs from the consumer utility specification in two ways. First, an-

other potentially endogenous variable appears: the number of private access E85 refueling stations

(Ñ), which are dedicated facilities serving a single fleet. Whereas the presence of private access

refueling stations should not affect consumer utility for ethanol-compatible vehicles, these facilities

may impact the observed share of flex-fuel vehicles among fleets. Ñ is potentially endogenous be-

cause unobserved factors that lead to installation of a fleet-dedicated E85 station may be correlated

with fleet flex-fuel demand (presumably, construction of a dedicated E85 refueling station signals

a fleet’s intention to increase its investment in flex-fuel vehicles). Even though I do not explicitly

model the “entry”of such stations, I must control for the potential endogeneity of Ñ through the

use of instrumental variables. The other difference from the consumer demand specification is the

factors which enter Z2.

Following the logic of the previous section, the estimation equation for fleet flex-fuel demand is:

H2mt = ln

(
Q2mt

P2mt −Q2mt

)
= U2mt + ε2mt (5)

A final comment relates to the empirical specification of the fleet market size, P2. Whereas the

population of consumers (P1) is well documented in Census data, the appropriate measure of P2

is less obvious. For consistency with the assumption of fleets as individuals with unit demand for

flex-fuel vehicles, I need a proxy for the total number of potential fleet sales to represent P2. My

approach is to use the number of persons employed in the market as this proxy. The number of

employees is a reasonable measure for the potential population of fleet vehicles, as fleet vehicles

are typically assigned to employees. To mitigate concerns about the market size definition, I

demonstrate in Appendix D.3 that the estimated parameters are generally robust to alternative

specifications of P2.

4.3 E85 Market Entry

Fuel retailer entry into the E85 market is modeled in the tradition of Bresnahan and Reiss (1990) and

Bresnahan and Reiss (1991). These models assume that the number of firms in the market, N, is the

outcome of a two-stage game of complete information played among E identical potential entrants.

In the first stage, firms make strategic entry decisions, anticipating the ensuing competition in

output during the second stage. Potentially entering firms are assumed to have identical profit

functions, which are stochastic due to the presence of market level shocks to profitability that are

common to all firms.17 Under these assumptions, N reflects bounds on a latent profit function,

which may recovered through the estimation procedure. The intuition behind the approach is that

in a symmetric equilibrium, an observation of N = k firms implies Πk ≥ 0 and Πk+1 < 0, where

ΠN represents profits in a market with N firms.
17See Bresnahan and Reiss (1990) for a discussion of the implications of this assumption.
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Berry and Reiss (2007) discuss different approaches to specifying ΠN , and advocate deriving

the appropriate reduced form from explicit assumptions about firm costs, the demand specification,

and the second stage equilibrium process. I adopt this approach and begin by developing a model

for E85 fuel demand. I decompose E85 demand (D) into the product of the market size (S) and

per-capita demand, which I model as linear in E85 prices, as follows:

D =

N∑
f=1

df = S (a− P ) (6)

Here f indexes the fuel retailers active in a market and df represents the per-firm demand for

ethanol fuel. The coeffi cient on E85 fuel price (P ) is set to -1 without loss of generality, as this

simply scales the quantity units in which price is quoted.18 Next I assume second stage competition

among ethanol retailers is a Cournot output game. In Appendix D, I explore the robustness of my

results to alternative assumptions about firm competition. Under the assumption of independent

market outcomes, strategic competition is limited to potential entrants within the market. The

E85 fuel demand model is closed by specifying the firm cost function, which I take to be linear in

output and common to all firms:

Cf = cdf + F (7)

Constant marginal costs are a reasonable assumption for a motor fuel retailer, since the retailer

is not directly involved with ethanol production and has few mechanisms by which to achieve scale

economies.

I now derive the reduced form profit function corresponding to the symmetric Cournot equilib-

rium. Using equation (6), the inverse demand curve may be written as:

P = a− D

S
= a− 1

S

N∑
f=1

df

In Cournot competition, firms complete in quantities. The first order condition for firm f is

given by:

18Moreover, price effects cannot be separately identifed using observations of N alone, as the price coeffi cient is
interacted with the market size, which must be normalized to set the scale of variable profits.
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∂ΠN
f

∂df
=

∂

∂df
[df (P − c)− F ] = 0

= P − c+ df
∂P

∂df
= 0

= a− 1

S

N∑
f=1

df − c+ df

(
− 1

S

)
= 0

The symmetry of firms implies that
N∑
f=1

df = Ndf . Using this condition and solving for optimal

firm quantity yields:

d∗f =
S

1 +N
(a− c) (8)

The equilibrium market price will therefore be:

P ∗ = a−
Nd∗f
S

= a− N

1 +N
(a− c) (9)

Finally, reduced form profits may be expressed as:

ΠN = ΠN
f = (P ∗ − c)d∗f − F = S

(a− c)2

(1 +N)2
− F (10)

To convert this model into an econometric specification, we must clarify how stochastic terms

enter firm profits and how to parameterize the terms S, (a− c)2 , and F . Following Bresnahan and

Reiss (1991), I assume unobservable firm profits enter ΠN linearly as shocks to fixed costs. The

shock to fixed costs is common to all firms, and is given by ε3mt. As firms are ex ante identical,

I represent observable fixed costs as a linear function of exogenous market-level cost shifters (Z3).

Thus, fixed costs for all firms are given by Ffmt = Fmt = φ′Z3mt+ ε3mt. The term (a− c)2 captures

the E85 fuel demand intercept and marginal costs, the constituents of firm variable profits. I

parameterize (a− c)2 as a function of exogenous E85 variable cost and demand shifters (Z4). I

enforce positivity of variable profits by letting (a− c)2
mt = exp (ψ′Z4mt) .

The expression for market size, S, requires a more involved discussion. The complication which

arises is due to the fact that the E85 entry model is linked to the flex-fuel demand system through

the market size, which is a function current flex-fuel demand. Thus, the market size is endogenous

to N. For generality, I follow Bresnahan and Reiss (1991) and assume S may be represented as a

linear function of the installed base of consumer flex-fuel vehicles, the installed base of fleet flex-

fuel vehicles, and exogenous market-level shifters of the effective market size (Z5). For notational

convenience, I define the prior period installed base of flex-fuel vehicles for agent type k (1 =

consumer, 2 = fleet), as Bkmt ≡
t−1∑
τ=0

Qkmτ , which is predetermined in period t. Therefore, the

16



current period installed base of agent type k flex-fuel vehicles is given by Bkmt +Qkmt. With this

notation, the market size may be represented as:

Smt(Nmt) = (B1mt +Q1mt) + γ (B2mt +Q2mt) + λ′Z5mt (11)

The coeffi cient on the installed base of consumer flex-fuel vehicles is set to one as the expression

for variable profits (which is interacted with the market size in equation (10)) includes a constant,

implying a normalization of market size is required for identification. The normalization converts

E85 demand into units of consumer flex-fuel vehicles. This implies, for example, that the γ

coeffi cient in equation (11) may be interpreted as the estimated number of fleet flex-fuel vehicles

required to match the fuel consumption of one consumer flex-fuel vehicle. Note that I write S as

a function of N to highlight the fact that installed bases of consumer and fleet flex-fuel vehicles

are implicit functions of N through current period flex-fuel vehicle demand, Q1 and Q2. This

notation also emphasizes that it is through the N dependence of market size that positive feedback

in ethanol adoption is realized in the entry model for the current period. Feedback effects in

prior periods are incorporated into B1 and B2, which are predetermined and do not depend on the

current value of N. This is the key force driving the network effect in the model.

Although agents in the market have complete information and therefore know the exact form

of S, the analyst must contend with uncertainty introduced by two types of unobservables. First,

since the vehicle demand shocks enter the expression for market size (11), from the econometrician’s

perspective S is a random variable whose distribution is induced through the joint distribution of(
ε1 ε2 ε3

)
. To see this, note that equations (3) and (5) imply that the current period flex-fuel

sales Q1 and Q2 are (non-linear) functions of ε1 and ε2. Second, the econometrician does not know

the exact values of B1 or B2, since vehicle scrappage is not observed, nor are the sales of flex-fuel

vehicles prior to the inception of the study. The estimation procedure I develop in Section 5.2

takes account of both types of uncertainty associated with market size.

Putting the aforementioned specifications together, and defining expected firms profits as Π
N
,

the model for N taken to data is:

Nmt =

E∑
k=0

k
(

Πk
mt ≥ 0

)(
Πk+1
mt < 0

)
(12)

where :

ΠN
mt =

{
0 if Nmt = 0

Π
N
mt − ε3mt if 0 < Nmt ≤ E

}

Π
N
mt ≡ Smt(Nmt)

exp (ψ′Z4mt)

(1 +Nmt)
2 − φ

′Z3mt
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4.4 Equilibrium

Before formally defining the equilibrium, it is important to clarify the relationship between the

game strategies of individual potentially entering firms, which are unobserved, and observations of

the number of firms (N) . An individual firm strategy may be represented as If ∈ {0, 1} where 1
indicates entry and 0 indicates staying out of the market. Since our game has E players, a pure

strategy Nash equilibrium obtains when the condition

Πf (I∗1 , ..., I
∗
f , ..., I

∗
E) ≥ Πf (I∗1 , ..., If , ..., I

∗
E) ∀If ∈ {0, 1}

holds for all firms f ∈ {1, ..., E}. As shown in Bresnahan and Reiss (1990), this Nash solution

concept does not uniquely determine the identity of entering firms. For example, with identical

firms in a market that can profitably sustain a monopolist, there are E pure strategy solutions to

the game (the f = 1, ..., E strategies for which I∗f = 1, I∗k = 0 ∀ k 6= f). However, since only one set

of strategies will be played, the equilibrium number of entering firms, N∗ =
E∑
k=1

I∗k = 1 is uniquely

determined. The potential for multiple equilibria, which would severely complicate estimation of

the model, is removed by aggregating outcomes. I take this approach and define the equilibrium

in terms of the aggregated equilibrium strategies of potentially entering E85 retailers.

Uniqueness of the symmetric Nash equilibrium in N is guaranteed provided that firm profits

decline in the number of firms entering the market. If this condition is violated, a unique ordering

of ΠN is no longer guaranteed, and the potential for multiple equilibria once again arises. In entry

models such as Bresnahan and Reiss (1991), this condition is imposed in estimation of the model

of N as an ordered dependent variable. Other models satisfy the condition by specifying a profit

function that declines in N , such as Berry (1992). This is essentially the approach I take, but I

require a further refinement. The presence of the indirect network effect, i.e. the fact that the

market size is a function of N, admits the (mathematical) possibility that profits could increase in

the number of firms. I rule out this possibility by imposing the constraint that ∂ΠN

∂N ≤ 0 hold for

all markets when estimating equation (12). That is, I impose that increases in firm profits from an

expanded market size (via the network effect in S(N)) cannot be larger than decreases in profits

from additional competition (via the 1
(1+N)2

term entering variable profits). The constraint, which

is derived in Appendix B, takes the following form:

α1Q1mt

1 + exp (H1mt)
+

γα21Q2mt

1 + exp (H2mt)
− 2Smt

1 +Nmt
≤ 0 (13)

I impose this constraint when estimating equation (12). Fortunately, the data reveal ex-post

that the conditions of a unique equilibrium are satisfied — i.e., the constraint does not bind for

the estimated parameter vector. This result is expected, for if it were the case that the network

effect were stronger than the competitive effect, the model would predict only two possible market

outcomes: zero or complete market adoption of the ethanol standard by all agents, depending upon
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the level of market fixed costs. The data reject this notion out of hand by the very existence of a

distribution in agent adoption rates of ethanol.

Since consumer and fleet flex-fuel purchase decisions influence E85 retailer profits, the equilib-

rium concept must also encompass their actions. Formally then, the symmetric Nash equilibrium

in pure strategies for this model is defined by the number of entering E85 retailers N∗, the num-

ber of consumer flex-fuel vehicle sales Q∗1, and the number of fleet flex-fuel vehicle sales Q
∗
2 that

simultaneously satisfy equations (3), (5), (12), and (13).

5 Estimation

I develop a two-step procedure to estimate equations (3), (5) and (12) under constraint (13). I

motivate this choice in the method overview discussion in Section 5.1. I begin with discussion

of the entry model estimation in Section 5.2, which is the second step in the overall procedure, in

order to defer the technicalities that accompany describing the System GMM procedure. I follow

in Section 5.3 with discussion of estimation of the flex-fuel demand system, which is the first step

of the overall procedure.

5.1 Method overview

The primary challenge for estimation is finding an appropriate estimator for the E85 entry model.

The flex-fuel demand equations may be transformed to a linear system, and thus permit a wide

variety of estimators since instruments for the endogenous variables N and Ñ are available (I discuss

the instruments and identification in Section 5.3 and Appendix C). The entry model, however, is

highly non-linear in parameters, necessitating the use of either a likelihood-based or moment-based

estimator. I therefore consider the problem of how to consistently estimate the entry equation

conditional upon the flex-fuel demand parameters (θ12), which constitutes the second step of the

estimation procedure. Conceptually, there are two potential sources of endogeneity in the market

size, S. First, referring to equations (1) and (4), N directly enters the expressions for consumer

and fleet flex-fuel utility. Therefore, Q1 and Q2 in the expression for S are explicit functions of

N. However, with consistent estimates of θ12 in hand, this dependency is fully accounted for when

computing S for estimation of the entry model. A second source of endogeneity arises through the

stochastic terms — i.e., the entry model error term ε3 is potentially correlated with the demand

system error terms ε1 and ε2, which also determine Q1 and Q2. These terms may be correlated

through common unobservables that affect both flex-fuel demand and the profitability of E85

market entry. An example of such an unobservable might be a regional campaign of public service

announcements touting the benefits of ethanol to the community. It might at first seem tractable
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to compute the market size in the entry model by conditioning on both the demand system residuals

as well as the demand system parameter estimates. That is, given a candidate parameter vector

for the entry model (θ3), one might be tempted to express the market size S = S(θ3 | Z, θ̂12, ε̂1, ε̂2).

However, to do so would ignore the fact that ε1 and ε2 are co-determined with N, through equations

(1) and (4). In other words, ε1 and ε2 may not be held fixed when fitting the model to data.

My approach to controlling for both sources of endogeneity mentioned above is to work with

the reduced form of the model, given the demand parameters. That is, for a candidate entry

model parameter vector, I solve the nonlinear system (3), (5) and (12) for the equilibrium number

of entering firms, N∗. This solution process ensures consistency of the estimated parameters, since

all cross-equation dependencies are reflected in the resulting value of N∗. I base estimation on

minimizing the difference (in the sum squares sense) between the model predicted number of firms,

N∗, and the observed number of entering firms, N . This non-linear least squares estimator is a

variant of GMM.

A requirement to solve for N∗ is that the error vector ε is known. ε is not directly observed, but

draws of ε may be simulated if we are willing to take a stand on its joint distribution (as one would

when pursuing a likelihood-based approach). I assume ε to be distributed multivariate normal:

ε1mtε2mt

ε3mt

 ∼ N(0,Σ), where Σ =

 σ2
1 ρ12σ1σ2 ρ13σ1

ρ12σ1σ2 σ2
2 ρ23σ2

ρ13σ1 ρ23σ2 1

 (14)

Unobserved E85 retailer profitability (ε3), which has a natural interpretation as a shock to fixed

costs, is normalized to have unit variance in order to identify the parameters of the entry model.

As is customary in latent variable models, this normalization sets the scale of E85 retailer profits,

which are unobserved. Note that while ε1 and ε2 may not be held fixed, we may use the first step

residuals to estimate σ1, σ2, and ρ12. In particular, σ̂1 =
√
V ar (ε̂1) , σ̂2 =

√
V ar (ε̂2), and ρ̂12 =

Corr(ε̂1, ε̂2). The remaining covariance terms, ρ13 and ρ23, are parameters to be estimated with the

entry equation. I implement the estimator by drawing multiple ε vectors for each observation,19

solving the reduced form for N∗ for every draw of ε, and then averaging the result to integrate the

effects of ε out of the objective function. In Appendix D, I also report results from estimating the

entry model by maximum likelihood, under the restriction that ρ13 = ρ23 = 0, and find very close

agreement with the unrestricted estimator.

A final step must be taken for valid inference. Using estimated demand parameters (θ̂12) in the

entry model estimation introduces the potential for measurement error, since θ̂12 is an imprecise

measurement of θ12. The standard errors of the entry model parameters (θ3) must reflect this

additional uncertainty. To address this issue, I perform a nonparametric panel bootstrap over the

two-step procedure. That is, I resample market histories with replacement and perform the two-

19This step is performed once, prior to the entry model estimation, using standard normal draws. The value of ε
is recomputed as the entry parameter (θ3) vector changes by taking the product of ε and the Cholesky decomposition
of the covariance matrix implied by θ3.
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step estimation procedure BS times. Parameter standard errors are then given by the standard

deviations of bootstrapped parameter values. Estimates reported in Section 6 are based upon BS =

30 replications. In the reported results, both flex-fuel demand and E85 entry model parameters

have bootstrapped standard errors. Using bootstrapped standard errors implies inference will be

robust to the effects of heteroskedasticity, provided the estimation sample is truly representative of

the general population.

5.2 E85 entry equation

Here I develop a procedure to estimate the E85 entry model that allows for arbitrary correlation

between the market entry equation and the flex-fuel demand equations. Promotional activity by

a regional ethanol trade organization might be one example of such a common unobserved effect.

In Appendix D.1, I develop an alternative entry model estimator under the assumption of no

correlation between the entry model error term and the flex-fuel demand error terms.

As discussed in the estimation method overview (Section 5.1), estimation of the entry model

parameters is conducted conditional upon estimates of the vehicle demand parameters (θ12). Un-

certainty introduced into the entry model estimation from imprecise measurement of the demand

parameters is controlled for by bootstrapping over the two step estimation procedure, in which

entire market histories are sampled with replacement. The key insight that motivates the chosen

estimator is that, given the demand parameters and simulated draws of the error terms ε, the re-

duced form of the model may be solved for N∗, the model-predicted equilibrium number of entering

E85 retailers. Consequently, if the demand parameters are correctly identified, the entry model

may be consistently estimated without the use of exogenous instruments for the endogenous market

size. Consistency follows from the fact that explicitly solving the model automatically incorporates

all cross-equation dependencies into the resulting value of N∗. Intuitively, estimation proceeds

by minimizing the squared difference between the model predicted number of firms, N∗, and the

observed number of entering firms, N . This non-linear least squares estimator is given by:

θ̂3 = arg min
θ3

∑
m,t

(
Nmt −

1

NS

NS∑
s=1

N∗smt

)2

(15)

subject to :
∂ΠN

mt

∂N
≤ 0 ∀m, t

Obtaining simulated draws of the error terms requires an assumption about the joint distribution

of ε. As discussed in Section 5.1, I assume a multivariate normal distribution for ε. The variance-

covariance terms of the flex-fuel demand errors (σ1, σ2, ρ12) may be estimated from the residuals

of the flex-fuel demand estimation (ε̂1, ε̂2). Since the variance of the entry model error term ε3 is

normalized to 1 in order to identify the parameters, only the cross-equation correlations (ρ13, ρ23)

are unknown. These parameters are to be estimated in together with the parameters that enter
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the E85 profit function explicitly (γ, λ, ψ, φ). If the correlations ρ13 and ρ23 turn out significant

in the entry model estimation, it is evidence for the presence of common unobserved shocks that

influence both flex-fuel demand and E85 entry. If these coeffi cients are insignificant, it suggests

that the model specification already fully captures the relevant co-dependence of the demand and

entry systems. Per capita variable profit factors (ψ) are identified through interactions with the

market size, consisting primarily of the installed base of flex-fuel vehicles. Fixed cost factors (φ)

are identified by the (conditional) mean values of N .

Potential concerns with a non-linear least squares estimator relate to matters of econometric

effi ciency and algorithm convergence. To appreciate the concerns, consider the predicted number

of firms based on a single draw of ε. The value of N∗ resulting from this draw could be very different

from E[N∗] if the draw originates in the tail of the distribution. The resulting objective function

is unlikely to be smooth, hindering an optimizer’s ability to find the optimal parameter vector.

The discrete nature of N will tend to magnify this problem —since outcomes are determined by

truncation points of the latent profit function, small changes in parameter values can lead to large

changes in N∗. The standard errors of the estimated parameters are therefore also likely to be

large, limiting the ability to conduct inference. A solution to these issues is to integrate the effect

of the unobservables out of the objective function by taking multiple draws of ε for every observed

market and averaging the resulting N∗. That is, I compute the expected equilibrium number of

firms by E[N∗] = 1
NS

NS∑
s=1

N∗smt , where NS is the number of simulated draws of ε. In my empirical

work, I take NS = 30, which should be a reasonable estimate of the asymptotic value of E[N∗],

given the normality assumption.

5.2.1 Computation of N∗

Next, I explain the calculation of N∗, the model-predicted equilibrium number of entering E85

retailers. First note that equations (3) and (5) imply that unit sales of flex-fuel vehicles may be

written:

Q1(n | θ̂12) = P1
exp (α̂1n+ ε1 + k1)

1 + exp (α̂1n+ ε1 + k1)

Q2(n | θ̂12) = P2
exp (α̂21n+ ε2 + k2)

1 + exp (α̂21n+ ε2 + k2)

where I have suppressed subscripts and introduced the shorthand notations k1 = H1−α̂1N− ε̂1,
k2 = H2 − α̂21N − ε̂2. The values of k1 and k2 are the predicted purchase log-odds ratios with the

effect of the observed number of firms N partialed out. This ensures that the predicted values

of Q1(n) and Q2(n) include the market fixed effects δ, which are not estimated explicitly in the

demand estimation. All factors other than n are fixed in the above equations (here, ε1 and ε2 are

simulated error terms). Given a candidate entry model parameter vector (θ3), the market size may

then be computed by equation (11) and hence the reduced form profit ΠN may be derived from
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equation (12). The system may not be solved analytically for N∗, but numerical solution of the

system in straightforward. N∗ is given by the smallest value of n (for n > 0) that satisfies the

condition (Πn ≥ 0) ∩
(
Πn+1 < 0

)
.

The previous discussion of computing N∗ ignored a technical but important detail relating to

the installed base of flex-fuel vehicles. In equation (11), B denotes the prior period installed base,

which is intended to represent the number of flex-fuel vehicles on road at the end of the previous

year. Even though I observe all flex-fuel vehicle purchases throughout the period of my study, the

true value of B is unobserved, for two reasons. First, I do not observe flex-fuel vehicle demand in

periods prior to 2001 (t = 1), resulting in an initial conditions problem.20 I employ two assumptions

that allow me to integrate uncertainty about initial conditions out of the objective function. The

first pertains to flex-fuel vehicle sales in unobserved periods. I assume that the proportion of flex-

fuel vehicles produced which are sold into a market for a given year follows a truncated normal

distribution with known mean and variance. In a preliminary step, I estimate these means and

variances market by market using the six yearly observations of flex-fuel vehicle sales (R.L. Polk

data) and the aggregate flex-fuel vehicle production quantities for the corresponding year. The

latter are available from the Department of Energy and date to the first production year for flex-fuel

vehicles.21 To simulate flex-fuel vehicle sales for unobserved periods, I draw the sales proportion

from the corresponding market distribution and multiply by the aggregate flex-fuel production for

that period. As with draws of the error terms ε, I take NS = 30 draws per market, so that the

effect of the initial conditions are integrated out of the objective function when E[N∗] is computed.

The second source of uncertainty relates to unobserved vehicle retirement. I take vehicle survival

rates to be exogenous, common to all markets, and time-stationary (rates depend only upon the

time difference between purchase and the current period). Further, I assume these rates are as

quoted in the Department of Transportation’s Transportation Energy Data Book (Davis and Diegel

(2006)). Under these assumptions, the prior period installed base for agent type k is given by:

Bkmt =
t−1∑

τ=−∞
wt−τQkmτ , where w is the survival rate, Qkmτ is data for τ > 0, and Qkmτ are

simulation draws for τ ≤ 0. The fact that I explicitly model retirement of flex-fuel vehicles is

consistent with the demand model assumption of allowing replacement sales.

A final implementation detail concerns the constraint in equation (15), which is expressed in

terms of parameters and observables in equation (13). I implement the constraint using a penalty

function during estimation. That is, I set N∗ = −∞ if the constraint is violated. The constraint

does not bind at the converged parameter value.

20Commercial production of flex-fuel vehicles began in 1996, but significant quantities were not produced until
1998.
21Available at http://www.afdc.energy.gov/afdc/data/vehicles.html.
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5.3 Flex-fuel demand equations

I begin with a discussion of the implications of the model structure for estimation of the flex-fuel

demand equations. First note that collectively, equations (3), (5) and (12) represent a static model

with feedback. That is, current period flex-fuel vehicle demand (Q1mt, Q2mt) depends only upon

the current value of E85 availability (Nmt), but because Nmt is a function of the installed bases

of flex-fuel vehicles, Nmt depends upon the entire history of vehicle demand outcomes up to the

current period, i.e. τ : τ ≤ t. In particular, note that current shocks to flex-fuel demand (ε1mt, ε2mt)

will be correlated with current and future values of N. However, given the exogeneity of Z and

predetermination of prior values of N, the following conditional expectations hold:

E (ε1mt | Z1, δ1m, ω1t, Nmτ ) = 0 ∀τ < t (16)

E
(
ε2mt | Z2, δ2m, ω2t, Nmτ , Ñmτ

)
= 0 ∀τ < t (17)

This structure has important consequences for estimation. In particular, the fact that ε1mt and

ε2mt are correlated with future values of N implies that the usual time-demeaning transformation

to remove the market fixed effects δ1m and δ2m will lead to biased estimates.22 However, a

first difference procedure to remove the market fixed effects remains consistent under the weaker

assumption of sequential exogeneity of N implied by (16) and (17). Taking first differences of

equations (3) and (5) yields:

∆H1mt = α1∆Nmt + β′1∆Z1mt + ∆ω1t + ∆ε1mt (18)

∆H2mt = α21∆Nmt + α22∆Ñmt + β′2∆Z2mt + ∆ω2t + ∆ε2mt (19)

Henceforth, I refer to equations (16) and (17) as the “difference”equations, and equations (3)

and (5) as the “level” equations. Absent contemporaneous correlation between the N variables

and the error terms, OLS estimation of equations (18) and (19) would deliver consistent estimates.

However, ∆N is endogenous in (18) and (19) since H1 and H2 are simultaneously determined

with N through (12). Although entry of private E85 facilities is not explicitly modeled, a similar

concern applies to ∆Ñ (here, the endogeneity concern arises from the possibility of an omitted

variable correlated with fleet vehicle demand and Ñ). The general remedy for these complications

is to employ instrumental variables. However, finding exogenous variables which meet the criteria

of being correlated with ∆N and ∆Ñ but not the error terms ∆ε1 and ∆ε2 can be challenging.

One appealing approach is to bring additional exogenous data to bear. In other words, find a set

of “external”instruments W that shift N but do not enter the specification of vehicle demand (i.e.,

W ∈ Z/Z1 ∪ Z2). Unfortunately, suitable instruments of this type are not available.23 I therefore

22See, for example, Wooldridge (2002), Section 11.1 for a discussion of this issue.
23 In Appendix C, I motivate several instrumentation strategies using data collected for the study and present

the corresponding demand estimates. The instruments are motivated by considering the form of the E85 retailer
profit function (10), which is decomposed into shifters of market size, fixed costs, and variable profits. I construct
instruments corresponding to each type of profit shifter. For each set of results, I report diagnostic tests of instrument
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pursue an alternative strategy that exploits the panel structure of the data and the orthogonality

conditions implied by (16) and (17):

E (∆ε1mtNmτ ) = 0 ∀τ : τ ≤ t− 2 (20)

E (∆ε2mtNmτ ) = 0 ∀τ : τ ≤ t− 2 (21)

E
(

∆ε2mtÑmτ

)
= 0 ∀τ : τ ≤ t− 2 (22)

In particular, these conditions mean that values of N lagged by two or more periods are valid

instruments for∆N, i.e., {Nmτ : τ ≤ t− 2}may serve as an instruments for∆Nmt. Similar relations

hold for Ñ . Therefore, a valid instrument matrix for market m observations in the “difference”

equation (18) may be expressed as:

W1m ≡


∆Z1m3 1t Nm1 0 0 ... 0

∆Z1m4 1t Nm1 Nm2 0 ... 0
...

...

∆Z1mT 1t Nm1 Nm2 Nm3 ... Nm,T−2

 (23)

I use the notation of 1t to represent a row vector whose ith element is equal to 1 if i = t, where

t is the period of the corresponding observation. This construct captures the period fixed effects

in equation (18). The W matrix reflects the fact that for the strictly exogenous variables Z and

the period fixed effects ω1t, the differenced values may properly serve as their own instruments.

GMM estimation in first differences using instruments like those found in equation (23) is a

variant of the Arellano and Bond (1991) estimator. The Arellano-Bond estimator is typically

applied to dynamic panel data models that have lagged dependent variables on the right hand side,

but it is equally applicable to static models with endogenous regressors. Two tests are available

to substantiate the validity of this approach to identification. First, a formal requirement for the

exogeneity of lagged levels of N is that no serial autocorrelation is present in ε. A test proposed

by Arellano and Bond (1991), checks for serial autocorrelation in the GMM residuals by testing

for second order autocorrelation (AR(2)) in ∆ε.24 Second, as is standard for GMM estimators,

the Hansen J test (Hansen (1982)) of overidentifying restrictions may be used to test that the

instruments are properly excluded from the estimation equation. I report these tests in the main

results (Section 6) and in my comparison of different instruments provided in Appendix C. As

discussed in those sections, I find that the required conditions hold for my model.

As pointed out by Arellano and Bover (1995), if there is considerable persistence in the endoge-

nous variable (i.e., it approximates a random walk), use of the standard Arellano-Bond estimator

power and proper exclusion. In all cases, the candidate instruments fail the diagnostic test for weak instruments.
24After transforming to first differences, testing for AR(1) in ε in the original estimation equation is equivalent to

testing for AR(2) in ∆ε. The test statistic is given by
∑
m,t

εm,tεm,t−2, which is normally distributed under the null of

no serial autocorrelation.
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can still result in a weak instruments problem, since lagged levels alone may have poor predictive

power for first differences. This is the case in my application, as N has limited within-market

variation (i.e., E85 market entry is rare). A potential solution to this problem, posed by Arellano

and Bover (1995) and fully developed by Blundell and Bond (1998), is to make use of additional

moment conditions to improve effi ciency. The key insight of these papers is that, the equation

in levels may be consistently estimated using instruments that are orthogonal to the fixed effects.

Time invariant regressors may therefore enter the equation in levels, since such variables are clearly

orthogonal to the market fixed effect. This is particularly convenient, as it provides a means to

estimate the effects of time invariant regressors while maintaining controls for market-level un-

observables. Under an additional assumption, described momentarily, lagged differences of the

endogenous variables are valid instruments for the endogenous variable in levels. The instrument

matrix for the “levels”equation may then be expressed as:

∆W1m ≡


Z1m2 1t ∆Nm2 0 0 ... 0

Z1m3 1t ∆Nm2 ∆Nm2 0 ... 0
...

...

Z1mT 1t ∆Nm1 ∆Nm2 ∆Nm3 ... ∆Nm,T−2

 (24)

Estimation proceeds by stacking the “levels”equation on top of the “differences”equation and

applying the usual GMM procedure to the joint system. To summarize, the moment conditions for

the consumer flex-fuel demand system may be written:

E[∆W1ε1] = 0 (25)

E[W1∆ε1] = 0

The fleet demand equation takes a similar form, but the instrument matrices also include lags

of dedicated-access E85 facilities (Ñ). The resulting “system GMM” estimator delivers highly

effi cient estimates under the stated assumptions.

The additional assumption necessary for doing “system GMM”is that correlation of the fixed

effect with the endogenous variable is time-invariant. In the case of (18), this condition translates

to E(δ1m∆Nmt) = 0, which implies a weak form of stationarity on the stochastic process generating

N . The condition holds if there are no systematic deviations across markets in the observed rate of

E85 retailer entry across markets with different mean levels of consumer utility for flex-fuel vehicles.

In other words, departures from the steady-state of N is idiosyncratic across markets. If flex-fuel

vehicle installed bases are in steady-state, we would expect this condition to hold, since firm profits

would then be time invariant. To the extent that installed bases have not yet reached steady-state

in the sampled data, we might expect E(δ1∆N) > 0, since higher mean consumer flex-fuel utility

should translate into more rapid growth of the installed base and hence a higher frequency of E85

retailer entry. Whether or not the assumption is problematic in finite samples turns on what

factors are captured by the fixed effects δ across markets. However, problems arising from this
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condition should be reflected in tests of the exogeneity of the instruments, which are not rejected

in my model.

6 Results

The results are presented in two sections. In Section 6.1, I present and discuss the main estimation

results. I present robustness checks of many of the key model assumptions in Appendix D.

6.1 Main estimation results

6.1.1 Flex-fuel demand

I begin discussion of the results with the flex-fuel demand model estimates, which are presented in

Table 5. The dependent variables are the log-odds ratios of flex-fuel purchase by consumers (H1,

first column) and fleets (H2, second column). For brevity, I suppress estimates of fixed effects. I

first comment on the diagnostic tests that substantiate the validity of the instruments employed.

The null hypothesis of no serial autocorrelation in the residuals is not rejected at the 5% level in

both the consumer and fleet equations, indicating use of the estimator is valid. For both demand

systems, the test of overidentifying restrictions (H0 : exclusion restrictions are valid) is also not

rejected at the 5% level, suggesting that the lagged values of N (and Ñ) are properly excluded

from the flex-fuel demand equation. I also perform a weak instruments test by testing the joint

significance of lagged values of N in a regression of demand model controls on N. This is analogous

to the F test of excluded instruments reported in the two stage least squares regressions. The large

(>>10) value of this F statistic provides further evidence that the instruments have identifying

power.

Focusing on the consumer flex-fuel demand estimates, the key parameter (α1) is the coeffi cient

on the number of E85 retailers (N). This coeffi cient captures the “demand side”of the network

effect, i.e., the effect of E85 availability on consumer flex-fuel demand. As anticipated, this

coeffi cient is positive and highly significant. The marginal effects of ethanol fuel entry on flex-fuel

sales are compiled in the following table25:

25To deduce the marginal effect of changes E85 availability on flex-fuel vehicle sales (Q1), two issues must be
considered. First, evaluation of the marginal effect must account for the discrete nature of N. That is, the quantity
of interest is not the elasticity N

Q
∂Q1(α1,N)

∂N
but rather the proportional change Q1(α1,Nb)−Q1(α1,Na)

Q1(α1,Na)
, where Na and Nb

are reference values of N . The leading case of changes in N in the data is from no incumbents to monopoly, for which
Na = 0 and Nb = 1. Second, computation of Q1 (α1, N) must be in reference to some utility level that incorporates
the mean contributions from Z1 as well as the unobservable δ1. I compute the reference utility level as sample average
of the log-odds sales ratio, less the contribution from N, i.e. U = 1

MT

∑
m,t

(Hmt − α̂1Nmt). Normalizing the market

population to P = 1 (it is immaterial for the calculation of percentage changes), I evaluate the marginal effect using

the formula Q1 (α1, N) =
exp(α1N+U)

1+exp(α1N+U)
.
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N ∆Q1

0−→ 1 12.04%

1−→ 2 12.02%

2−→ 3 12.01%

3−→ 4 11.99%

While the percentage increase in flex-fuel sales does decline in N, at the reference utility level

the marginal effect of entry is roughly constant, with an additional ethanol fuel retailer leading to

a 12.0% increase in flex-fuel sales. Thus, the model implies an economically significant increase in

flex-fuel demand in response to E85 market entry.

The remaining coeffi cients (β1) capture the effects of exogenous market-level observables (Z1) on

consumer flex-fuel vehicle demand. Of these, only gas_stations, ethanol_plants, and auto_dealers

are time-varying. The remaining covariates are time constant, and appear only in the “levels”

equation of the GMM system. These regressors control for consumer demographics (rural, income,

age, male), commuting patterns (travel_time, interstates), retail vehicle availability (auto_dealers),

and fuel prices (gas_stations, ethanol_plants, corn_acres). Signs of these coeffi cients generally

conform to prior expectations. For example, flex-fuel sales are higher in markets with fewer gas

stations (high gasoline prices) and more auto dealerships (greater availability of flex-fuel models).

Controls for commuting patterns are insignificant. The demographic variables indicate greater

demand for flex-fuel vehicles in rural, higher income regions.

Turning now to the fleet flex-fuel demand estimates, the coeffi cient on N (α21) is also positive

and significant, implying a positive feedback loop in fleet flex-fuel demand and E85 retailer entry.

I compute the marginal effects of E85 retailer entry on fleet flex-fuel demand in the same manner

as for the consumer model, and obtain:

N ∆Q

0−→ 1 25.64%

1−→ 2 25.63%

2−→ 3 25.61%

3−→ 4 24.60%

The model predicts a greater demand response by fleets to E85 market entry than by consumers.

This result seems intuitive, since many fleets operate under alternative fuel use mandates, and are

therefore more likely to utilize E85 than consumers. The coeffi cient on private access E85 stations

is insignificant after controlling for market fixed effects, as anticipated.

The exogenous market characteristics in the fleet demand equation (Z2) control for firm charac-

teristics (avg_salary), commuting patterns (interstates), retail vehicle availability (auto_dealers),

and fuel prices (gas_stations, ethanol_plants, corn_acres). The number of car rental agencies

(auto_rentals) is included, since the alternative fuel preferences of these firms (which constitute

the majority of large fleets) may differ systematically from other types of vehicle fleets. The num-

ber of businesses in the market, total_establishments, is a control for systematic differences in the
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market size definition, which is based on the number of persons employed in the market. In effect,

this controls for the effect of concentration of employment on the potential market size. The

general pattern of these parameter estimates resembles that in the consumer equation. However,

the “income”effect is reversed —flex-fuel purchase is more likely in markets with lower paying firms.

The rural variable stands out as particularly material, which may reflect systematic differences in

fleet composition or usage patterns in more agrarian regions.
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Table 5: Main estimation results - flex-fuel vehicle demand
Equation

Consumer Fleet
retail E85 stations (N) 0.114*** 0.229***

(0.029) (0.077)
gas -0.006*** -0.034***

(0.001) (0.003)
refineries 0.032 -0.017

(0.061) (0.069)
dealers 0.006** 0.025***

(0.002) (0.006)
corn -0.008*** -0.058***

(0.002) (0.003)
interstates -0.004 -0.096***

(0.019) (0.024)
rural 0.140*** 1.833***

(0.038) (0.041)
income 0.007***

(0.001)
age 0.006

(0.003)
male 0.027***

(0.006)
commute -0.003

(0.002)
private E85 stations (Ñ) 0.236

(0.342)
rentals 0.034

(0.023)
total_stablishments -0.000***

(0.000)
avg_alary -0.007***

(0.002)
Market fixed effects Yes Yes
Period fixed effects Yes Yes

Observations 41292 41292
RMSE 0.80 1.18
Weak id F 48.18 25.05
Overid Chi-squared (dof) 5.72 (2) 4.14 (2)
Overid p-value 0.06 0.13
AR(1) Z 1.685 -1.697
AR(1) p-value 0.092 0.090
Standard errors based on 30 bootstrap replications
Significance levels: * p<0.05, ** p<0.01, *** p<0.001
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6.1.2 Fuel Retailer Entry

The E85 market entry estimates are presented in Table 7. The estimated correlation coeffi cients

ρ13 and ρ23 are insignificant. I interpret this result as indicating that the model specification fully

captures the relevant variation through the control variables. Thus, when exploring the robustness

of my results to other assumptions in Appendix D, I use a compuptationally more convenient entry

model estimator that assumes independent shocks to E85 profitability and flex-fuel vehicle demand.

Entry model regressors are divided into three categories, corresponding to fixed cost shifters

(Z3), variable profit shifters (Z4) and market size shifters (Z5). For fixed costs, the primary

controls are state and period fixed effects. The rural and income variables are included as fixed

cost shifters, under the premise that equipment and labor input prices may vary with these factors.

As one might anticipate, fixed costs appear to be higher in more rural, higher income regions. The

negative coeffi cient on gas_stations presumably reflects local economies of scale in servicing the

infrastructure requirements of service stations (e.g., installation of tanks and pumps). Similarly,

ethanol_plants should correlate positively with availability of ethanol-related infrastructure and

installation services. However, this effect is not significant.

The variable profit shifters include demographics that may correlate with fuel type preferences

(rural, income), fuel consumption patterns (travel_time), competition concentration (land_area),

wholesale ethanol prices (corn_acres, ethanol_plants), and substitute fuel price (gas_stations).

In general, the estimates are as expected —profits are higher where wholesale ethanol prices are

low (more corn, ethanol plants), competition is more geographically dispersed (larger area), and

substitute fuel prices are high (fewer gas stations). The demographic factors suggest rural, lower

income flex-fuel vehicle owners are more likely to purchase E85. The fact that variable profits

decrease in income is somewhat counterintuitive, since presumably higher income consumers would

have higher willingness to pay for E85, but income may also capture some type of costs particular

to higher vehicle density regions. The negative coeffi cient on travel_time is also puzzling, since

long travel times should reflect greater fuel consumption. However, another interpretation of this

result is that fuel is purchased with greater probability outside the consumer’s home market. All

coeffi cients are statistically significant.

The market size coeffi cients are particularly interesting to interpret, as units have been nor-

malized to consumer flex-fuel vehicles. The only exogenous market shifter used in the market

size expression is interstates, which is assumed to capture E85 consumption by flex-fuel vehicles in

long-range commuting patterns. The estimate implies the presence of an interstate highway has

the same contribution to retailer profits as 12.2 consumer flex-fuel vehicles in the installed base.

In a similar fashion, the coeffi cient on the fleet flex-fuel installed base (γ) parameter indicates that

it takes 1/.14 = 7.1 fleet flex-fuel vehicles to equal the profit contribution of one consumer flex-fuel

vehicle. That fleet vehicles contribute less to retailer profits is somewhat surprising, given that

fleets frequently operate under alternative fuel usage mandates while consumers have no such re-

striction. In his study, Corts (2010) finds that it takes about twice as many consumer flex-fuel
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Table 6: E85 market entry thresholds in consumer flex-fuel vehicles
Required installed base

E85 stations Monopoly conditions Average conditions
1 203.6 256.2
2 458.1 576.4
3 814.3 1024.7
4 1272.4 1601.0

vehicles as government fleet flex-fuel vehicles to support one E85 station. Both the data and meth-

ods differ, so a direct comparison of the results is diffi cult. In particular, fleet vehicles in my study

are predominantly comprised of corporate vehicles, whereas in Corts (2010) “fleets”are exclusively

government vehicles. It should be noted that my result is not an artifact of the model structure,

as the descriptive regressions in Table 4 show. The effect of the fleet installed base on the number

of E85 retailers is smaller (and insignificant), suggesting the differences between the studies relates

to the data. Inasmuch as Corts (2010) uses a cross-section of all current registrations (as opposed

to my time series of vehicle registrations), there may be significant differences due to the initial

conditions of the fleet installed base, which I must model indirectly.

Interpretation of the entry model results is facilitated by computing the number of flex-fuel

vehicles required to support a given number of E85 retailers, or the “entry thresholds” in the

language of Bresnahan and Reiss (1991). The “supply side” of the network effect essentially

operates through this mechanism: as the installed base of flex-fuel vehicles increases, the market

becomes more profitable to serve, and at certain threshold values of the installed base, additional

entry becomes feasible. I report the entry thresholds reported in Table 6. The threshold values

are computed from the entry model estimates using the formula: S∗N =
exp(ψ̂′Z4)

φ̂′Z5
(N + 1)2 . I

report entry thresholds with respect to average monopoly conditions (i.e., Z4 and Z5 are computer

for observations with N = 1) and for the full sample. The two measures are reported since there

appear to be systematic differences between markets that can support E85 retailers and those which

do not, much of which can be attributed to the state effects in fixed costs. Under typical monopoly

conditions, the model predicts that at least 204 consumer flex-fuel vehicles are required to support

a single ethanol fuel retailer. Using the entire sample average increases the monopoly thresholds by

approximately 50 vehicles. These estimates compare very favorably with the observed installed

bases (see Table 3) and the estimates by the Environmental Protection Agency (Department of

Transportation and the Environmental Protection Agency (2002)), which suggest about 200 flex-

fuel vehicles are required. Corts (2010) estimates the required number of consumer flex-fuel vehicles

to support a station to be somewhat higher, in the range of 320 to 560 vehicles.
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Table 7: Main estimation results - E85 market entry
Variable profits (ψ) Fixed costs (φ) Market size (γ, λ) Covariance (ρ)

rural 1.662*** 0.595***
(0.114) (0.093)

income -0.014*** 0.005*
(0.002) (0.002)

gas_stations -0.049*** -0.039***
(0.004) (0.006)

ethanol_plants 0.344 -0.259
(0.197) (0.246)

travel_time -0.034***
(0.006)

corn_acres 0.037***
(0.004)

land_area -0.002***
(0.000)

constant -2.338***
(0.190)

fleet FFV installed base 0.141**
(0.047)

interstates 12.231**
(1.912)

ρ1 0.033
(0.070)

ρ2 -0.017
(0.138)

State fixed effects No Yes No -
Period fixed effects No Yes No -
Standard errors based on 30 bootstrap replications
Significance levels: * p<0.05, ** p<0.01, *** p<0.001
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7 Applications and strategic implications

The results presented in the previous section provide strong evidence of an indirect network effect

in the market for ethanol-compatible vehicles and fuel. In this section, I demonstrate application

of the results and discuss the strategic implications for firms. The first counterfactual experiment

quantifies the cumulative effect of positive feedback arising from flex-fuel vehicle demand depen-

dence on E85 availability. This descriptive exercise provides insight into the long-run significance of

the network effect across a sample of heterogeneous markets, which cannot be easily inferred from

the point estimates of marginal effects calculated in Section 6.1.1. The remaining experiments

evaluate promotional strategies firms may implement to accelerate the adoption of the ethanol fuel

standard, and thereby generate additional demand for their products. In these experiments, I take

the perspective of a flex-fuel vehicle manufacturer and evaluate the effect of offering promotional

subsidies to fuel retailers to enter the E85 market.

To reduce the computational burden of evaluating the counterfactual experiments, I focus on a

random sample of 400 markets in Midwestern states.

7.1 Quantifying the network effect

Feedback in the econometric model is realized through two mechanisms. The first source of

feedback originates from the simultaneous determination of flex-fuel demand and E85 entry, and

operates within the period outcomes are realized. The “demand side” of this feedback loop is

compactly summarized by the marginal effects of N on flex-fuel demand computed in Section 6.1.1.

The second source of feedback is the persistence of flex-fuel demand in the installed base, which

operates across periods. Here, I quantify the long-run impact of both effects in sample market

conditions.

The method is to first simulate market outcomes assuming the model estimates are the true

parameters governing the data generating process (the “baseline”). Then, the simulation is re-

peated under the assumption that neither consumers nor fleets have utility for E85 (i.e. I set

α1 = α21 = 0). Simulation of market outcomes requires the following series of steps. First, for

each market observation, I draw market shocks from the distribution (14). Next, I solve the model

for the equilibrium values of Q∗1, Q
∗
2 and N

∗ period by period, updating the installed base sequen-

tially. Third, I repeat the first two steps multiple (30) times and average the result to obtain the

expected value of the market outcomes.

I summarize the counterfactual graphically in Figures (1) and (2) below. In these plots, the

installed bases and number of E85 retailers are aggregated across the sample markets. At any

point in time, the cumulative influence of the network effect is given by the difference between the

baseline and no-feedback curves. In the final period (2006), the network effect accounts for 9.4% of

the predicted number of E85 retailers. Similarly, the network effect accounts for 27.5% of the total

flex-fuel vehicle installed base. Indirect network effects of this size are economically material, but
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moderate in comparison to those observed in high-tech product markets.26
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7.2 Subsidy of Ethanol Market Entry

From the marketer’s perspective, the externalities which characterize an indirect network effect are

a double-edged sword. On the one hand, existing availability of a complementary good increases

demand for the marketer’s product at no additional expense. On the other, when an important

complement is scarce or unavailable, demand may be severely depressed or curtailed entirely. In

the latter circumstance, neither producer of the complementary good pair wishes to make unilateral

investments in expanding their product availability, since such efforts may not be reciprocated. A

solution to this chicken-or-egg problem is to devise co-marketing strategies that “internalize” the

network effect —i.e., contractual obligations that align firm incentives. I assess two arrangements

of this type, in which subsidies are provided by vehicle manufacturers to fuel retailers in order to

encourage E85 market entry. The first subsidy policy considers the benefits and costs of a fixed-

rate subsidy that reduces the fixed cost of market entry by 10% for all potential entrants in all

time periods. The second policy allows for a variable-rate subsidy, where the subsidy level is set

by the vehicle manufacturer. The subsidy offered equals the amount required to induce one more

entrant than the un-subsidized market equilibrium would support. The subsidy is only offered in

markets where profits from additional vehicle unit sales in the current period exceed the cost of the

subsidy.
26For example, Nair, Chintagunta, and Dubé (2004) find that indirect network effects in PDA hardware/software

adoption account for 22% of the installed base of PDAs over a period roughly half the length of my study.
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To assess profits in dollar terms, one would need to know the manufacturer margin per flex-fuel

vehicle and the normalization required to scale E85 retailer fixed costs into dollar units. Outcomes,

however, only depend on the ratio of these two quantities. I simplify matters by normalizing the

unit of profit to be the average manufacturer margin, and assume a ratio of 1:100 for vehicle margins

to average E85 fixed costs. This would be consistent with manufacturer profits of $50 per flex-fuel

vehicle and $5000 average E85 fixed costs.27

The subsidy policies are computed in a manner analogous to that described in the previous

section. For the “fixed-rate” subsidy, I evaluate the effect of a 10% reduction in fixed costs by

adjusting the fixed cost intercept value. For each firm that enters, the vehicle manufacturer is

assessed a subsidy cost of 10%*100 = 10 units. The variable rate, or “market optimized”, policy

allows for targeting the most profitable markets for subsidy. Manufacturers only extend the offer

of subsidy to markets for which it is profitable and pay the minimum subsidy required to induce

an additional entrant. I evaluate the policy by solving for the change in fixed costs required

to induce N∗ + 1 E85 retailers in equilibrium. If this cost (in vehicle units) is smaller than the

incremental flex-fuel unit sales with N∗+1 E85 retailers, market outcomes corresponding to N∗+1

ethanol retailers are assigned and the vehicle manufacturer is credited with the resulting net profit.

Otherwise, the net profit is simply the unit sales with N∗ retailers.

Figures (3) to (6) below summarize the effect of these counterfactual policies. Plotted values

are the incremental changes to the quantities of interest from the baseline simulation, which capture

the cumulative effect of the policy. Figures (3) to (5) demonstrate that, relative to the fixed rate

policy, the variable rate policy results in 40% higher consumer/fleet flex-fuel installed bases in the

final period, while inducing 6% less E85 market entry. The profit implications of the two policies

are summarized in Figure 6. Over the course of the sample period, actively targeting markets for

subsidies results in a 50% increase in cumulative profits relative to the blanket “fixed-rate”policy.

This simple experiment clearly demonstrates that the network effect may be harnessed to improve

vehicle manufacturer profitability, and that an optimal incentive policy will incorporate knowledge

of local market conditions.
27Margins on new vehicles sold in the US varies greatly by manufacturer. Japanese automakers lead in

profitability with pretax margins in excess of $1200 per vehicle, while the Big Three domestic manufactur-
ers (which produce the bulk of flex-fuel vehicles) typically earn less than $250 per vehicle. For example,
GM actually lost $2500 per domestic vehicle sold in 2005. Source: http://www.washingtonpost.com/wp-
dyn/content/article/2006/06/01/AR2006060102083.html

36



1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

Year

C
on

su
m

er
 fl

ex
­fu

el
 in

st
al

le
d 

ba
se

Fixed subsidy
Market optimized subsidy

Figure 3: Subsidy counterfactual - consumer

flex-fuel installed base

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

Year

Fl
ee

t f
le

x­
fu

el
 in

st
al

le
d 

ba
se

Fixed subsidy
Market optimized subsidy

Figure 4: Subsidy counterfactual - fleet flex-fuel

installed base

1 2 3 4 5 6
40

50

60

70

80

90

100

110

120

130

Year

E8
5 

st
at

io
ns

Fixed subsidy
Market optimized subsidy

Figure 5: Subsidy counterfactual - number of

retail E85 stations

1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000
∆

 p
ro

fit
 (v

eh
ic

le
 u

ni
ts

)

Period

Fixed subsidy
Market optimized subsidy

Figure 6: Subsidy counterfactual - incremental

profits in vehicle units

8 Conclusion

This paper examines the role of network effects in the demand for ethanol-compatible vehicles

and retailer entry into the market for ethanol fuel. The network effect arises in this market

due to complementarities in the availability of ethanol fuel and the installed base of ethanol-

compatible vehicles. To measure these effects empirically, I develop a simultaneous equations model

of consumer flex-fuel vehicle demand, fleet flex-fuel vehicle demand, and E85 retailer market entry.
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The model extends the Bresnahan and Reiss (1991) model of competitive entry to incorporate

an endogenous market size. I develop a new estimator for the model that accommodates the

simultaneity induced by the co-determination of ethanol-compatible vehicle demand and ethanol

fuel supply. correlated shocks to the demand and entry systems, and that does not require the

use of instruments for the entry equation. In contrast to most studies of indirect network effects,

the feedback mechanism investigated here is spatial in nature and operates at a highly localized

level. To identify these highly localized effects, I estimate the model using a panel of zip code level

observations. These data incorporate the entire population of vehicle registrations and ethanol fuel

market entry events in six states over six years. The rich panel structure allows me to control for

unobservables and to correct for simultaneity bias in the vehicle demand estimation by using lagged

endogenous variables as instruments. The model estimates provide strong evidence of a network

effect, with both statistical and economic significance. Under typical market conditions, entry of

an E85 retailer leads to a 12.0% increase in consumer demand for flex-fuel vehicles and a 27.5%

increase among fleets. The entry model predicts that an E85 retailer requires an installed base of at

least 204 flex-fuel vehicles to be profitable. I apply the estimates in a series of counterfactual policy

experiments in which I further quantify the network effect and explore strategies to improve ethanol-

compatible vehicle manufacturer profitability by leveraging the network effect. I find market-

optimized subsidies provided by vehicle manufacturers to fuel retailers to be highly effective in

enhancing profitability.

There are several possibilities for extensions to the paper. First, the assumption of identical

firms could be relaxed in the entry model. One approach would restrict the set of potential E85

entrants to existing service stations, and to obtain data on those firm characteristics. These data

are currently unavailable, however. Since scale economies in ethanol distribution are likely an

important determinant of observed patterns of entry behavior, incorporating chain effects could

have important implications for estimates of the network effect. This extension will considerably

complicate an already computation-intensive estimation procedure, however, since the identities of

entering firms must be determined in equilibrium. Another extension might consider in greater

depth the alternative fuel vehicle choices of fleets, in combination with the decision to build dedi-

cated refueling facilities. A wider array of alternative fuel vehicles are available to fleets, including

compressed natural gas (CNG), liquefied natural gas (LNG), propane based fuels. It would be

interesting to consider these fuel types (which are not backwardly compatible with gasoline) in the

context of a multinomial choice model.
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Appendices

A Visualization of flex-fuel installed base and E85 availability

Figure 1: Log installed base of flex-fuel vehicles, 2001

Figure 2: E85 availability (station counts), 2001
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Figure 3: Log installed base of flex-fuel vehicles, 2001

Figure 4: E85 availability (station counts), 2006
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B Derivation of the Entry Equilibrium Constraint

To derive the constraint condition imposing ∂ΠN

∂N ≤ 0, I suppress all subscripts and introduce the

following shorthand notations relating to equations (3) and (5). Let:

H1 = ln

(
Q1

P1 −Q1

)
= α1N + k1

where : k1 = β′1Z1 + δ1 + ω1 + ε1

H2 = ln

(
Q2

P2 −Q2

)
= α21N + k2

where : k2 = α22Ñ + β′2Z2 + δ2 + ω2 + ε2

Then the current period consumer and fleet flex-fuel sales may be written:

Q1 = P1
exp (α1N + k1)

1 + exp (α1N + k1)
= P1

exp (H1)

1 + exp (H1)

Q2 = P2
exp (α1N + k1)

1 + exp (α1N + k1)
= P2

exp (H2)

1 + exp (H2)

Differentiating Q1 with respect to N yields:

∂Q1

∂N
=

∂

∂N
P1

exp (α1N + k1)

1 + exp (α1N + k1)
= α1P1

exp (α1N + k1)

(1 + exp (α1N + k1))2 =
α1Q1

1 + exp (H1)

Similarly, for Q2 we obtain:

∂Q2

∂N
=

α1Q2

1 + exp (H2)

From equation (11) we have:

∂S

∂N
=

∂

∂N

(
(B1 +Q1) + γ (B2 +Q2) + λ′Z5

)
=
∂Q1

∂N
+ γ

∂Q2

∂N

Using these side calculations and defining V = exp (ψ′Z4) > 0, the constraint ∂ΠN

∂N ≤ 0 takes

the form:
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∂ΠN

∂N
=

∂

∂N

[
S(N)

V

(1 +N)2 − F
]
≤ 0

=⇒ ∂S

∂N

V

(1 +N)2 −
2SV

(1 +N)3 ≤ 0

=⇒
(
∂Q1

∂N
+ γ

∂Q2

∂N

)
1

(1 +N)2 −
2S

(1 +N)3 ≤ 0

=⇒ α1Q1

1 + exp (H1)
+

γα21Q2

1 + exp (H2)
− 2S

1 +N
≤ 0
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C Alternative flex-fuel demand instruments

In this appendix, I report flex-fuel demand system estimates using a variety of instrumentation

strategies. The intent here is to demonstrate the challenge of finding valid “external”instruments

for identification in my application and to motivate the use of the “system GMM”procedure of

Blundell and Bond (1998), which implements a time series identification strategy based on lagged

values of the instrumented variables. Correcting for the endogeneity of E85 market entry in

the flex-fuel demand equations (3) and (5), requires finding variables that shift E85 availability

independently of flex-fuel demand. The primary diffi culty in finding “external”instruments arises

due to the fact that few data sources can match the richness of variation within zip codes I observe

with the Polk vehicle registration data. One method to address this shortcoming would be to

aggregate the flex-fuel data across time into a single cross-section, and search for time-static zip

code level instruments. However, a cross-sectional approach eliminates the possibility of controlling

for unobserved factors in the zip code that influence flex-fuel demand, which runs counter to the goal

of identifying highly localized effects (and would severely weaken the credibility of the independent

markets assumption taken during estimation). An additional concern is that many shifters of E85

availability will tend to be correlated with flex-fuel demand through their influence on E85 prices.

The search for “external” instruments begins with an inspection of equation (12). The form

of the E85 retailer profit function clarifies that instruments for N fall into one of three categories:

shifters of market size, shifters of variable profits, or shifters of fixed costs (collectively, I refer to

these as “profit shifter”instruments). Previous studies of market entry, e.g. Bresnahan and Reiss

(1991), have typically used shifters of market size (such as the market population) as instruments

for N. Care must be taken with this approach in my application, since the market size is defined in

terms of the flex-fuel installed base, which is endogenous through current period vehicle demand.

However, lagged values of the installed bases are predetermined in the current period and therefore

should be valid instruments. In the estimates reported in Tables 9 and 10 below, I designate the

set of instruments comprised by the lagged consumer and fleet installed bases of flex-fuel vehicles

as “MS”.

In my study, the most convincing category of exclusion restrictions would involve shifters of

E85 retailer fixed costs. These factors would have the greatest theoretical rationale for proper

exclusion from the vehicle demand equations since fixed costs should not influence E85 prices and

are independent of the market size. To develop a set of fixed cost shifters, I reviewed sample

installation costs for E85 infrastructure.28 Inspection of these quotations reveals that the primary

cost components are: (1) ethanol-compliant tanks and pumps, and (2) site preparation services,

including excavation and concrete pouring. I therefore constructed instruments for fixed costs

using yearly data on the number of establishments in a zip code engaging in petroleum equipment

wholesaling (NAICS 424720), site preparation contracting (NAICS 238910), and ready-mix concrete

28Available at http://www.afdc.energy.gov/afdc/ethanol/cost.html.
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manufacturing (NAICS 327320).29 These data are given the variable names petro_wholesalers,

siteprep_contractors and cement_plants, respectively. I refer to these fixed cost instruments as

“FC”.

Shifters of fuel retailer variable profits are the final category of potential instruments. Using

variable profit shifters as instruments for N requires the strong assumption that vehicle choices

depend upon E85 availability, but not its price. To see this, note that variable cost factors c

enter equilibrium E85 prices, as shown in equation (9). As a practical matter, an instrument

of this class should have strong explanatory power for N but little influence on vehicle demand.

Referring to the descriptive regressions in Table 4, the number of ethanol plants in a market is a

promising instrument that meets these criteria. In general, pure ethanol will be less expensive

in markets where a refinery is present since transportation costs are lower, and where multiple

refineries are present, competition should further lower E85 input costs. Similarly, the number

of bulk petroleum terminals in a market should influence the variable cost of E85, since ethanol

and gasoline are typically sold at such locations. I therefore construct a set of instruments, “VP”,

using the variables ethanol_plants and fuel_terminals. Note that in other model specifications,

ethanol_plants appears as a regressor in the demand equations as a control for local ethanol fuel

prices. Since the estimated coeffi cient for ethanol_plants is uniformly insignificant, excluding it

from the demand equations is not of great concern.

Before evaluating and comparing the results, I consider the anticipated direction of the simul-

taneity bias the instruments seek to correct. A priori, I expect N to be positively correlated with

flex-fuel vehicle demand shocks. Presumably, positive shocks to flex-fuel vehicle demand reflect

unobserved market conditions which are also conducive to E85 market entry. In this case, the

coeffi cients on N in the vehicle demand equations will be biased away from zero since the partial

correlation with the demand shocks will be attributed to the (positive) coeffi cients on N. In other

words, not correcting for the simultaneity will overstate the network effect in the demand estimates.

However, one cannot rule out the possibility that the reverse relationship holds, i.e., that N could

be negatively correlated with shocks to flex-fuel demand. One plausible scenario is that is an

increase in demand for gasoline, which would lead to higher retail gas prices, would then drive

consumers to buy more flex-fuel vehicles, while fuel retailers would be inclined to abandon selling

E85 in favor of the higher margin gasoline.

Another basis by which estimates may be evaluated is economic plausibility. Theory predicts α1

and α21 should be positive, by presumption of positive feedback cycles in ethanol adoption. The

raw patterns of correlation in the data strongly support this prediction: the descriptive regressions

in Table 4 as well as the uncorrected OLS and first difference estimates of the structural model

(Tables 9 and 10 below) all predict a positive effect of N on flex-fuel vehicle demand. Thus, negative

estimates of α with high significance are very suspect. To assess a reasonable upper bound for α1,

I consider its predicted impact on flex-fuel sales at varying levels of N. I compute the predicted

29Available from the Census zip code business patterns (ZBP) database:
http://www.census.gov/epcd/www/zbp_base.html
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percentage increase in consumer flex-fuel sales (Q1) as a function of N relative to N = 0 at various

levels of α1, assuming a baseline utility equal to the sample log-odds ratio:

N \ α1 0.05 0.1 0.2 0.5 1
1 5% 10% 22% 64% 170%
2 10% 22% 49% 170% 619%
3 16% 35% 82% 341% 1754%
4 22% 49% 121% 619% 4325%

Table 8: Predicted % increase in consumer flex-fuel sales relative to N = 0 at sample mean utilities

Casual inspection of the above table suggests that a reasonable bound is α1 < 0.5, since vehicle

sales increases in excess of 50% due to entry of an ethanol monopolist seem implausible based on

the observed patterns in the data.

As a comparative baseline, I include OLS regressions and the system GMM estimates with the

IV regressions reported Tables 9 and 10, which respectively contain the consumer and fleet demand

models. The first three “OLS”columns show regressions of the flex-fuel log-odds ratios, H1 andH2,

with different sets of controls. The results demonstrate that in the consumer equation, estimates

of α1 (the coeffi cient on N) are generally robust across specifications, whereas in the fleet equation,

controlling for unobserved market heterogeneity is extremely important for estimates of α21 (the

coeffi cient on N). For both demand models, the OLS estimates of the α coeffi cients seem plausible

from an economic perspective. Also, as expected, the effect of private ethanol fueling facilities

in the fleet demand system becomes insignificant after controlling for market unobservables, since

most of the variation in Ñ is absorbed by the fixed effects. For this reason, obtaining strong

instruments for Ñ is not a great concern for consistency of the fleet demand estimates.

Inspection of Tables 9 and 10 reveals the shortcomings of the “profit shifter” instruments for

identification: all estimates of α1 and α21 are either statistically insignificant or economically

implausible. A potential solution to the identification problem is to use lagged values of N as

instruments for N. The required assumption is that current flex-fuel vehicle demand does not

depend on past levels of E85 availability. This assumption is a priori reasonable and consistent with

the other assumptions of the model. The “system”GMM estimator of Blundell and Bond (1998),

reported in the final column of the tables, can use two period or greater lags of N as instruments for

N . To reduce the total instrument count, which can result in overfitting the endogenous regressors

(see Windmeijer (2005)), I use two and three period lagged values of N as instruments in the

reported regressions. As seen in Tables 9 and 10, the estimator delivers highly significant estimates

for α1 and α21. Comparing with the OLS estimates (most appropriately, the third column that

includes market and time fixed effects), the correction for endogeneity is the anticipated direction,

although the “corrected”estimates are statistically consistent with the uninstrumented counterparts

(within 95% confidence intervals). I interpret this result as evidence that the controls employed in

the model are suffi ciently rich to render the residuals purely idiosyncratic. The null hypothesis of
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OLS OLS OLS IV MS IV FC IV VP IV SGMM
e85_retail (N) 0.148*** 0.149*** 0.129*** -9.632*** -0.301 0.906 0.114***

(0.018) (0.015) (0.025) (2.113) (0.306) (0.565) (0.029)
gas_stations 0.021*** 0.007** 0.005 0.007** 0.007** -0.000

(0.001) (0.002) (0.009) (0.002) (0.002) (0.001)
ethanol_plants 0.020 -0.041 0.331 -0.025 -0.004

(0.044) (0.058) (0.337) (0.062) (0.045)
auto_dealers -0.011*** 0.000 -0.036* -0.002 0.003 0.012***

(0.002) (0.005) (0.016) (0.005) (0.005) (0.002)
corn_acres -0.007*** -0.005***

(0.001) (0.001)
interstates -0.024** -0.016

(0.008) (0.012)
pop_growth 1.067*** 0.813***

(0.029) (0.050)
rural 0.741*** 0.398***

(0.015) (0.025)
income 0.006*** 0.009***

(0.000) (0.000)
age 0.019*** 0.027***

(0.001) (0.002)
male -0.001 0.010*

(0.002) (0.004)
travel_time -0.011*** -0.004**

(0.001) (0.002)
Zip fixed effects No No Yes Yes Yes Yes Yes

Period fixed effects No Yes Yes Yes Yes Yes Yes
Observations 40716 40716 33930 33930 33930 33930 40716

RMSE 0.90 0.80 0.71 1.47 0.71 0.72 0.68
Weak id F 11.02 23.48 5.94 48.59

Over id χ2 (dof) 0.01 (1) 39.08 (2) 8.18 (1) 5.72 (2)
Over id p-value 0.92 0.00 0.00 0.06

AR(1) Z 77.174 76.996 4.198 2.730 4.325 3.911 1.685
AR(1) p-value 0.000 0.000 0.000 0.006 0.000 0.000 0.092

Table 9: IV comparison: consumer flex-fuel vehicle demand

no serial autocorrelation in the residuals is not rejected at the 5% level in both the consumer and

fleet equations, indicating use of the estimator is valid. The test overidentifying restrictions (H0 :

exclusion restrictions are valid) is also not rejected at the 5% level, suggesting that the lagged values

of N are properly excluded from the flex-fuel demand equation. I also perform the equivalent of

a weak instruments test by testing the joint significance of lagged values of N in a regression of

demand model controls on N. This is analogous to the Stock and Yogo (2002) test of excluded

instruments reported in the two stage least squares regressions. The large (>>10) value of this F

statistic provides further evidence that the instruments have identifying power. In sum, the system

GMM estimation clearly has the most desirable properties among the available IV estimators, and

I therefore use it to estimate flex-fuel vehicle demand in the main estimation routine.
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OLS OLS OLS IV MS IV FC IV VP IV GMM
e85_retail (N) -0.231*** 0.233*** 0.236*** 1.300 2.852*** 1.352 0.229**

(0.025) (0.028) (0.035) (0.789) (0.584) (0.846) (0.077)
e85_private (Ñ) -0.279* 0.586*** -0.095 -0.163 -0.225 -0.165 0.402*

(0.135) (0.131) (0.102) (0.123) (0.156) (0.124) (0.157)
gas_stations -0.035*** -0.002 0.001 0.001 0.001 -0.033***

(0.002) (0.005) (0.005) (0.005) (0.005) (0.003)
total_establishments -0.067 0.120 0.074 0.015 0.072 -0.021

(0.062) (0.090) (0.106) (0.133) (0.106) (0.079)
ethanol_plants 0.022*** 0.011 0.016 0.022 0.016 0.021***

(0.003) (0.010) (0.011) (0.011) (0.011) (0.006)
auto_dealers -0.056*** -0.056***

(0.001) (0.003)
auto_rentals -0.079*** -0.081***

(0.011) (0.021)
avg_salary 1.788*** 1.799***

(0.019) (0.039)
corn_acres 0.105*** 0.032* 0.032* 0.025 0.032* 0.093***

(0.011) (0.014) (0.015) (0.016) (0.015) (0.017)
interstates -0.000*** -0.001* -0.001* -0.001* -0.001* -0.000***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
rural -0.005*** -0.183*** -0.175*** -0.179*** -0.175*** -0.005**

(0.001) (0.027) (0.028) (0.026) (0.027) (0.002)
Zip fixed effects No No Yes Yes Yes Yes Yes

Period fixed effects No Yes Yes Yes Yes Yes Yes
Observations 40716 40716 33930 33930 33930 33930 40716

RMSE 1.62 1.13 0.86 0.88 0.94 0.88 1.20
Weak id F 12.68 24.41 5.20 48.59

Over id χ2 (dof) 14.66 (1) 0.97 (2) 11.16 (1) 4.14 (2)
Over id p-value 0.00 0.61 0.00 0.13

AR(1) Z 100.994 78.258 -2.065 -1.266 -0.805 -1.249 -1.697
AR(1) p-value 0.000 0.000 0.039 0.206 0.421 0.212 0.090

Table 10: IV comparison: fleet flex-fuel vehicle demand
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D Robustness results

In this section, I explore the robustness of my results to three key assumptions: the spatial inde-

pendence of markets, the competitive conduct of firms and the definition of the fleet market size.

The assumption of Cournot competition only has implications for the entry model, while spatial

independence affects both vehicle demand and ethanol supply estimates. I report these robustness

checks in Tables 13, 14, and 15.

Since the main estimation routine found no evidence of correlated shocks to E85 market entry

and flex-fuel vehicle demand, in Section D.1, I develop an alternative estimator which is compu-

tationally more attractive for testing a wide variety of assumptions. Except as where otherwise

noted, I employ this estimator in all the results reported below.

D.1 Restricted maximum likelihood estimator

I develop an estimator of the E85 entry model under the restriction that ρ13 = ρ23 = 0. In this

case, the only source of endogeneity comes from the dependence of Q1 and Q2 on N. Since the

only stochastic dependence here comes through the shock to fixed costs ε3, the likelihood of N

once again takes the form of an ordered dependent variable, as in Bresnahan and Reiss (1991).

Assuming that ε3 ∼ N(0, 1), the likelihood of an observation of N can then be expressed as:

Lmt(θ3|θ̂12, Bmt) = Pr[Nmt|θ̂12, Bmt] = Φ
(

Π
N
mt

)
− Φ

(
Π
N+1
mt

)
(26)

where Φ (·) is the standard normal cumulative density function. As in the unrestricted model,
estimation is conditional upon the first step estimates (θ̂12) and the (unobserved) prior period

installed base. Also as before, the bootstrap procedure will correct for measurement error associated

with using θ̂12 rather than the true θ12. Of course, no draws of unobservables are required for this

model, but it is still necessary to integrate the uncertainty in the installed base of flex-fuel vehicles

out of the likelihood function. This step is accomplished by the Monte Carlo integration:

Lmt(θ3|θ̂12) = EB

[
Lmt(θ3|θ̂12, Bmt)

]
(27)

=
1

NS

NS∑
s=1

Lmt(θ3|θ̂12, B
s
mt)

Once again, to ensure that a unique equilibrium exists for all observations, I impose the con-

straint that firm profits decline in the number of firms (N), through the use of a penalty function.

Thus, the estimator of θ3 solves the constrained maximization:
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θ̂3 = arg max
θ3

∑
m,t

lnLmt(θ3|θ̂12) (28)

subject to :
∂ΠN

mt

∂N
≤ 0 ∀m, t

As Table 11 demonstrates, I find very close agreement in parameter values from this estimator

and the unrestricted estimator.
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Table 11: Comparison of E85 market entry estimates under i.i.d. and unrestricted shock assump-
tions

Entry, flex-fuel demand error structure: iid unrestricted
Variable profits rural 1.708*** 1.662***

(0.176) (0.114)
income -0.012*** -0.014***

(0.002) (0.002)
gas_stations -0.061*** -0.049***

(0.005) (0.004)
ethanol_plants 0.353 0.344

(0.204) (0.197)
travel_time -0.032*** -0.034***

(0.007) (0.006)
corn_acres 0.029*** 0.037***

(0.007) (0.004)
land_area -0.001*** -0.002***

(0.000) (0.000)
constant -2.613*** -2.338***

(0.215) (0.190)

Fixed costs rural 0.588*** 0.595***
(0.085) (0.093)

income 0.008** 0.005*
(0.003) (0.002)

gas_stations -0.027*** -0.039***
(0.005) (0.006)

ethanol_plants 0.443 -0.259
(0.493) (0.246)

State fixed effects Yes Yes
Period fixed effects Yes Yes

Market size fleet FFV installed base 0.153** 0.141**
(0.053) (0.047)

interstates 10.411** 12.231**
(3.835) (1.912)

Covariance terms ρ1 0.033
(0.070)

ρ2 -0.017
(0.138)

Significance levels: * p<0.05, ** p<0.01, *** p<0.001
Standard errors based on 30 bootstrap replications
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D.2 Market indepdence and competitive conduct

To assess the robustness of model estimates to the assumption of market independence, I devise an

ad hoc procedure to limit the influence of out of market competitors in E85 retailing. Concerns

about the violation of market independence center on the fuel retailer entry model, since the

inclusion of market fixed effects largely controls for patterns of spatial dependence in the vehicle

demand system. Following the logic behind Bresnahan and Reiss (1990) and Bresnahan and Reiss

(1991), I estimate the model using markets which are geographically isolated from one another, in

the sense that markets with E85 retailers are separated by some minimum distance criteria. As they

study professional industries present in virtually all population centers, Bresnahan and Reiss are

able to construct a large estimation sample using fairly stringent criteria for geographic isolation.

I do not have that luxury, since markets with ethanol retailers are rare (2.7% of observations)

and are geographically clustered. Imposing greater geographic isolation leads to significant loss in

the number observations, particularly for highly competitive markets, as may be seen in the table

below:

Nearest competitive ethanol market:
Retail E85 stations 5 miles 10 miles 20 miles

0 38,530 35,400 30,659
1 823 597 209
2 80 48 18
3 16 12 1
4 4 3 1

Total 39,453 36,060 30,888

Table 12: Sample sizes under restrictions on out-of-market E85 retailer proximity

I estimate the model using samples which satisfy the 5, 10, and 20 mile separation criteria. The

convergence properties for the 20 mile separation model are poor —convergence was achieved for less

than 50% of the bootstrap replications. I therefore discount any inference from this specification,

but it is reported for completeness. Comparing these estimates to the main results, we find that

estimates are quite robust to the extent to which markets are isolated, and hence independent.

Estimates of the α parameters in the flex-fuel demand equations are highly robust and remain

significant with E85 station separations of up to 10 miles. Parameters of the E85 entry model

manifest greater variation, but generally remain consistent with 95% confidence intervals. The

net effect of the differences in parameter estimates may be seen in the entry threshold estimates.

As intuition might suggest, imposing greater geographic isolation lowers the point estimate of the

monopoly entry threshold (by ~15%).

The Cournot assumption implies that installed bases should increase at a rate proportional to

(1 + N)2. However, casual inspection of cumulative consumer flex-fuel registrations conditional
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upon N (Table 3) suggests that installed bases may increase at a slower rate. Cartel behavior is

an alternative model of competitive conduct that is consistent with a slower rise in the installed

base (linear in N). The cartel model also represents a lower bound for the effect of competition on

ethanol retailer profits. Referencing Table 15 and comparing the cartel model estimates (column

5) to the analogous Cournot model (column 1), we see that all parameter estimates are statistically

equivalent, with the exception of the variable profit intercept. The predicted monopoly threshold

is slightly higher (7.4%) in the cartel model.

Minimum E85 station separation (miles) 0 5 10 20
e85_retail (N) 0.114*** 0.128*** 0.134*** 0.200

(0.018) (0.040) (0.046) (0.124)
gas_stations -0.006*** -0.007*** -0.006** -0.006**

(0.001) (0.002) (0.002) (0.002)
ethanol_plants 0.032 0.022 0.070 0.036

(0.061) (0.053) (0.072) (0.084)
auto_dealers 0.006** 0.007* 0.008** 0.008*

(0.002) (0.003) (0.003) (0.003)
corn_acres -0.008*** -0.009*** -0.009*** -0.011***

(0.002) (0.001) (0.001) (0.002)
interstates -0.004 -0.000 -0.004 0.007

(0.019) (0.014) (0.016) (0.017)
rural 0.140*** 0.115** 0.126** 0.116

(0.038) (0.038) (0.038) (0.063)
income 0.007*** 0.006*** 0.006*** 0.005***

(0.001) (0.001) (0.001) (0.001)
age 0.006 0.005 0.005 0.005

(0.003) (0.003) (0.003) (0.004)
male 0.027*** 0.025*** 0.027** 0.025**

(0.006) (0.007) (0.010) (0.009)
travel_time -0.003 -0.003 -0.003 -0.002

(0.002) (0.002) (0.002) (0.002)
Zip fixed effects Yes Yes Yes Yes

Period fixed effects Yes Yes Yes Yes
Observations 41292 39453 36060 30888

Table 13: Market independence robustness - consumer flex-fuel demand
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Minimum E85 station separation (miles) 0 5 10 20
e85_retail (N) 0.229*** 0.243* 0.239** 0.400*

(0.077) (0.095) (0.085) (0.200)
gas_stations -0.034*** -0.038*** -0.037*** -0.038***

(0.003) (0.003) (0.003) (0.003)
ethanol_plants -0.017 0.018 0.004 -0.050

(0.069) (0.088) (0.086) (0.122)
auto_dealers 0.025*** 0.028*** 0.029*** 0.029***

(0.006) (0.007) (0.008) (0.007)
corn_acres -0.058*** -0.060*** -0.062*** -0.069***

(0.003) (0.004) (0.003) (0.003)
interstates -0.096*** -0.103*** -0.121*** -0.117***

(0.024) (0.024) (0.022) (0.031)
rural 1.833*** 1.797*** 1.794*** 1.808***

(0.041) (0.037) (0.044) (0.036)
e85_private (Ñ) 0.236 -0.036 -0.278 0.417

(0.342) (0.609) (0.760) (0.910)
auto_rentals 0.034 0.019 0.020 0.034

(0.023) (0.021) (0.024) (0.027)
total_establishments -0.000*** -0.000*** -0.000*** -0.000***

(0.000) (0.000) (0.000) (0.000)
avg_salary -0.007*** -0.007** -0.007*** -0.008***

(0.002) (0.002) (0.002) (0.002)
Zip fixed effects Yes Yes Yes Yes

Period fixed effects Yes Yes Yes Yes
Observations 41292 39453 36060 30888

Table 14: Market independence robustness - fleet flex-fuel demand
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Competition Cournot Cournot Cournot Cournot Cartel
Minimum E85 station separation (miles) 0 5 10 20 0
Variable profits rural 1.662*** 1.755*** 1.865*** 1.858*** 1.580***

(0.114) (0.149) (0.148) (0.331) (0.117)
income -0.014*** -0.015*** -0.019*** -0.020*** -0.013***

(0.002) (0.002) (0.002) (0.005) (0.002)
gas_stations -0.049*** -0.048*** -0.045*** -0.043*** -0.047***

(0.004) (0.010) (0.008) (0.010) (0.005)
ethanol_plants 0.344 0.379* 0.439* 0.078 0.378*

(0.197) (0.156) (0.179) (0.370) (0.155)
travel_time -0.034*** -0.034*** -0.042*** -0.030* -0.030***

(0.006) (0.006) (0.010) (0.014) (0.006)
corn_acres 0.037*** 0.037*** 0.038*** 0.037*** 0.038***

(0.004) (0.005) (0.004) (0.005) (0.004)
land_area -0.002*** -0.002*** -0.002*** -0.002** -0.002***

(0.000) (0.000) (0.000) (0.001) (0.000)
constant -2.338*** -2.383*** -2.163*** -2.425*** -3.803***

(0.190) (0.202) (0.211) (0.337) (0.170)

Fixed costs rural 0.595*** 0.862*** 1.024*** 1.415*** 0.565***
(0.093) (0.094) (0.114) (0.219) (0.104)

income 0.005* 0.003 0.000 -0.007 0.005*
(0.002) (0.002) (0.003) (0.004) (0.002)

gas_stations -0.039*** -0.029*** -0.022** -0.030** -0.036***
(0.006) (0.007) (0.007) (0.011) (0.007)

ethanol_plants -0.259 -0.227 -0.119 -0.635* -0.192
(0.246) (0.176) (0.256) (0.273) (0.212)

State fixed effects Yes Yes Yes Yes Yes
Period fixed effects Yes Yes Yes Yes Yes

Market size fleet FFV installed base 0.141** 0.212** 0.290** 0.237* 0.140**
(0.032) (0.070) (0.108) (0.105) (0.043)

interstates 12.231** 12.667* 15.479*** 23.128 15.415***
(1.912) (5.001) (4.441) (20.849) (4.212)

Table 15: Market independence/competition robustness - E85 market entry
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D.3 Fleet market size

Table 16 reports the fleet flex-fuel vehicle demand estimates under an alternative definition of mar-

ket size. Instead of using the number of employees as the measure of market size (the “structural”

column), I define the market size as the total number of fleet purchased vehicles in the market.

This definition of market size implies the dependent variable H2 can be interpreted as an “inside”

market share —I thus refer to this model as the “reduced form”. Overall, the parameter estimates

compare favorably, although a few coeffi cients have statistically significant differences. Impor-

tantly, the coeffi cient on N is robust. As the two market size definitions differ significantly, the

degree of similarity in the results is reassuring that the market size definition does not have great

influence on the model estimates.

Market size specification Structural Reduced form
e85_retai l (N) 0.229*** 0.319***

(0.077) (0.067)
gas_stations -0.034*** -0.017***

(0.003) (0.003)
ethanol_plants -0.017 0.094*

(0.069) (0.048)
auto_dealers 0.025*** -0.002

(0.006) (0.006)
corn_acres -0.058*** -0.036***

(0.003) (0.001)
interstates -0.096*** -0.102***

(0.024) (0.014)
rural 1.833*** 1.221***

(0.041) (0.032)
e85_private (Ñ) 0.236 0.111

(0.342) (0.442)
auto_rentals 0.034 -0.059**

(0.023) (0.022)
total_establishments -0.000*** -0.000***

(0.000) (0.000)
avg_salary -0.007*** -0.005***

(0.002) (0.001)
Zip fixed effects Yes Yes

Period fixed effects Yes Yes

Table 16: Market size robustness - fleet flex-fuel vehicle demand
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