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Abstract

I generalize the workhorse model of network competition (Armstrong, 1998; La¤ont, Rey

and Tirole, 1998a,b) to include income e¤ects in call demand. Income e¤ects imply that call

demand depends also on the subscription fee, not only on the call price. In the standard

case of di¤erentiated networks, weak income e¤ects are enough to deliver results in line with

stylized facts: The networks have an incentive to agree on high mobile termination rates to

soften competition. They charge a higher price for calls outside (o¤-net) than inside (on-net)

the network. This vindicates the use of (a perturbation of) the workhorse model of network

competition.
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1 Introduction

Authorities remain sceptical to network competition despite recent years�market growth and the

signi�cant bene�ts telecommunications have brought to consumers and producers over the course

of the years.1 A main concern are the termination rates the operators charge for connecting calls

from other networks. By agreeing on high reciprocal termination rates, the networks can jointly

commit to high call prices because of higher marginal call costs. Interconnection agreements

between networks are legally enforceable because network externalities render interconnection

desirable. For the fear of market power in the termination markets, authorities routinely cap

termination rates, even for small networks. A common requirement, at least in Europe, is that

termination rates not exceed estimated long run incremental cost.

Based upon the seminal contributions on network competition (Armstrong, 1998; La¤ont,

Rey and Tirole, 1998a,b) one would conclude that regulatory concern about excessive termina-

tion rates is exaggerated. To wit, the workhorse model shows that the existence of termination

pro�t creates an incentive to increase termination rates. However, with high termination rates

it is also more pro�table to slash the subscription fee and attract more customers: A higher

market share means that the network can save on call costs because a larger share of outgoing

calls then terminates inside the network. In the workhorse model, increased termination pro�t

and lower subscription fees exactly cancel out, leaving network pro�t independent of the termi-

nation rate (La¤ont, Rey and Tirole, 1998a). There is no incentive to collude on the termination

rate if it does not a¤ect pro�t. In particular, the networks should not oppose to lowering their

termination rates whenever the regulator calls for it. However, this is not how networks nor-

mally respond to tighter regulation. On the contrary, they vigorously oppose any reduction in

termination rates. The observation that networks strongly resist termination regulation while

the model predicts them to be indi¤erent, constitutes a pro�t neutrality puzzle.

The basic model assumes that the networks charge uniform prices for all calls. When all calls

cost the same, consumers do not care about the size of the network they belong to. Size becomes

important for the choice of network whenever networks price discriminate between calls inside

the own network (on-net) and calls to other networks (o¤-net). If on-net calls are cheaper that

o¤-net calls, as is usually the case, consumers minimize call expenditures by subscribing to the

largest network - even if both networks charge the same price for calls and subscriptions. The

larger is the network, the more advantageous it is to belong to it. Lowering the subscription

fee becomes extra pro�table to the individual network in this case of tari¤-mediated network

externalities (La¤ont, Rey and Tirole, 1998b) because increased network size attracts additional

customers. This network multiplier e¤ect reinforces competition for subscribers and drives down

equilibrium subscription pro�t. However, the network multiplier e¤ect is weaker the cheaper are

o¤-net calls in relation to on-net calls. The networks therefore soften competition by lowering

termination rates, even below marginal termination cost (Gans and King, 2001). Based on these

results, one would not expect colluding networks to oppose to cost-based price caps because the

1 In a sample of 21 OECD countries, Röller and Waverman (2001) attribute one third of economic growth over
the period 1970-90 to telecommunications infrastructure investments.
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caps would not be binding to them. Rather, the welfare problem seems to be inferior termination

rates. Collusion should also imply o¤-net prices below on-net prices, re�ecting comparatively

lower marginal call costs o¤-net than on-net. Yet the networks do complain about regulation,

and o¤-net prices typically are higher than on-net prices. The discrepancy between predicted

prices and observed prices under call price discrimination constitutes a o¤-net price puzzle.

I examine the robustness of the pro�t neutrality and o¤-net price puzzles by generalizing the

workhorse - A-LRT - model of network competition to allow for income e¤ects in call demand.

In the presence of income e¤ects, call demand depends also on the subscription fee and not

only on call prices. Income e¤ects open a channel through which high termination rates soften

competition for subscribers, namely by lowering the marginal utility of income. Subscription

demand depends on the consumer net surplus each network o¤ers its customers. Consumer net

surplus includes call utility, the cost of calls and the cost of the subscription. The lower is the

marginal utility of income, the less important is the size of the subscription fee for the choice of

network and the softer is competition for subscribers. An increase in the termination rate raises

the marginal o¤-net call cost which is passed on to consumers through the o¤-net price. The

more expensive are calls, the lower is the marginal utility of income. Thus, a higher termination

rate means a lower marginal utility of income and by implication softer competition. Pro�t

neutrality is a knife-edge result. Even the slightest income e¤ect tips the scales in favour of high

termination rates. Under uniform call prices, the networks generally collude by setting excessive

termination rates, except in the special case of zero income e¤ects when they are indi¤erent to

the choice of termination rate.

The network externalities that arise under call price discrimination complicate the analysis

because subscription demand is not necessarily uniquely de�ned anymore. Most of the papers

on network competition correct for this problem by considering di¤erentiated networks. When

networks are di¤erentiated, the price di¤erence between o¤-net and on-net calls plays little role

for the choice of network: The network multiplier e¤ect is near insigni�cant. Then, even weak

income e¤ects are enough to turn the standard result around. The networks now jointly pro�t

from setting a termination rate above the marginal cost of termination. In equilibrium, o¤-net

prices are higher than on-net prices.

To summarize: In the standard case of di¤erentiated networks, there is a model ""-income

e¤ects" away from the A-LRT model which does not lead to counter-factual predictions of the

termination rates and call prices. The puzzling pro�t neutrality and o¤-net price results of

the workhorse model are non-robust to the inclusion of income e¤ects in call demand. This

vindicates the use of (a perturbation of) the workhorse model of network competition.

The puzzling predictions of the basic model have stimulated extensions of the workhorse

model in many directions. Most recently, Hurkens and López (2010) analyze the importance of

consumer expectations. They show that networks jointly pro�t from agreeing on excessive termi-

nation rates if consumers have passive expectations. Passive expectations means that consumers

neglect the network multiplier e¤ect when they choose network, which softens competition for

consumers. All that matters for termination rates is to maximize termination pro�t.2 Fully re-

2Passive expectations are related to the notion of competing in utilities instead of prices. When networks
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sponsive consumers (as in A-LRT) and completely passive consumers (as in Hurkens and López,

2010) represent two extreme representations of consumer expectations. An intermediate stand

is to assume that every subscriber only takes the actions of some other customers into account

- consumers belong to so called "calling clubs". The smaller is the calling club, the weaker is

competition for subscribers and the higher is the termination rate (Hoernig et al., 2009).3

Jullien et al. (2010) assume that a proportion of subscribers are "light" users. Light users

hold subscriptions only because they value incoming calls and do not make outgoing calls.

Remember that the networks can save on call costs by cutting the subscription fee and have a

larger share of costs terminated inside the network. This incentive is weaker if a proportion of

the network�s subscribers do not make any outgoing calls. Thus, termination rates are higher

when a fraction of the subscribers are light users.4

Armstrong and Wright (2009) consider network competition when there is a �xed-line net-

work with locked-in subscribers in addition to mobile operators competing for mobile subscribers.

As in the workhorse model, the mobile operators would like to set low termination rates be-

tween themselves to soften competition for subscribers, but charge a high termination rate from

the �xed-line operator to exercise vertical market power. Upholding higher rates for �xed-line

than mobile termination is impossible if the �xed-line operator can bypass termination by re-

laying calls via the competitor�s mobile network. If �xed-line termination pro�t is su¢ ciently

important and arbitrage possibilities prevent price discrimination, even mobile call termination

is priced above marginal cost.5

The above papers represent substantial departures from the workhorse model by changing

the assumptions of how consumers form expectations, considering heterogenous calling patterns,

introducing �xed-line networks, and so forth. The present paper complements the existing

literature by generalizing the workhorse model to include income e¤ects in call demand. A small

perturbation in this direction is all it takes to overturn the puzzling results of the workhorse

model.

compete in utilities (or consumer net surplus) they guarantee their subscribers a certain surplus independently
of the number of subscribers. Then, network size does not matter to consumers even in the case of call price
discrimination. Passive expectations and competition in utilities are not equivalent. In the latter case, the network
has to adjust the pricing plan to account for changes in market share and keep surplus constant (Calzada and
Valletti, 2008)

3This result rests on the assumption that the members of a calling club do not coordinate the choice of network.
In case of coordination, calling clubs have no e¤ect on the optimal termination rate (Calzada and Valletti, 2008;
Gabrielsen and Vagstad, 2008).

4A heterogenous calling pattern is by itself not enough to overturn pro�t neutrality; see Dessein (2003) and
Hahn (2004). Also, one can include call externalities and still maintain pro�t neutrality (Jeon et al., 2004;
Berger, 2005). When the total market size is growing, the networks generally pro�t from a termination rate below
termination cost (Dessein, 2003; Armstrong and Wright, 2009).

5There are a number of other circumstances under which pro�t neutrality fails; see Armstrong (2002) for an
elaborate discussion. The termination rate a¤ects pro�t if the networks are asymmetric (De Bijl and Peitz, 2002;
Carter and Wright, 2003; Armstrong and Wright, 2009). In fact, asymmetric networks may fail altogether in
reaching an agreement. Also, if networks compete in dimensions other than price, for example quality, they might
bene�t from a high termination rate in order to curb investments (Valletti and Cambini, 2005).
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2 Uniform Call Prices: The Pro�t Neutrality Puzzle

The Model I generalize the workhorse model by Armstrong (1998) and La¤ont, Rey and Ti-

role (1998a and b), henceforth A-LRT, to allow for income e¤ects in call demand. A continuum

of consumers with unit measure are uniformly distributed on the unit interval. Each consumer

subscribes to one of two networks located at each end of the interval. I assume in this section

that all calls have the same price, whereas the next section allows networks to price discrim-

inate between calls inside (on-net) and outside (o¤-net) one�s own network. The call pattern

is balanced: Every subscriber to network i = 1; 2 places qi calls at the price pi � 0 per call

to every other subscriber to maximize utility U (qi) + Z(yi), subject to the budget constraint

piqi + yi + ti � I. Call utility features constant elasticity: U(q) = (1� 1=�)q1�1=�, with � > 1.
Consumption y of the numeraire good renders utility Z(y) = y � "y2=2, where " � 0. The

workhorse, A-LRT model, features quasi-linear utility: " = 0. Denote by ti the subscription fee,

and let I be exogenous income.

Utility maximization yields call demand Di = D(pi; ti), demand Yi = Y (pi; ti) for the nu-

meraire good and a shadow price of the budget constraint �i = �(pi; ti). A di¤erence between

this model and A-LRT is that call demand now decreases in the subscription fee ti and not only

in the call price pi; see the Appendix for the details. The consumer net surplus in network i is

vi = V (pi; ti) = U (D(pi; ti)) + Z(Y (pi; ti)) + �(pi; ti)(I � piD(pi; ti)� Y (pi; ti)� ti). (1)

The consumer located at k 2 [0; 1] derives utility v0+ v1� �k from subscribing to network 1

and utility v0+v2� � j1�kj of subscribing to network 2, where v0 is the utility of holding a sub-
scription, whereas � is the virtual transportation cost and a measure of horizontal di¤erentiation.

The customer base of network i equals

Si = � (vi; vj) =
1

2
+
vi � vj
2�

, i 6= j = 1; 2,

when all consumers belong to one network or the other. The market is fully covered (S1+ S2 =

1), if the two networks o¤er similar tari¤s (vi � vj is small), or the networks are su¢ ciently
di¤erentiated (� is large). I employ the standard assumption that � is su¢ ciently high to render

the market fully covered.

The pro�t of network i under uniform call prices equals

�i = Si[(pi � Sic� (1� Si)(co + a))Di + ti � f ] + Si(1� Si) (a� ct)Dj ,

where ct (co) is the marginal cost of call termination (origination), c = ct + co, and f � 0 is the
per-subscriber cost. The network derives its pro�ts from three sources. The �rst term inside the

brackets is the pro�t on outgoing calls, which is positive if the call price exceeds the perceived

marginal call cost Sic + (1 � Si)(co + a) - a weighted average of calls inside and outside the
network. Second, the network earns a pro�t on subscriptions. The �nal term constitutes the
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termination pro�t, which is positive if the markup on termination is positive.

Analysis Increasing the call price pi leads to higher pro�ts for a given customer base and a

given number of outgoing calls. This is the �rst term in marginal pro�t below. However, the

price increase comes at the cost of fewer subscribers and less outgoing calls:

@�i
@pi

= SiDi +
@Si
@pi

[(pi � Sic� (1� Si)(co + a))Di + ti � f ]

+ Si (pi � Sic� (1� Si)(co + a))
@Di
@pi

+
@Si
@pi

Si(a� ct)Di +
@Si
@pi

(Sj � Si) (a� ct)Dj

(2)

The �rst term on the last line term constitutes a cost composition e¤ect. As the number of

subscribers goes down, more calls are terminated outside than in inside the network. The cost

composition e¤ect is negative whenever o¤-net calls are more costly than on-net calls (a � ct).
The �nal term is the marginal e¤ect on termination pro�t. Fewer subscribers tends to reduce

subscription pro�t, but is mitigated by the fact that the number of incoming calls goes up. The

second e¤ect dominates the �rst if the network is large and termination markup positive. Thus,

termination pro�t tends to balance market shares. Increasing the subscription fee ti has similar

e¤ects:

@�i
@ti

= Si +
@Si
@ti
[(pi � Sic� (1� Si)(co + a))Di + ti � f ]

+ Si (pi � Sic� (1� Si)(co + a))
@Di
@ti

+
@Si
@ti
Si(a� ct)Di +

@Si
@ti
(Sj � Si) (a� ct)Dj .

(3)

The network optimally sets call prices equal to the perceived marginal call cost, c + (1 �
Si) (a� ct), so as to maximize the social surplus inside the network and then uses the sub-
scription fee to balance the loss of subscribers against surplus extraction. Lemma 1 generalizes

the existence and uniqueness results (Proposition 7) in La¤ont, Rey and Tirole (1998a) to the

case of income e¤ects:

Lemma 1 Assume that each network charges a uniform price for calls. When the utility of

subscribing to a network (v0) is not too small, the degree of substitutability (1=2�) between the

two networks is not too high, and the income e¤ect (") is not too strong, there exists a unique

and symmetric equilibrium. The call price equals perceived marginal call cost, c+(a� ct)=2, and

the subscription fee T satis�es:

T � f
T

=
1

�@Si
@ti
2T

� 1
2

(a� ct)
T

D(c+ (a� ct) =2; T ). (4)

Proof: See the Appendix.
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The subscription fee T satis�es a modi�ed Ramsey rule. The equilibrium elasticity of subscrip-

tion demand with respect to the subscription fee

�@Si
@ti
2T =

�(c+ (a� ct) =2; T )T
�

is a measure of the intensity of competition for subscribers. The lower is the elasticity of

subscription demand, the higher is the equilibrium subscription fee, all else equal. Obviously,

subscription elasticity is lower the stronger is the degree of network di¤erentiation (the higher

is �), because then prices matter less for the choice of network. Second, subscription elasticity

is lower the lower is the marginal utility of income (�i) because the subscription fee then is

less important for consumer net surplus. The Ramsey rule is corrected by the cost composition

e¤ect. Setting a low subscription fee and gaining a high market share is more pro�table if o¤-net

calls are more expensive on-net calls because the network then can save on call costs.

The networks choose the reciprocal termination rate a to maximize industry pro�t, which

under symmetry is equivalent to maximizing network pro�t

�(a) = 1
2(T (a)� f) +

1
4 (a� ct)D(c+ (a� ct) =2; T (a)),

which consists entirely of subscription pro�t and termination pro�t since outgoing calls are priced

at perceived marginal call cost. By agreeing on a higher termination rate, the two networks a¤ect

termination pro�t as well as subscription pro�t:

�0(a) = 1
2T

0(a) + 1
4 [Dj + (a� ct) (

1
2
@Dj
@pj

+
@Dj
@tj
T 0(a))].

Each network runs a termination de�cit whenever the termination rate lies below the mar-

ginal termination cost (a � ct). If the subscription fee is increasing in the termination rate

(T 0(a) � 0), raising the termination rate unequivocally lowers the termination de�cit (because
@Dj=@pj < 0 and @Dj=@tj � 0; see the Appendix) and simultaneously increases the subscrip-
tion pro�t. Thus, setting a termination rate below marginal termination cost is pro�table only

if the subscription fee decreases su¢ ciently fast in the termination rate. Di¤erentiation of the

equilibrium subscription fee (4) yields

T 0(a) =
�1
2
@
@pi

�
�@Si
@ti
2T
�
� 1

2(Dj +
1
2 (a� ct)

@Dj
@pj
)(@Si@ti

2T )2

(@Si@ti
2T )2

�
1 + 1

2 (a� ct)
@Dj
@tj

+ 1
4�
@�i
@ti
(@Si@ti

)2
� .

Increasing the termination rate a¤ects the subscription fee through two channels.6 An anti-

competitive e¤ect pulls in the direction of a higher subscription fee. Increasing the termination

rate softens competition for subscribers because the marginal utility of income goes down and

6Note that the denominator is strictly positive for all a � ct because @Dj=@tj � 0 and @�i=@ti � 0 with
equality if and only if " = 0, see the Appendix.
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thereby the subscription elasticity:

@

@pi

�
�@Si
@ti
2T

�
@pi
@a

=
1

2

@�i
@pi

T

�
=
1

2

"(� � 1)U 00 (Di)Di
"p2i � U 00 (Di)

T

�
� 0.

Second, a higher termination rate reinforces the cost composition e¤ect and tends to lower the

equilibrium subscription fee. The anti-competitive e¤ect does not appear in the workhorse model

because subscription elasticity there is independent of the termination rate (formally: �i = 1

for " = 0). The cost composition e¤ect exactly o¤sets the e¤ect on termination pro�t, which

renders pro�t independent of the termination rate. In the more general case of non-zero income

e¤ects, the anti-competitive e¤ect is just big enough to pull in favour of high termination rates:

Proposition 1 Assume that the conditions of Lemma 1 hold, so that there exists a unique and

symmetric equilibrium. Then, network pro�t is independent of the termination rate if and only if

the income e¤ect is zero (" = 0). In the presence of income e¤ects (" > 0), any pro�t maximizing

access price (if it exists) lies strictly above the marginal cost of termination.

Proof: See the Appendix.

To gain additional insight into the mechanism driving pro�t neutrality, return to the A-LRT

model, i.e. assume that there are no income e¤ects. Let v(a) = V (c + (a � ct)=2; T (a)) be
consumer net surplus in symmetric equilibrium given the termination rate a. De�ne �(v(a)) �
(@�=@vijv1=v2=v(a))2v(a), the equilibrium subscription elasticity with respect to consumer net

surplus. With quasi-linear preferences, the shadow price of the budget constraint equals unity

(� = 1), and the equilibrium subscription fee solves:

T = f +
v(a)

�(v(a))
� 1
2
(a� ct)D(c+ (a� ct) =2).

Substituting the subscription fee above into consumer net surplus v(a) and the pro�t function

�(a) yields after simpli�cations

v(a) =
�(v(a))

1 + �(v(a))
W (a), 2�(a) =

1

1 + �(v(a))
W (a), (5)

where

W (a) = U(D (c+ (a� ct) =2)) + I � cD (c+ (a� ct) =2)� f

is social surplus net of the utility of holding a subscription (v0) and of the cost of horizon-

tal di¤erentiation (minfk� ; �(1 � k)g). Social surplus is divided between the consumers and
the industry in proportion to the subscription elasticity �(v(a)). Most of the surplus goes to

the consumers whenever subscription demand is elastic because of an intense competition for

subscribers. Conversely, the networks extract most of the surplus under inelastic subscription
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demand because competition is weak in this case. The networks a¤ect by their choice of access

price both the size W (a) of the social surplus to be divided and the share of that surplus the

networks receive through the e¤ect on competition �(v(a)).7 Under pro�t neutrality, the in-

tensity of competition changes in exact proportion with social surplus. To see the fundamental

property behind this result, divide 2�(a) by v(a) in (5) and rewrite: �(a) = v(a)=2�(v(a)). Ob-

viously, pro�t neutrality holds if and only if equilibrium subscription elasticity is proportional

to consumer net surplus, i.e. �(v(a)) = kv(a) for some k > 0. The Hotelling model features

proportional subscription demand at symmetric prices: �(v) = v=� for all v, and therefore pro�t

neutrality follows.8

Pro�t neutrality is a knife-edge result because it hinges on equilibrium subscription elastic-

ity being exactly proportional to consumer net surplus. Introducing even very small income

e¤ects breaks the proportionality and therefore pro�t neutrality. With income e¤ects, social

surplus grows faster than the intensity of competition for low termination rates, and so the

pro�t maximizing termination rate is above the marginal cost of termination.

3 Call Price Discrimination: The O¤-Net Price Puzzle

The Model I now generalize the model in the previous section by allowing the networks to

price discriminate between calls within the network (on-net) and calls outside the network (o¤-

net). Price discrimination creates network externalities in the sense that the optimal choice of

network now depends also on the size of the network and not only on prices. Every subscriber

to network i = 1; 2 places qoni calls at the price poni per call to every subscriber in the same

network (on-net), and qoffi calls at the price poffi per call to every subscriber in network j 6= i to
maximize utility SiU (qoni )+SjU(q

off
i )+Z(yi) and subject to the budget constraint Siponi q

on
i +

Sjp
off
i qoffi + yi + ti � I.
Utility maximization yields on-net demand Doni = Don(pi; ti; Si), o¤-net demand D

off
i =

Doff (pi; ti; Si), demand Yi = Y (pi; ti; Si) for the numeraire good and a shadow price of the

subscription fee �i = �(pi; ti; Si) when all consumers have a subscription, S1 + S2 = 1, and

pi = (p
on
i ; p

off
i ) is the call-price pro�le of network i. Because of the income e¤ect, on-net and

o¤-net calls are substitutes, call demand decreases in the subscription fee and is ambiguous with

respect to changes in the customer base; see the Appendix. De�ne

uoni = uon(pi; ti; Si) = U (D
on(pi; ti; Si))� �(pi; ti; Si)poni Don(pi; ti; Si)

7The socially optimal choice of access charge is ct when no income e¤ects are present. Di¤erentiate: W 0(a) =
U 0(Di)

1
2
@Di
@pi

� c 1
2
@Di
@pi

= 1
4
(a � ct) @Di

@pi
, where I have used U 0(Di) = pi = c + (a � ct)=2. Social surplus W (a) is

single-peaked in a and reaches its global maximum at ct because @Di=@pi < 0 and W 0(ct) = 0.
8More generally, all models in which market share is determined by the di¤erence in consumer net surplus,

Si = g(vi � vj), feature proportional subscription demand: �(v) = 2g0(0)v. The random utility model �rst used
by Dessein (2003) for the duopoly case and extended by Calzada and Valletti (2008) to the general n network case

belongs to this class of models: Si = (1 +
P

j 6=i e
� 1

fvi�vjg)�1, and �(v) = 1


n�1
n
v. However, pro�t neutrality

does not imply that subscription demand is a function of the di¤erences in consumer net surplus. For example,
Si = g((vi=vj)

vj � 1) does not have this property, but still is proportional: �(v) = 2g0(0)v.
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the indirect utility of reaching an on-net subscriber in network i, and let uoffi = uoff (pi; ti; Si) be

the similarly de�ned indirect utility of reaching an o¤-net subscriber from network i. Consumer

net surplus in network i is

vi = V (pi; ti; Si) = Siu
on(pi; ti; Si) + (1� Si)uoff (pi; ti; Si) + Z(Y (pi; ti; Si))

+�(pi; ti; Si)(I � ti � Y (pi; ti; Si)),

when all consumers belong to one network or the other. Under the standard assumption of

di¤erentiated networks,

Si = �(V (pi; ti; Si); V (pj ; tj ; 1� Si)) (6)

uniquely de�nes subscription demand Si in rational expectations equilibrium as a function of

call prices (pi;pj) and subscription fees (ti; tj). The pro�t of network i equals

�i = Si[Si (p
on
i � c)Doni + Sj(p

off
i � a� co)Doffi + ti � f ] + SiSj (a� ct)Doffj .

Owing to price discrimination, call pro�t can now be split into the pro�t of outgoing on-net

calls and the pro�t on outgoing o¤-net calls. Termination pro�t and subscription pro�t adds to

network pro�t, as under uniform pricing.

Analysis By increasing the on-net price, the network earns a higher revenue per on-net call,

but at the cost of a smaller number of subscribers and less on-net calls per subscriber. These

three e¤ects constitute the three �rst terms below:

@�i
@poni

= S2iD
on
i +

@Si
@poni

[Si (p
on
i � c)Doni + Sj(p

off
i � a� co)Doffi + ti � f ]

+ S2i (p
on
i � c) @D

on
i

@poni
+
@Si
@poni

[(poni � c)Doni � (poffi � a� co)Doffi ]

+
@Si
@poni

(Sj � Si) (a� ct)Doffj + Si

�
Si (p

on
i � c) @D

on
i

@Si

@Si
@poni

+ Sj(p
off
i � a� co)

 
@Doffi

@poni
+
@Doffi

@Si

@Si
@poni

!
� Sj (a� ct)

@Doffj

@Sj

@Si
@poni

#
.

(7)

The second term on the second line is a composition e¤ect, same as under uniform pricing:

Fewer subscribers means that relatively more calls are terminated o¤-net. The composition

e¤ect could be positive or negative depending on the pro�tability of on-net calls relative to o¤-

net calls. The �rst term on the third line is marginal termination pro�t. Increasing the on-net

price generally a¤ects demand for all types of calls through the budget constraint. The remaining

terms characterize these income e¤ects. Raising the o¤-net price poffi and the subscription fee

10



ti have similar e¤ects. For example:

@�i
@ti

= Si +
@Si
@ti
[Si (p

on
i � c)Doni + Sj(p

off
i � a� co)Doffi + ti � f ]

+
@Si
@ti
[(poni � c)Doni � (poffi � a� co)Doffi ]

+
@Si
@ti
(Sj � Si) (a� ct)Doffj + Si

�
Si (p

on
i � c)

�
@Doni
@ti

+
@Doni
@Si

@Si
@ti

�
+ Sj(p

off
i � a� co)

 
@Doffi

@ti
+
@Doffi

@Si

@Si
@ti

!
� Sj (a� ct)

@Doffj

@Sj

@Si
@ti

#
.

(8)

Lemma 2 generalizes the existence and uniqueness results (Proposition 5) in La¤ont, Rey

and Tirole (1998b) to the case of income e¤ects:

Lemma 2 Assume that both networks price discriminate between on-net and o¤-net calls. When

the utility of subscribing to a network (v0) is not too small, the degree of substitutability (1=2�)

between the two networks is not too high, and the income e¤ect (") is not too strong, there

exists a unique and symmetric equilibrium. Call prices equal marginal call cost: P on = c and

P off = a+ co. The subscription fee satis�es:

T � f
T

=
1

�@Si
@ti
2T

+
1

4

(a� ct)
T

@Doffj (c; a+ co; T; 1=2)

@Sj
. (9)

Proof: See the Appendix.

The network optimally sets call prices at marginal call cost to maximize the social surplus inside

the network and then uses the subscription fee to balance the loss of subscribers against surplus

extraction. The optimal subscription fee satis�es a modi�ed Ramsey rule. The composition

e¤ect vanishes compared to the subscription fee (4) under uniform pricing: The network does

not care about a larger fraction of outgoing calls being terminated o¤-net when the markup

on all outgoing calls is zero. Instead, an expression related to termination pro�t shows up. A

higher market share of the other network a¤ects demand for o¤-net (as well as on-net) calls in

that network through the income e¤ect.

Just as was the case under uniform pricing, the subscription fee and termination pro�t are

the sole sources of network pro�t

�(a) = 1
2(T (a)� f) +

1
4 (a� ct)D

off (c; a+ co; T (a); 1=2)

because outgoing calls are priced at marginal cost. The marginal e¤ect on industry pro�t of

increasing the reciprocal termination rate a thus equals:

�0(a) = 1
2T

0(a) + 1
4 [D

off
j + (a� ct) (

@Doff
j

@poffj

+
@Doff

j

@tj
T 0(a))]. (10)
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Whether setting an termination rate below marginal termination cost is pro�table depends on

the sensitivity of the subscription fee to changes in the termination rate. If the subscription fee

is non-decreasing in the termination rate (T 0(a) � 0), it is pro�table to increase the termination
rate from any point below marginal termination cost (a � ct) because then termination de�cit
falls and subscription pro�t increases. Only if the subscription fee falls su¢ ciently in the termi-

nation rate can it be pro�table to set a termination rate below the marginal cost of termination.

The key to understanding termination rate collusion under call price discrimination therefore

lies in exploring the sensitivity of the subscription fee to changes in the termination rate.

The equilibrium elasticity of subscription demand with respect to the subscription fee equals

�@Si
@ti
2T =

�iT

� � (uoni � uoffi )
(11)

under call price discrimination. As under uniform pricing, subscription elasticity is lower the

stronger is the degree of network di¤erentiation (the higher is �) and the lower is marginal utility

of income (�i). Under call price discrimination, an additional network multiplier e¤ect intensi�es

competition. A lower subscription fee means a higher market share, all else equal. A larger

market share implies in turn that a larger fraction of every subscribers�calls are terminated on-

net. If it is more valuable to connect with someone in the same network compared to someone

in the other network (uoni > uoffi ) a higher market share further accentuates the bene�t of

belonging to that network. In the presence of network e¤ects, there is a lot to gain in terms

of extra subscribers by lowering the subscription fee because the �ow of consumers multiplies

itself. This process is faster the larger is the net bene�t of on-net calls compared to o¤-net calls

(measured by uoni � uoffi ).

Importantly, the networks a¤ect competition for subscribers through the choice of termina-

tion rate because a higher o¤-net price lowers the marginal value of income (@�i=@p
off
i � 0) and

strengthens the network e¤ect (@(uoni �u
off
i )=@poffi > 0). The net e¤ect is ambiguous in general

and depends on the magnitude of the income e¤ect and the degree of network di¤erentiation:

@

@poffi

�
�@Si
@ti
2T

�
=

T�i

poffi (� � (uoni � uoffi ))

0BBBB@@(u
on
i � uoffi )

@poffi

poffi

� � (uoni � uoffi )| {z }
+

+
@�i

@poffi

poffi

�i| {z }
�=0

1CCCCA .

The elasticity of the network e¤ect is weak in the standard case of di¤erentiated networks (�

is high). Nonetheless, the networks soften competition by setting a termination rate below

the marginal cost of termination in the workhorse (A-LRT) model (see e.g. Gans and King,

2001) because marginal utility of income then is constant (�i = 1). Even small income e¤ects

are enough to overturn this result, and render it pro�table for the networks to agree on a

termination rate above the marginal cost of termination:

Proposition 2 Assume that the conditions of Lemma 2 hold, so that there exists a unique and

12



symmetric equilibrium under call price discrimination. The pro�t maximizing access price lies

below the marginal cost of termination if the income e¤ect is zero. Then, the o¤-net price is lower

than the on-net price. In the presence of income e¤ects and if the networks are di¤erentiated, the

pro�t maximizing access price instead lies above the marginal cost of termination. In this second

case, the o¤-net price is higher than the on-net price (If " = 0, then P on � P off = ct � a > 0.

If " > 0, but small, and �" > 2=(� � 1), then P off � P on = a� ct > 0).

Proof: See the Appendix.

The above results on access price collusion under uniform prices (Proposition 1) and under call

price di¤erentiation (Proposition 2) are derived under standard assumptions. The underlying

assumption of di¤erentiated networks is quite common in the literature because network di¤er-

entiation allows a high degree of freedom in the choice of termination rates, while preserving

concavity of the pro�t function and uniqueness of subscription demand. Propositions 1 and 2

demonstrate that it then only takes a minor departure from the workhorse, A-LRT, model to

reverse the puzzling results and instead deliver results in line with regulatory concern and the

pricing policies the networks actually use.

4 Conclusion

I generalize the workhorse model of network competition (Armstrong, 1998; La¤ont, Rey and

Tirole, 1998,a,b) to allow for income e¤ects in call demand. In the standard case of di¤erentiated

networks, weak income e¤ects are enough to deliver results in line with stylized facts: The

networks have an incentive to agree on high mobile termination rates to soften competition, and

not the other way around. The networks set o¤-net prices that are higher than on-net prices,

and not the other way around. This vindicates the use of (a perturbation of) the workhorse

model of network competition.

With income e¤ects, call demand is sensitive to changes in disposable income, for example

through a reduction in the subscription fee. The existence of income e¤ects in call demand, and

therefore the relevance of the model, is testable. I leave empirical examination of the model and

the assumptions underlying it for future research.

Appendix

Call demand

Uniform call prices Construct the Lagrangian Li = U (qi)+Z(yi)+�i(I�ti�piqi�yi), where

�i is the Lagrangian multiplier associated with the budget constraint. Total di¤erentiation of

the optimality conditions U 0 (Di) � �ipi = 0, Z 0(Yi) � �i = 0, �i(I � ti � piDi � Yi) = 0 and
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�i � 0 yield: 26664
U 00 (Di) 0 �pi
0 Z 00(Yi) �1

��ipi ��i 0

37775
26664
dDi

dYi

d�i

37775 =
26664
�idpi

0

�i (Didpi + dti)

37775
under the assumption of a fully covered market, S1 + S2 = 1. Apply Cramer�s rule to the

optimality conditions:

@Di
@pi

= �i�Z00(Yi)piDi
U 00(Di)+Z00(Yi)p2i

< 0,
@Di
@ti

= �Z00(Yi)pi
U 00(Di)+Z00(Yi)p2i

� 0,
@�i
@pi

= Z00(Yi)U 00(Di)(��1)Di
U 00(Di)+Z00(Yi)p2i

� 0, @�i
@ti

= �Z00(Yi)U 00(Di)
U 00(Di)+Z00(Yi)p2i

� 0.

Call Price Discrimination Construct the Lagrangian

Li = SiU (qoni ) + SjU(q
off
i ) + Z(yi) + �i(I � ti � Siponi qoni � Sjpoffi qoffi � yi),

where �i � 0 is the Lagrangian multiplier associated with the budget constraint.

The three �rst-order conditions U 0 (Doni )��iponi = 0, U 0(Doffi )��ipoffi = 0, Z 0(Yi)��i = 0,

along with the the complementary slackness condition �i(I�ti�Siponi Doni �Sjp
off
i Doffi �Yi) = 0

de�ne four non-linear equations in the four unknowns (Doni ; D
off
i ; Yi;�i). By total di¤erentiation

of the optimality conditions:

26666664
U 00 (Doni ) 0 0 �poni

0 U 00(Doffi ) 0 �poffi

0 0 Z 00(Yi) �1

��iSiponi ��iSjpoffi ��i 0

37777775

26666664
dDoni

dDoffi

dYi

d�i

37777775 =

26666666664

�idp
on
i

�idp
off
i

0

�i(SiD
on
i dp

on
i + SjD

off
i dpoffi

+dti + (p
on
i D

on
i � poffi Doffi )dSi)

37777777775
,

under the assumption of a fully covered market, S1 + S2 = 1. The determinant of the bordered

Hessian is ��iU 00 (Doni )U 00(D
off
i )Hi, where

Hi = 1 +
Z 00(Yi)Si(poni )

2

U 00 (Doni )
+
Z 00(Yi)(1� Si)(poffi )2

U 00(Doffi )
� 1.

De�ne the total call elasticity

�oni = � dDoni
d(�iponi )

�ip
on
i

Doni
= � U 0 (Doni )

U 00 (Doni )D
on
i

,
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and let �offi be similarly de�ned. In La¤ont, Rey and Tirole (1998a,b), U (q) = (1���1)�1q1���1 ,

which implies a constant elasticity �oni = �offi = � > 1.

By repeated application of Cramer�s rule, the following comparative statics results are

straightforward:

@Doni
@poni

U 00 (Doni )Hi = �i � Z 00(Yi)(Siponi Doni + �offi Sjp
off
i Doffi ),

@Doni
@poni

U 00 (Doni )Hi = �i � Z 00(Yi)(Siponi Doni + �offi Sjp
off
i Doffi ),

@Doffi

@poni

U 00(Doff
i )

poffi

Hi =
@�i
@poni

Hi = Z
00(Yi) (�oni � 1)SiDoni ,

@Doni

@poffi

U 00(Don
i )Hi

poni
= @�i

@poffi

Hi = Z
00(Yi)(�

off
i � 1)SjDoffi ,

@Doffi

@poffi

U 00(Doffi )Hi = �i � Z 00(Yi)(�oni Siponi Doni + Sjp
off
i Doffi ),

@Doni
@ti

U 00(Don
i )Hi

poni
=

@Doff
i
@ti

U 00(Doff
i )Hi

poffi

= @�i
@ti
Hi = �Z 00(Yi),

@Doni
@Si

U 00(Don
i )Hi

poni
=

@Doff
i

@Si

U 00(Doff
i )Hi

poffi

= @�i
@Si
Hi = Z

00(Yi)(p
off
i Doffi � poni Doni ).

Proof of Lemma 1

Subtract (@�i=@ti)Di from @�i=@pi, using @vi=@pi = (@vi=@ti)Di = ��iDi, to get

@�i
@pi

� @�i
@ti

Di = Si (pi � Sic� (1� Si)(co + a))
�
@Di
@pi

�Di
@Di
@ti

�
.

Assuming that Si > 0, the right-hand side of this expression is positive for all pi < Sic + (1 �

Si)(co + a) and negative for all pi > Sic+ (1� Si)(co + a) because

@Di
@pi

� @Di
@ti

Di =
�i

U 00 (Di) + Z 00i p
2
i

< 0.

Therefore, the �rst-order conditions @�i=@pi = 0 and @�i=@ti = 0 are satis�ed at Si > 0 only

if Pi = Sic + (1 � Si)(co + a). At an interior optimum, therefore, outgoing calls are priced at

weighted marginal call cost. In symmetric equilibrium, Si = 1=2, so P1 = P2 = c+ (a� ct)=2.

Existence of a unique and symmetric equilibrium At Pi = c + (1 � Si) (a� ct) and

" = 0, the pro�t function �i is strictly quasi-concave in ti, the subscription fees are strategic

complements and the reaction functions have a slope which is positive, but below unity; see

La¤ont, Rey and Tirole (1998a). By continuity, these properties extend also to the case with non-

zero but weak income e¤ects (" & 0). Hence, there exists a unique and symmetric equilibrium,

provided v0 is large, � is large and " is small. Given P (a) = c + (a � ct)=2, the symmetric
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subscription fee solves the �rst-order condition

@�i
@ti

= 0, T = f +
1

�2@Si@ti

� (a� ct)D(c+ (a� ct) =2; T )=2,

which can be rewritten on the Ramsey form (4).

Proof of Proposition 1

If v0 is large, � is large and " is small, but positive, the equilibrium subscription fee is given by

(4). In the Hotelling model �2@Si=@ti = �(pi; ti)=� , hence the symmetric subscription fee in

this case solves:

T = f + �=�(c+ (a� ct) =2; T )� (a� ct)D(c+ (a� ct) =2; T )=2.

By implicit di¤erentiation:

T 0(a) = �

�
�
�2

@�i
@pi

+Di +
1
2 (a� ct)

@Di
@pi

�
2 + 2�

�2i

@�i
@ti
+ (a� ct) @Di@ti

,

which is of ambiguous sign. Plugging the expression for T (a) into the equilibrium pro�t function,

industry pro�t simpli�es to 2�(a) = �=�(c + (a� ct) =2; T (a)). By substituting in the above

expression for T 0(a):

2�0(a) = � �

�2i

�
1

2

@�i
@pi

+
@�i
@ti

T 0(a)

�
=
�

�2i

@�i
@ti
Di � @�i

@pi
+ 1

2 (a� ct)
�
@Di
@pi

@�i
@ti
� @Di

@ti
@�i
@pi

�
2 + 2�

�2i

@�i
@ti
+ (a� ct) @Di@ti

.

Recall, @�i=@ti � 0 and @Di=@ti � 0, so the denominator is strictly positive for all a � ct. All

terms in the numerator are zero whenever " = 0 because then @�i=@ti = @�i=@pi = @Di=@ti = 0.

For " > 0, the �rst two terms in the numerator are strictly positive because then @�i=@ti > 0

and @�i=@pi < 0. The second term in the numerator is non-negative for all a � ct because

@�i=@ti � 0, @Di=@pi < 0, @�i=@pi � 0 and @Di=@ti � 0. Thus, �0(a) > 0 for all a � ct and

" > 0.

Proof of Lemma 2

Marginal cost pricing of outgoing calls By total di¤erentiation of (6):

dSi = �
@�
@vi
�i(SiD

on
i dp

on
i + SjD

off
i dpoffi + dti)

1� @�
@vi
(uoni � uoffi ) + @�

@vj
(uonj � uoffj )

. (12)
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Take advantage of the fact that @Si=@poni = (@Si=@ti)SiD
on
i and @Si=@p

off
i = (@Si=@p

off
i )SjD

off
i ,

subtract (8) from (7) and @�i=@ti from @�i=@p
off
i to get:

@�i
@poni

� SiDoni
@�i
@ti

= S2i (p
on
i � c)

�
@Don

i
@poni

� SiDoni
@Don

i
@ti

�
+ SiSj(p

off
i � a� co)

�
@Doff

i
@poni

� SiDoni
@Doff

i
@ti

� (13)

@�i

@poffi

� SjDoffi

@�i
@ti

= S2i (p
on
i � c)

�
@Don

i

@poffi

� SjDoffi
@Don

i
@ti

�
+ SiSj(p

off
i � a� co)

�
@Doff

i

@poffi

� SjDoffi
@Doff

i
@ti

� (14)

Under the assumption of Si > 0, the right-hand side of (13) is strictly negative if poni > c and

poffi � a+ co and strictly positive if poni < c and poffi � a+ co because

@Don
i

@poni
� SiDoni

@Don
i

@ti
=

�i�Z00(Yi)�offi Sjp
off
i Doff

i

U 00(Don
i )Hi

< 0

@Doff
i

@poni
� SiDoni

@Doff
i
@ti

=
Z00(Yi)�oni Sip

off
i Don

i

U 00(Doff
i )Hi

� 0.

At optimum @�i=@p
on
i = @�i=@ti = 0, so P oni 6= c is part of a pro�t maximizing two-part tari¤

only if sgnfP oni � cg = sgnfP offi � a� cog.

Add (13) and (14):

@�i
@poni

+
@�i

@poffi

�(SiDoni +SjD
off
i )

@�i
@ti

= S2i (P
on
i � c)

 
@Doni
@poni

+
@Doni

@poffi

� (SiDoni + SjD
off
i )

@Doni
@ti

!

+ SiSj(P
off
i � a� co)

 
@Doffi

@poni
+
@Doffi

@poffi

� (SiDoni + SjD
off
i )

@Doffi

@ti

!
= 0

at optimum. After some algebraic manipulations:

@Doni
@poni

+
@Doni

@poffi

� (SiDoni + SjD
off
i )

@Doni
@ti

=
�i(1 + "SjP

off
i (P oni � P offi )=U 00(Doffi ))

U 00 (Doni )Hi
. (15)

As shown by La¤ont, Rey and Tirole (1998b), pro�t maximization implies P oni = c, P offi =

a + co for " = 0. By continuity, lim"!0 "SjP
off
i (P oni � P offi )=U 00(Doffi ) = lim"!0 "Sj(a +

co)(ct � a)=U 00
�
U 0�1(a+ co)

�
= 0. Thus, for " small, but positive, pro�t maximization im-

plies (15) negative. By an analogous argument, even @Doffi =@poni + @Doffi =@poffi � (SiDoni +

SjD
off
i )(@Doffi =@ti) is negative for " small. Thus, any equilibrium satisfying P oni 6= c implies

sgnfP oni � cg = �sgnfP offi � a� cog for " small but positive, which contradicts the necessary

condition sgnfP offi � a � cog = sgnfP oni � cg, previously established. Thus, for " small, but
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positive: P oni = c and by implication also P offi = a+ co.

Existence of a unique and symmetric equilibrium At P oni = c, P offi = a+co and " = 0, the

pro�t function �i is strictly quasi-concave in ti, the subscription fees are strategic complements

and the reaction functions have a slope which is positive, but below unity; see La¤ont, Rey and

Tirole (1998b). By continuity, these properties extend also to the case with non-zero, but weak

income e¤ects. Hence, there exists a unique and symmetric equilibrium, provided v0 is large,

� is large and " is small. Outgoing calls are priced at e¤ective marginal cost, P oni = c and

P offi = a+ co. The subscription fee solves the �rst-order condition

@�i
@ti

= 0, T = f +
1

�2@Si@ti

+
(a� ct)
4

@Donj
@Sj

,

which can be rewritten on the Ramsey form (9).

Proof of Proposition 2

First, some preliminaries. In the Hotelling model @Si=@ti = ��i=(2� +uoffi �uoni +u
off
j �uonj );

see (12). Hence, the symmetric subscription fee solves:

T = f +
� + uoff (c; a+ co; T; 1=2)� uon(c; a+ co; T; 1=2)

�(c; a+ co; T; 1=2)
+
1

4
(a� ct)

@Doffj (c; a+ co; T; 1=2)

@Sj
.

By total di¤erentiation of the subscription fee:

T 0(a) =

�
�
� + U(Doffi )� U (Doni )

�
@�i
@poffi

� �2iD
off
i +

�2i
4

�
@Doff

j

@Sj
+ (a� ct)

@2Doff
j

@Sj@p
off
j

�
�
� + U(Doffi )� U (Doni )

�
@�i
@ti
+ �2i

�
1� 1

4 (a� ct)
@2Doff

j

@Sj@tj

� .

Zero income e¤ects (" = 0) Now �i = 1, @�i=@p
off
i = @�i=@ti = 0, @Doffj =@Sj = 0 and

@2Doffj =@Sj@p
off
j = @2Doffj =@Sj@tj = 0, so T 0(a) = �Doffi , which implies

2�0(a) = 1
2 [D

off
j + (a� ct)

@Doff
j

@poffj

] + T 0(a) = 1
2 [(a� ct)

@Doff
j

@poffj

�Doffj ] < 0 for all a � ct,

where I have used symmetry, Doffi = Doffj , and @Doffj =@poffj < 0.

Non-zero income e¤ects (" > 0) Since @Doffj =@poffj < 0 and @Doffj =@tj � 0, it is su¢ cient

that T 0(a) � 0 for all a � ct to render 2�0(a) > 0 for all a � ct, see (10). I need to show that

T 0(a) > 0 for " su¢ ciently low and � su¢ ciently large. Let � = �"�1, where � (� � 1) > 2.
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Recall, @�i=@p
off
i = �"(� � 1)SjDoffi =Hi and @�i=@ti = "=Hi. Plug into T 0(a) above to get

T 0(a) =

�
� + "U(Doffi )� "U (Doni )

�
(� � 1)Doffi � 2Hi�2i

�
Doffi � 1

4

@Doff
j

@Sj
� 1

4 (a� ct)
@2Doff

j

@Sj@p
off
j

�
2
�
� + "U(Doffi )� "U (Doni )

�
+ 2Hi�2i

�
1� 1

4 (a� ct)
@2Doff

j

@Sj@tj

� .

By inspection of the comparative statics in this appendix, @Doffj =@Sj ! 0, @2Doffj =@Sj@p
off
j !

0 and @2Doffj =@Sj@tj ! 0, as " ! 0. Moreover, Hi ! 1, �i ! 1 and Doffi ! U 0�1(a + co) as

"! 0. Thus, lim"!0 T 0(a) = (� (� � 1)� 2)U 0�1(a+ co)=2(� + 1) > 0 in this case.
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