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Abstract 

This paper constructs a closed-form generalization of the Black-Scholes model for the 

case where the short-term interest rate follows a stochastic Gaussian process.  Capturing 

this additional source of uncertainty appears to have a considerable effect on option 

prices.  We show that the value of the stock option increases with the volatility of the 

interest rate and with time to maturity.  Our empirical tests support the theoretical model 

and demonstrate a significant pricing improvement relative to the Black-Scholes model.  

The magnitude of the improvement is a positive function of the option's time to maturity, 

the largest improvement being obtained for around-the-money options.   
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I. Introduction 

 In their breakthrough paper Black and Scholes (BS, 1973) derived a closed-form 

solution for pricing European options assuming that the price of the underlying asset 

follows a geometric Brownian motion with constant drift and constant volatility, while 

the interest rate remains constant during the entire option life.  We relax the assumption 

that the price of the underlying asset is the only source of uncertainty by allowing the 

interest rate to be stochastic, and examine theoretically and empirically how this 

additional source of uncertainty affects call and put option prices.  Pricing accuracy is 

highly important, since options are widely used as in investment strategies, and any small 

pricing error can results in significant losses. 

 This paper contributes to the existing literature by introducing a new closed-form 

option pricing formula that demonstrates a significant decreasing in pricing errors of 

European stock options.  First, the theoretical framework provides a useful methodology 

for valuing put and call stock options, which maintain non-arbitrage properties such as 

the put-call parity.  Second, we document a significant pricing improvement using the 

stochastic interest (SI) model relative to the Black-Scholes (BS) model.  Since the latter 

serves as a common standard in pricing contingent claims, using the SI model has 

practical implications when market prices are missing, especially for long-term options 

(in which we demonstrate the highest significant improvement: up to 47% for call options 

and 43.5% in put options).   

 This paper derives a new closed-form solution for European options with 

Gaussian short-term interest rate (henceforth the SI model).1  We suggest a construction 

                                                 
1 Our option pricing formula does not appear in Haug’s (2007) book. 
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method and proof that are different from those described in the literature, and apply them 

in an extension of the BS model that incorporates the Merton (1973) and the Vasicek 

(1977) term structure of interest rates models.2,3  Our method does not rely on a replicated 

continuously rebalanced portfolio and yields an applicable and friendly mathematical 

expression for option pricing. 4 

Our SI model is motivated by the insight that option prices reflect only the 

unexpected part of path-dependent excess returns.  Call options price only the positive 

abnormal excess returns, while put options price only negative abnormal excess returns.  

This perception guides us in proving a closed-form solution for pricing options under 

stochastic interest rates.  We show that incorporating the uncertainty of short-term 

interest rates raises the value of stock options.  The longer the time to maturity and the 

higher the interest rate volatility, the higher the value.  In fact, when the interest rate is 

stochastic, we have an additional implicit option: an option on the interest rate.5 

 We conduct empirical tests to compare the performance of the SI model to the 

performance of the BS model using 24,766 call options contracts and 36,837 put 

contracts on the S&P 500 index for the period between January 3, 2005 and December 

30, 2006.  Performance is measured relative to the actual option prices in the market; the 

                                                 
2 Although Gaussian term structure models can possibly assign a positive probability for negative interest rates in the 

long-run, the simplicity of these models and the fact that most options do not have a time to expiration long enough to 

get to this point, makes them a good choice for our purpose. 

3 The literature modelling the stochastic nature of the term structure of interest rates is vast.  Examples of single-factor 

models include Brennan and Schwartz (1977), Dothan (1978), Cox, Ingersoll and Ross (1985), Ho and Lee (1986), 

Black and Karasinski (1991) and Heath, Jarrow and Morton (1992). 

4 Our method can also be applied to non-Gaussian term structure models. 

5 See Ho, Stapleton and Subrahmanyam (1997). 



3 

closer the prices evaluated by the model are to the actual market prices, the more accurate 

is its performance considered to be.  Our results show that the SI model provides a better 

estimation than the BS model using the mean square error (MSE) criterion.  For example, 

the comparison over the total sample shows that the SI model yields an average accuracy 

improvement in MSE of 29.51% for call options and 19.69% for put options relative to 

BS model.6   

 We find fewer pricing errors (relative to the market price) for the SI model than 

for the BS model as the time to maturity of the option increases, for both call and put 

options.  For options with less than 180 days to expiration we find that the highest 

mispricing magnitude is for options around the money.  For options with 180 days or 

more to expiration, the improvement in mispricing (of the SI model relative to BS model) 

of put options increases as the option is more in the money; the improvement in 

mispricing of call options increases as the option is more out of the money.  We test the 

statistical significance of the mispricing differences between the models using the Huang 

and Wu (2004) measure, and find that most of the mispricing differences are significant 

across moneyness and time to maturity of the options.  Our results are robust to out-of-

sample estimation of the interest rate term structure parameters. 

 The empirical evidence of option pricing models with stochastic interest rate is 

mixed. On the one hand, Rindell (1995) tests the Amin and Jarrow (1992) model using 

(only) index call options from the Swedish option market and shows that the Amin and 

Jarrow (1992) model outperforms the BS model.  On the other hand, Kim (2002) uses 

                                                 
6 The MSE improvement represents reduction in percentage of the MSE estimation of the SI model relative to the BS 

model. 
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data of index call options on the Nikkei 225 index and compares between stock option 

models with stochastic interest rate.  He finds that incorporating stochastic interest rates 

into option pricing does not improve the performance of the BS pricing formula. Our 

findings are aligned with those of Rindell (1995), who finds an improvement in 

performance relative to the BS model.  We contribute to this literature by providing an 

empirical examination on both call and put options using our model on U.S. data.  In 

addition, contrary to Rindell (1995) and Kim (2002), we use the common approach for 

examining the performance of option pricing models, combined with a more recent 

methodologies of statistical significant such as the Huang and Wu (2004) measure. 

Our model integrates into the family of option pricing models that incorporate the 

stochastic nature of the short-term interest rate.  Generally speaking, in this family 

models differ in the stochastic process (usually single factor) that governs the short-term 

interest rate and in the sources of uncertainty.  For example, Bailey and Stulz (1989), 

Goldstein and Zaopatero (1996) and Kaushik and Ng (1993) assume a single source of 

uncertainly for both the underlying asset and the interest rate.  Bailey and Stulz (1989) 

assume a single-product economy with a representative investor with a constant relative 

risk tolerance; Goldstein and Zapatero (1996) consider a general equilibrium in a 

continuous version of the Lucas (1978) exchange economy and Kaushik and Ng (1993) 

assume stochastic consumption growth and introduce a preference-dependent option 

model.  Bakshi, Cao and Chen (1997) and Bakshi and Chen (1997a) present option 

pricing models with stochastic volatility, which are different in nature.  However, both 

models assume that changes in the interest rate and the return of the underlying asset are 

uncorrelated.  Despite its richness, the Bakshi-Chen (1997a) model is not easy to 



5 

implement in practice, since identifying the economy-wide factors and the firm-specific 

factors is not simple.7,8  Brenner et al. (1987) assume that the short-term interest rate 

follows a mean reverting stochastic process, in presenting a numerical analysis inquiring 

into the impact of interest rate uncertainty on the price of stock index options.   

The work most closely related to the theoretical part of this paper is Rabinovitch 

(1989).  However, our model differs in several respects from Rabinovitch (1989):  First, 

we construct a simpler closed-form solution with fewer parameters than Rabinovitch 

(1989).9  Second, while Rabinovitch's model prices European call options, we also derive 

a closed-form solution for the price of a European put option, and demonstrate that our 

pricing method maintains the non-arbitrage argument of the put-call parity. In addition, 

when resetting the interest rate term structure parameters the Rabinovitch model does not 

converge to the BS model, while our does.  Finally, the empirical tests show that our 

pricing improvements to the BS model are significantly better than those of Rabinovitch. 

Our theoretical model differs from the above models in that it has two sources of 

uncertainly, namely the interest rate and the underlying asset.  Moreover, we do not 

impose any assumption on the correlation between the interest rate and the return on the 

underlying asset, and we employ parameters which can be empirically estimated and used 

to evaluate options in practice. 

                                                 
7 See also Bakshi and Chen (1997b), who suggest a model for the valuation of foreign exchange claims in equilibrium. 

8 Additional examples of models of this type have been presented by Ho, Stapleto and Subrahmanyam (1997) and Scott 

(1997).   Further, the Merton (1973) model provides the basis for subsequent papers by Amin and Jarrow (1992) and 

Miltersen and Schwartz (1998). 

9 See also Chen (1991). In addition to the parameters that characterize the term structure of interest rates, Rabinovitch's 

(1989) model also uses a bond's price (with the same maturity of the stock option), its instantaneous expected return 

and its instantaneous return variance. 



6 

A possible application of the SI model is in the valuation of employee stock 

options (ESOs), which are usually granted for a period of 10 years.  According to 

accounting standard ASC 718, firms that grant stock options to employees must report 

them as an expense in their financial reports.  Using the SI model for such cases would 

lower the estimation errors caused by the BS assumptions. 

The rest of this paper is organized as follows.  Section 2 establishes the 

fundamental framework of the SI model and suggests a model for call and put option 

pricing that incorporates a stochastic term structure of interest rates.  Section 3 simulates 

the effect of specific model parameters on the pricing model.  Section 4 investigates the 

effect of stochastic interest rates on pricing call and put options, and presents an 

empirical comparison of the SI model with the BS model.  Section 5 concludes. 

 

II. The model 

 In this section we introduce our main theorems. We first establish the 

fundamentals of the model and then present the SI pricing model for European call and 

put stock options.  In general, we relax the assumption of constant short-term interest 

rates and propose a generalization of the BS model to incorporate a stochastic term 

structure of interest rates.10 

A. Preliminaries 

 Assume a non-dividend paying underlying asset.  Let ( )S t  be its price at the 

initial time t, and let its price at time T  be ( )S T .  The price of the underlying asset is 

                                                 
10 The main proofs are detailed in the Appendix.  
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characterized by a mean, µ , and a standard deviation, σ , and follows the geometric 

Brownian motion dynamic: 

(1) ( ) ( ) ( ) ( )21

2
dS t S t dt S t dZ tµ σ σ

 
= + + 

 
, 

where dZ  is a standard Wiener process. 

The short-term interest rate r is assumed to follow a single-factor Gaussian 

process, 

(2) ( ) ( )( ) ( )dr t r t dt dH tα β ξ= − + , 

where dH  is a standard Wiener process under an equivalent martingale probability 

measure, ξ  is the standard deviation of the short-term interest rate, and α  and β  are 

constant coefficients.  We assume that Z and H are correlated with coefficient ρ , i.e. 

dZdH dtρ= .11 

If all the three coefficients, α , β  and ξ , that characterize the term structure 

model, are equal to zero then the short-term interest rate and the discount factor are 

constant.  If, however, at least one of the coefficients is not zero then we get a stochastic 

short-term interest rate and, thus, a stochastic discount factor.  Explicitly, if 0α ≠ , 0ξ ≠  

and 0β =  then the Merton (1973) and the Ho and Lee (1986) term structure models of 

interest rate are obtained.  If, however, 0α ≠ , 0β ≠  and 0ξ ≠ , then the Vasicek (1977) 

model of short-term interest rate is obtained.12 

The path-dependent discount factor is defined by  

                                                 
11 For simplicity we prove our results for the case of time-independent coefficients; α , β  and ξ .  The model can, 

however, be extended to the case of time-dependent coefficients. 

12 In these cases the short-term interest rate follows a mean-reverting Ornstein-Uhlenbeck process.  
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 ( )
( )

1
,

,
t T

R t T
ϒ = ,  

where 

(3) ( ) ( ) [ ], exp , 0,
T

t

R t T r u du t T
 

= ∀ ∈ 
 
∫ . 13 

  The excess-return factor, ( ),X t T  conditional on a random sample path during a 

holding period T tτ = − , is 

 ( )
( )

( ) ( )
,

,

S T
X t T

S t R t T
= , 

with the boundary condition ( ), 1X t t = .  Literally, the excess-return factor is the portion 

of the underlying-asset price which is purely attributed to risk.  The natural logarithm of 

this factor is the path-dependent excess return of a risky asset. We define the 

normalization factor as the expectation of the excess-return factor: 

 ( ) ( ), E ,F t T X t T=    . 

The natural logarithm of the normalization factor, ( )ln ,F t T   , is the risk premium for 

holding a risky asset during the period T tτ = − . 

B. European call stock options under stochastic interest rate 

 A call stock option with exercise price K , written at time t on a non-dividend-

paying underlying asset with price ( )S t  and volatility σ , pays 

                                                 
13 The accumulation factor, ( ),R t T , is one plus the short-term interest rate, conditional on a continuous sample path, 

and can be interpreted as the outcome of $1 continually reinvested in the risk-free asset.   
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( )( ) ( )( )max ,0S T K S T K
+

− = −  at maturity time T.  The following theorem states our 

main theoretical result. 

 

Theorem 1:  At time t the price of a European call option with exercise price K at 

maturity time T is 

(4) 

( ) ( )

( )
( )

( ) ( )

( )
( )

( )
2

2

2
1

, ,
2

1
ln ,

2, N

1
ln ,

2N ,
A t T B t T

S t
A t T v

KC t T S t v

S t
A t T v

KKe B t T
τ

τ

τ

σ τ

τ

τ

σ τ

− +

 
+ − 

= + 
 
 
 

 
+ − 

− − 
 
 
 

, 

where ( )N ⋅  denotes the standard normal cumulative probability distribution, T tτ = −  

stands for the time to maturity, ( ) ( )2 2 2 , 2 ,v B t T B t Tσ ρσ= + − , and the functions 

( ),A t T  and ( ),B t T  are defined as follows: 

i. If 0β =    then   ( ) ( ) 21
,

2
A t T r t τ ατ= +    and   ( )

3

2
1

,
3

B t T ξτ= ; 

ii. If 0β ≠    then 
  

( ) ( ) ( ), ,A t T r t t T
α α
τ λ

β β

 
= + − 

 
   and 

( ) ( ) ( )2, , ,
2

B t T t T t T
ξ β

τ λ λ
β
= − − ,   where   ( ) ( )

1
, 1t T e βτ

λ
β

−

= − . 

 



10 

Theorem 1 generalizes the BS call option pricing model to the case of stochastic 

interest rates.14  In the BS model the price, ( ),C t T , of the option is a function of the time 

to maturity, T tτ = − , the price of the underlying asset, ( )S t , at time t, its volatility, σ , 

and a constant risk-free rate.  In our model the price of the option is also a function of the 

parameters characterizing the interest rate, α , β  and ξ , and the correlation between the 

interest rate and the underlying asset, ρ .15 

Theorem 1 extends the BS model by capturing an additional source of uncertainty 

introduced by the randomness of the interest rate.  Intuitively, including the effect of 

random interest rates has a similar effect to increasing the variance of the underlying 

asset, which results in a positive effect on the option price.  As we demonstrate below, 

the call price is increasing with the time to maturity and with the variance of the short-

term interest rate, and decreasing with the correlation between the price of the underlying 

asset and the short-term interest rate.  If the underlying asset is a bond, the correlation 

coefficient between the dynamics of the underlying asset and the dynamics of the interest 

rate is 1ρ = , so that there is only one source of uncertainty.16 

Corollary 1, below, shows that if the interest rate r  is constant over time, then the 

SI model collapses to the BS model. 

 

                                                 
14 As in the classical BS model, when the stock pays no dividends, the price of a European call option equals the price 

of an American call option.  

15 A detailed empirical analysis of the effect of these parameters on the option price is presented in the following 

section. 

16 See also Chen (1991). 
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Corollary 1:  If the interest rate is constant over time then the call option pricing model 

in Theorem 1 collapses to the BS model. 

Proof:  If the interest rate, r , is constant then 0α = , 0β =  and 0ξ = , and Equation (2) 

becomes ( ) 0dr t = .  Therefore ( ) ( ) ( ),A t T r t T t rτ= − =  and ( ), 0B t T = .  Substituting 

into Equation (4) of Theorem 1 gives the standard BS formula. ■ 

C. Intuition 

 The intuition of Theorem 1 is that the price of a call (put) option is determined by 

the states of nature in which the unexpected excess return is higher (lower) than a given 

implicit threshold. 

 A sample path of asset returns is composed of three components:  compensation 

for time, expected excess return and unexpected excess return (the last two components 

compensate for risk).  The price of the underlying asset is determined by the expected 

return, which consists of compensation for time and for risk (expected excess return).  

Option prices are derived solely from the unexpected excess return of the underlying 

asset.  The price of a call option considers positive unexpected excess returns while the 

price of a put option considers negative unexpected excess returns.  Therefore, the price 

of a European call option can be evaluated by 

(5) ( ) ( )
( )

( )
, E ,

,

S T
C t T t T K

F t T

+  
 = ϒ −     

, 

and the price of a European put option by 

(6) ( ) ( )
( )

( )
, E ,

,

S T
P t T t T K

F t T

+  
 = ϒ −     

. 
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The normalization factor, ( ),F t T , represents the portion of expected excess 

returns.  Thus, the expression 
( )

( ),

S T

F t T
 represents the unexpected portion of the price, i.e. 

the future adjusted price of the underlying asset after eliminating the effect of expected 

returns.  Equation (5) suggests that the price of a call option is the sum of the discounted 

abnormal asset’s prices over all states of nature in which the adjusted price is higher than 

the exercise price.  Writing the call option price as 

 ( ) ( ) ( )
( )

( ) ( )
( )

( )
, E , ,

,

S T K
C t T S t t T t T

S t F t T S t

+  
 = ϒ − ϒ     

, 

the expression 
( ) ( )

( ) ( )

,

,

t T S T

S t F t T

ϒ
 is, then, one plus the unexpected excess return.  Pricing the 

call option takes into account only the states of nature in which the unexpected excess 

return 
( ) ( )

( ) ( )

,
ln

,

t T S T

S t F t T

 ϒ
 
 

 exceeds the threshold ( )
( )

ln ,
K

t T
S t

 
ϒ 
 

. 

In the BS model the unexpected excess return is caused by a single source of 

randomness: the price of the underlying asset.  In our model the unexpected excess return 

has an additional source of randomness: the discount factor, which is governed by the 

stochastic behavior of the short-term interest rate.  This is the reason that in most cases 

the BS underprices in comparison to the SI model. 

D. European put stock options and the put-call parity  

 In this section we propose a formula for pricing put stock options and use it to 

prove the existence of the put-call parity under our framework.  Theorem 2 below uses a 
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technique identical to that of Theorem 1 to introduce a pricing model for European put 

stock options.17  

 

Theorem 2:  At time t the price of a European put option with maturity time T and 

exercise price K is 

(7) 

( )
( ) ( )

( )
( )

( )

( )

( )
( )

2
2

1
, ,

2

2

1
ln ,

2, N ,

1
ln ,

2N

A t T B t T

S t
A t T v

KP t T Ke B t T

S t
A t T v

KS t v

τ

τ

τ

σ τ

τ

τ

σ τ

− +

 
+ − 

= − + 
 
 
 

 
+ − 

− − − 
 
 
 

, 

where ( )N ⋅  denotes the standard normal cumulative probability distribution,   T tτ = −  

stands for the time to maturity, 
  ( ) ( )2 2 2 , 2 ,v B t T B t Tσ ρσ= + − , and the functions 

( ),A t T  and ( ),B t T  are defined as follows: 

i. If 0β =  then   ( ) ( ) 21
,

2
A t T r t τ ατ= +    and   ( )

3

2
1

,
3

B t T ξτ= ; 

ii. If 0β ≠  then   ( ) ( ) ( ), ,A t T r t t T
α α
τ λ

β β

 
= + − 

 
   and 

( ) ( ) ( )2, , ,
2

B t T t T t T
ξ β

τ λ λ
β
= − − ,   where  ( ) ( )

1
, 1t T e βτ

λ
β

−

= − . 

 

Like Theorem 1, Theorem 2 generalizes the BS put options pricing model to the 

case of stochastic interest rates.  As in call options, the stochastic interest rate has an 

                                                 
17 The proof is analogous to the proof of Theorem 1. 
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effect similar to the effect of increasing the variance of the underlying asset, which in 

most cases has a positive effect on the option price.  This positive effect on the option 

price is increasing with the time to maturity and the variance of the short-term interest 

rate, and decreasing with the correlation between the price of the underlying asset and the 

short-term interest rate. 

Corollary 2 demonstrates that in the case of constant interest rates our put option 

pricing model also collapses to the BS model. 

 

Corollary 2:  If the interest rate is constant over time then the European put option 

pricing formula in Theorem 2 collapses to the BS model. 

 

Having a closed-form solution for the price of call options and put options, we 

prove that the put-call parity is preserved under stochastic Gaussian interest rates. 

 

Theorem 3:  The put-call parity  

 ( ) ( ) ( ) ( ),C t K t T P t S t+ ϒ = +  

is satisfied under stochastic interest rates that follow a Gaussian process. 

 

 Apart from the fact that with stochastic interest rates there is no opportunity for 

arbitrage, Theorem 3 leads to the conclusion that the stochastic interest rate affects the 

price of both put and call options in the same (positive) direction, thus preserving the put-

call-parity.  
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III. Simulation 

 This section presents a number of simulations, all based on common parameters, 

that shed light on the effect of stochastic interest rates on the prices of put and call stock 

options.  Our simulations examine the value of at-the-money call and put options. 

 Figure 1 presents the values of the BS model, the SI model using the Merton 

(1973) term structure and the SI model using the Vasicek (1977) term structure as a 

function of time to maturity.  In call options, an increase in time to maturity increases the 

value of the option in all the models.  Nevertheless, the highest value appears in the SI-

Vasicek model, followed by the SI-Merton model.  The intuition is that since the time 

value in a call option is positive and the SI models also price the interest-rate risk, an 

increase in time to maturity leads to higher call prices.  The time value of at-the-money 

put options is also positive.  Hence, the BS value increases as a function of time to 

maturity, as does the SI-Vasicek model.  The SI-Merton model shows a steeper increase 

than the SI-Vasicek model, possibly because the Merton model is not mean reverting. 

[[ INSERT FIGURE 1 ]] 

 Figure 2 presents the value of the BS model, the SI-Merton and the SI-Vasicek as 

a function of the correlation between changes in the underlying-asset return and changes 

in the interest rate.  In call options, the correlation coefficient has a negative effect on 

options values, i.e. a decrease in the correlation leads to an increase in option values.  The 

reason is that a lower correlation leads to a "noisier environment," which leads to higher 

option prices in the SI models.  Put options present the same effect relative to the 

correlation coefficient, with a steeper decrease in values using the SI-Vasicek model.   
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[[ INSERT FIGURE 2 ]] 

 Figure 3 presents the value of the BS model, the SI-Merton and the SI-Vasicek as 

a function of the interest rate's standard deviation, ξ.  An increase in the standard 

deviation ξ resembles an increase in the underlying asset's volatility, and thus has a 

positive effect on the SI model’s option prices relative to the BS model.  The BS model 

serves as a benchmark and obviously is not affected by changes in the interest rate term 

structure parameters.  Notice that the effect in the SI-Vasicek model is stronger than the 

effect in the SI-Merton model, indicating that a negative β has a positive effect on option 

prices. 

[[ INSERT FIGURE 3 ]] 

IV. Empirical analysis  

 Using our theoretical model, we now estimate option prices using historical data.  

The main goal of this section is to investigate the effect of stochastic interest rates on 

option prices, and to examine whether the SI model is more accurate in estimating option 

prices than the BS model.  We measure the accuracy of the models relative to the actual 

option prices in the market, i.e. the closer the prices estimated by the model to the actual 

market prices, the more accurate the model is considered to be.  Our analysis is 

conducted in two steps.  First, we estimate the parameters of the interest rate's term 

structure and the correlation coefficient between the underlying asset and the short-term 

interest rate.  Then, we use these parameters in the SI and BS models, and compare their 
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accuracy.18 

A. The short-term interest rate 

 We begin with estimating the coefficients α , β  and ξ , which characterize the 

stochastic nature of the short-term interest rate.  We follow the methodology of Chan, 

Karolyi, Longstaff and Sanders (1992) and Nowman (1997), and subject to ( )1 0tε +Ε =  

and ( )2 2
1tε ξ
+

Ε =  use the discrete-time process 

1 1t t t tr r α ε
+ +
− = + , 

to estimate the parameters that characterize the continuous-time process in the Merton 

(1973) term structure model, and the discrete-time process 

1 1t t t tr r rα β ε
+ +
− = + + , 

to estimate the parameters that characterize the continuous-time process in the Vasicek 

(1977) term structure model.19 

 We estimate the term structure parameters using the yield to maturity (YTM) of 

the one-month Treasury-bill (T-bill) reported by CRSP's monthly treasury section.  The 

data are monthly and cover the period from January 1960 to December 2009, providing 

600 observations in total.20  For each month we select the YTM of the T-bill closest to 30 

                                                 
18 We also compare our call option model to the Rabinovitch (1989) model.  Our results indicate also a substantial 

improvement relative to Rabinovitch's model using the MSE measure. 

19 Chan et al. (1992) follow Brennan and Schwartz (1982), Dietrich-Campbell and Schwartz (1986), Sanders and Unal 

(1988), and others, and use a discrete-time econometric specification as an approximation for a continuous-time 

process.  

20 Chan et al. (1992) use the one-month T-bill constructed by Fama (1984).  The term structure parameters are 

quantitatively similar if we use the one-month T-bill constructed by Fama (1984). 
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days to maturity in absolute values.  We use an OLS regression, since the discrete-time 

econometric specification of the continuous-time models we examine is a simple AR(1) 

with constant volatility.21 

Table 1 summarizes the parameter estimations of Merton (1973) and Vasicek 

(1977) term structure models.  It shows that the parameter of the Merton model is 

0.000062α = −  with t-value -0.204 and the variance is 0.00005ξ = .  The parameters of 

the Vasicek model are 0.001695α =  and 0.034883β = −  with t-values 2.672 and -3.143, 

respectively, and the variance is 0.000055ξ = .  Since the parameters of the Merton 

model are statistically insignificant, henceforth we concentrate on the Vasicek model in 

our empirical estimation. 

[[INSERT TABLE 1 ]] 

B. The option pricing models – a comparison 

 In this section we estimate the call and put option prices using the SI model and 

the BS model.  We compare these models by examining their mispricing measures 

relative to the actual option price in the market, aiming to examine whether the SI model 

provides a better estimation than the BS model. 

 We choose to compare the SI model only to BS model since we find that the MSE 

estimations of Rabinovitch (1989) model are significantly higher than the MSE of the SI 

and the BS models.  For example, for the total call options sample, the MSE of the SI and 

                                                 
21 Since we are estimating a single AR(1) equation, the parameter estimators are the same if we use maximum 

likelihood estimation or GMM with one instrument variable. 
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the BS models are 40.79 and 57.87, respectively, while the MSE of Rabinovitch model is 

287.88. 

Our empirical estimation of options is based on the S&P 500 index call options 

(SPX).  Options written on this index are the most actively traded European-style options 

(Bakshi, Cao and Chen, 1997) and have been the focus of many studies.22  In general, the 

market for the S&P 500 index options is the second most active index of options in the 

USA and is the largest in terms of open interest (Heston and Nandi, 1997). 

The data sample we use is from the period between January 3, 2005 and 

December 29, 2006.23  All the relevant option data are obtained from the OptionMetrics 

database.  We calculate the mid-point of the end-of-the-day bid-ask quotes of call and put 

options on the S&P 500 as a proxy for the option's end-of-the-day market price.24  The 

appropriate risk-free interest rate per trading day is set by matching the maturity of the 

option to the interest rate with the closest duration to the remaining time to expiration of 

the option, which appears in the zero coupon yield curve (continuously compounded) 

calculated by OptionMetrics.  The proxy for the S&P 500 expected volatility is the 

realized historical volatility of the S&P 500.25, 26  We follow the common practice of 

calculating the realized volatility over a date range of 182 calendar days.27, 28 

                                                 
22 See, for example, Rubinstein (1995), who emphasizes that the S&P 500 is one of the best markets for testing 

European pricing models, Heston (1997) and others. 

23 We choose a stable period of the economy.  Clearly, our results will be significantly stronger in non stable periods. 

24 OptionMetrics provides data on the highest closing bid price and the lowest closing ask price on the S&P 500. 

25 We use historical volatility rather than a measure of implied volatility (such as the VIX) since measures of implied 

volatility are based on specific pricing models, while we are interested in testing pricing models, not using them to 

derive volatility measures.  
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For European options, the spot price needs to be adjusted to dividends.  We use 

the annualized S&P 500 dividend yield and adjust the index price by discounting the spot 

price using the adjusted dividend yield to the remaining life of the option.  This 

contemporaneous adjusted index level is later used as an underlying-asset value in the 

option models.29 

Examining the SI model also requires the estimation of the correlation between 

changes in the stochastic movement of the interest rate and the stochastic movement of 

the underlying asset.  As a proxy for this correlation, we estimate the correlation between 

the S&P 500 daily returns and the one-year T-bill daily returns from the period between 

January 3, 1990 and December 31, 2008.  The correlation estimation obtained is 

insignificant, with a value of 0.001 and a t-statistic of 0.24.30  

Following the literature, we use the conventional exclusion filters for the raw 

data.  We exclude options whose mid-bid-ask quotes are below $0.5 to avoid 

                                                                                                                                                 
26 OptionMetrics calculates the realized volatility using a simple standard deviation calculation on the logarithm of the 

close-to-close daily total return. 

27 The common practice is to use closing prices from daily data over the most recent 90 to 180 days.  See Hull (2009). 

28 Our results remain similar when we use data ranges between 60 day and 365 days to measure the historical volatility. 

29 The adjusted spot price is calculated as 350

time
div

spot e
− ⋅

⋅ , where div denotes the annual dividend yield of the S&P 500 

and time denotes the number of days remaining until the option expires.  

30 Most of the correlation estimations in the literature focus on a rolling estimation window and use long-term bonds 

(usually 10-year government bonds).  See, for example, Connolly, Strivers and Sun (2007).  Svensson and Dietzsch 

(2009) find that the estimated monthly mean correlation between the S&P 500 returns and one-year T-bill is -0.09 (for 

the period from January 1982 to September 2008).  Our quantitative results remain similar if we use the Svensson and 

Dietzsch (2009) estimation period.  
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microstructure biases.31  In addition, to limit the effects of option expiration, we exclude 

options which are less than 10 days to expiration.32  We also exclude contracts that have a 

trading volume of less than 50 options on a given trading day to minimize the effects of 

bid-ask spread.33  The final sample after applying all these filters consists of 24,766 call 

option contracts and 36,837 put contracts. 

Table 2 provides summary statistics of the option data sample.  It presents the 

distribution of the number of call (Panel A) and put (Panel B) option contracts by 

moneyness (i.e. the stock price to exercise price ratio), and time to maturity.  Table 2 

shows that most of the call contracts (90.6%) have moneyness between 0.94 and 1.03, 

while 52% are call contracts with 60 days or less to expiration.  This indicates that our 

empirical estimation also covers short-term options around the money.  One can see that 

call contracts with more than 180 days to expiration are fairly active.  Most of the put 

contracts are either short term with 60 days or less to expiration (50%), or long term with 

180 days or more to expiration (23.6%), while 34.6% of the put contracts are deep out of 

the-money. In general, 73.5% of the put sample is in or out of the money. 

[[INSERT TABLE 2 ]] 

C. Comparison of models 

 In this section we examine the accuracy of the SI model compared to the BS 

model.  The benchmark for our tests is the actual option price in the market.  Explicitly, 

                                                 
31 See Bakshi, Cao, and Chen (1997), Chu and Freund (1996), and Liu and Shen (2008). 

32 Bakshi, Cao, and Chen (1997), Hsieh and Ritchken (2005), Fleming (1998) and others use this filter. 

33 An additional conventional filter excludes options in which 1.2≥ S/K ≥0.8.  Our results are quantitatively similar 

when we apply this filter. 
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we inquire into which of the price estimations of the two models deviates less from the 

actual price.  The deviation from the actual option price is measured using the mean 

square error (MSE) criterion. A smaller MSE means a better estimation and a lower 

model mispricing.  Mispricing is defined as the difference between the market price and 

the model value. The MSE criterion that we use is the following: 

( )
2market price model price

1

1 n

j j
j

MSE C C
n
=

= −∑ , 

where market price
jC  is observation j's market price , model price

jC  is observation j's value of the 

option according to the model, and n is the number of observations.34  

Table 3 reports the MSE estimations of the SI model (Panel A) and the BS model 

(Panel B) relative to the market option prices, across moneyness and time to maturity, for 

both call and put options.  It shows that the average MSE over the entire call option 

sample using the SI model is 48.17, while the average MSE using the BS model is 57.87.  

For put options, the SI model yields an MSE of 71.48 relative to 89.01 of the BS model.  

For call options, both pricing models have a higher MSE the more the options are in the 

money and the longer the time to expiration.  The MSE of put options also increases the 

longer the time to expiration.  However, put options present a different moneyness 

pattern.  For the same time to expiration, the MSE is smaller for deep-out-of-the-money 

and deep-in-the-money options, and tends to be higher in the at-the-money condition.  

[[INSERT TABLE 3 ]] 

                                                 
34 The MSE measure is a common estimator for option mispricing in the literature.  See for example Chu and Freund 

(1996), Christoffersen and Jacobs (2004), Bakshi, Cao, and Chen (1997), Dumas, Fleming, and Whaley (1998), Heston 

(1997), Liu and Shen (2008) and others.  
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Table 4 shows the improvement (in percentages) in the MSE estimation of the SI 

model relative to the BS model.  Panel A presents the improvement for call options and 

Panel B presents the improvement for put options.  These differences (in percentages) are 

obtained by dividing the difference in the MSE of the models by the MSE of the BS 

model, across moneyness and time to maturity.  Looking at the total sample, the SI model 

yields an average improvement in MSE of 29.51% for call options and 19.69% for put 

options.  For both call and put options, the improvement is more significant the longer the 

time to maturity of the option, indicating the importance of changes in the interest rate for 

long-term options.  These findings are highly relevant for long-term call options, such as 

employee stock options, and for the accuracy of accounting reports.  There is no clear 

tendency for the MSE to improve across moneyness, except for options with 180 days or 

more to maturity.  In this category of maturity, the improvement in the MSE increases the 

more the call option is out of the money and as the more the put option is in the money. 

 [[INSERT TABLE 4 ]] 

Table 5 presents the statistical significance of the difference in pricing errors 

between any two models i and j by adopting the t-statistic test of the sample differences 

in daily mean squared errors, following Huang and Wu (2004).  The t-value is calculated 

by  

( )
i j

statistic
i j

MSE MSE
t

stdev MSE MSE

−

=

−

, 

where the overline on the MSE denotes the sample average and ( )stdev ⋅  denotes the 

standard error of the sample mean difference.  We set model i to be the BS model and 
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model j to be the SI model.  A positive t-value in this test implies that the MSE of the SI 

model is statistically more significant than that of the BS model and vice versa. 

Since the t-statistic uses the sample average of the daily MSEs, we first group the 

daily MSEs and report the sample size across moneyness and maturity for both call and 

put options in Panel A.  Pursuant to Table 2, the most inactive group, in terms of 

moneyness and maturity, is the group of in-the-money call contracts with 120 to 180 days 

to expiration.  Out-of-the-money call and put options are more tradable than their in-the-

money counterparts.   

Panel B in Table 5 presents the statistical significance of the SI model relative to 

the BS model.  In call options, the SI model provides significantly lower MSE values, in 

all categories across moneyness and maturity, compared to the BS model, except for 

deep-out-of-the-money options with 120 days or less to maturity.  Specifically, the SI 

model yields a significant improvement in the MSE of call options with 120 days or more 

to maturity and in call options with moneyness of 0.97 or higher.  Regarding put options, 

the SI model also yields significantly lower MSE values in all categories across 

moneyness and maturity than the BS model.  Here, the only exception is for in-the-

money put options with 120 days or less to maturity, where the BS performs better, 

though not significantly better.  Specifically, the SI model yields a significant 

improvement in MSE of put options with 120 days or more to maturity, and in put 

options with moneyness of 0.97 or higher.  

[[INSERT TABLE 5 ]] 
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V. Conclusions  

This paper extends the Black-Scholes European option pricing model to the case 

of stochastic Gaussian interest rates.  We prove a closed-form solution for option pricing 

under the term structure models of Vasicek (1977) and Merton (1973).  We show that our 

model preserves the properties of non-arbitrage pricing, and when the interest rate is non-

stochastic our formulas for both call and put options collapse to the BS expression.  Since 

stochastic interest rate constitutes an additional source of risk not priced by the BS, in 

most cases options are more under-priced in the BS model than in our generalized model. 

We compare our SI model to the BS model using sample data on S&P 500 index 

options.  Our empirical results support the expected pricing improvement of the SI 

model.  They present a significant improvement in call and put pricing using the MSE 

criterion as the measure of accuracy: the magnitude of this improvement is a function of 

the option's time to maturity, the greatest improvement being obtained for around-the-

money short-term options.  The SI model has implications for pricing options with no 

market value, and is especially useful for long-term options, such as employee stock 

option pricing, which must be accurately priced in financial reports. 
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Option values as a function of time to maturity (T) 

 

 
 

 

 
 

Figure 1:  The value of at-the-money call and put options as a function of time to maturity.  We use the 
following parameters: stock price S=100; exercise price K=100; interest rate r=5%; stock's standard 

deviation σ =0.3 and correlation coefficient ρ=0. The short-term interest parameters for the Merton model 

are α =0.0005, β =0, ξ =0.02, and for the Vasicek model they are α =0.0254, β =0.1779, ξ =0.02. 
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Option values as a function of the correlation coefficient (ρ) 

 

 
 

 

 
 

Figure 2: The value of at-the-money call and put options as a function of the correlation coefficient 
between changes in the underlying asset to changes in the interest rate level.  We use the following 

parameters: stock price S=100; exercise price K=100; interest rate r=5%; stock's standard deviation σ=0.3 

and time to maturity T=1. The short-term interest rate parameters for the Merton model are α =0.0005, β 

=0, ξ =0.02, and for the Vasicek model they are α =0.0254, β =0.1779, ξ =0.02. 
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Option values as a function of the standard deviation of the interest rate (ξ) 
 

 
 

 

 
 

Figure 3: The value of at-the-money call and put options as a function of the interest rate's standard 
deviation.  We use the following parameters: stock price S=100; exercise price K=100; interest rate r=5%; 

stock's standard deviation σ=0.3; time to maturity T=1 and correlation coefficient ρ=0. The short-term 

interest rate parameters for the Merton model are α=0.0005, β=0, and for the Vasicek model they are 

α=0.0254, β=0.1779.   
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Table 1 

Parameter estimation of the Merton and Vasicek models of short-term interest rate 

This table depicts the estimated parameters of the Merton and Vasicek models of short-term interest rate.  
The estimation uses the yield to maturity of one-month T-bills reported by CRSP's monthly treasury 
section.  The estimation horizon is monthly data covering the period from January 1960 to December 
2009, providing 600 observations in total.  For each month the selected T-bill is the one closest to 30 days 
to maturity in absolute values.  The parameters are estimated using an OLS regression. 

 Parameter 

(t-stat) 

Model α  β  2
σ  2R  

Merton  
-0.00062 
(-0.204) 

--- 0.000050 0 

Vasicek 
0.001695 
(2.672) 

-0.034883 
(-3.143) 

0.000055 0.01628 
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Table 2 

Number of call and put contracts across moneyness and maturity 

This table reports descriptive statistics on call and put contracts on the S&P 500 index for the period from 
January 3, 2005 to December 30, 2006.  Each sample is divided into four maturity bins and six moneyness 
bins. 

A.  Call 

 Number of days to expiration (D) 

Moneyness (S/K) D<60 60≤D<120 120≤D<180 D≥180 Total sample 

S/K < 0.94 310 723 566 2,235 3,834 

0.94 ≤ S/K < 0.97 3,224 1,247 390 683 5,544 

0.97 ≤ S/K < 1.00 5,233 1,730 439 1,169 8,571 

1.00 ≤ S/K < 1.03 2,773 712 217 787 4,489 

1.03 ≤ S/K < 1.06 669 170 63 185 1,087 

S/K ≥ 1.06 672 279 76 214 1,241 

Total sample 12,881 4,861 1,751 5,273 24,766 

B.  Put 

 Number of days to expiration (D) 

Moneyness (S/K) D<60 60≤D<120 120≤D<180 D≥180 Total sample 

S/K < 0.94 244 230 113 775 1,362 

0.94 ≤ S/K < 0.97 534 188 168 746 1,636 

0.97 ≤ S/K < 1.00 3,545 1,387 434 1,394 6,760 

1.00 ≤ S/K < 1.03 4,933 1,398 472 1,095 7,898 

1.03 ≤ S/K < 1.06 4,090 1,071 412 857 6,430 

S/K ≥ 1.06 5,068 2,495 1,333 3,855 12,751 

Total sample 18,414 6,769 2,932 8,722 36,837 

 

 



36 

Table 3 

MSE estimation 

This table reports the MSE estimation of call and put options contracts using the SI model and the BS 
model. The underlying asset is the S&P 500 index. The option's sample period is from January 3, 2005 to 
December 30, 2006.  The option's market prices are calculated using the mid-point of the end-of-the-day 
bid-ask quotes. We calculate the SE of each contract and then calculate a mean for all the contracts 
across moneyness and maturity.  

A.  MSE of the SI model 

 Number of days to expiration (D) 

Moneyness (S/K) 
Option 

type 
D<60 60≤D<120 120≤D<180 D≥180 

Total 
sample 

S/K < 0.94 
Call 
Put 

0.42 
2.81 

1.4 
3.96 

3.11 
9.79 

43.08 
202.12 

25.87 
117.00 

0.94 ≤ S/K < 0.97 
Call 
Put 

1.85 
6.36 

5.44 
23.44 

15.3 
45.28 

137.69 
460.81 

20.34 
219.54 

0.97 ≤ S/K < 1.00 
Call 
Put 

4.51 
7.64 

16.08 
28.53 

48.87 
75.66 

275.43 
315.96 

46.07 
79.87 

1.00 ≤ S/K < 1.03 
Call 
Put 

6.55 
9.94 

27.67 
38.25 

63.48 
102.37 

297.43 
327.89 

63.74 
64.56 

1.03 ≤ S/K < 1.06 
Call 
Put 

8.31 
9.11 

34.63 
42.59 

77.61 
107.57 

275.79 
314.89 

61.96 
61.75 

S/K ≥ 1.06 
Call 
Put 

4.72 
3.88 

12.7 
15.8 

48.94 
44.91 

184.53 
142.33 

40.23 
52.36 

Total sample 
Call 
Put 

4.39 
7.45 

13.32 
27.09 

29.45 
66.18 

158.79 
242.88 

40.79 
71.48 

B.  MSE of the BS model 

 Number of days to expiration (D) 

Moneyness (S/K) 
Option 

type 
D<60 60≤D<120 120≤D<180 D≥180 

Total 
sample 

S/K < 0.94 
Call 
Put 

0.41 
2.81 

1.35 
3.97 

3.18 
10.41 

81.8 
358.09 

48.44 
205.8 

0.94 ≤ S/K < 0.97 
Call 
Put 

1.83 
6.38 

5.49 
23.99 

16.93 
49.08 

209.9 
715.49 

29.34 
336.14 

0.97 ≤ S/K < 1.00 
Call 
Put 

 4.52 
7.69 

16.68 
29.42 

53.35 
81.47 

407.79 
408.57 

64.48 
99.55 

1.00 ≤ S/K < 1.03 
Call 
Put 

6.61 
10.03 

28.6 
39.26 

68.35 
108.37 

430.92 
405.87 

87.47 
75.96 

1.03 ≤ S/K < 1.06 
Call 
Put 

8.35 
9.16 

35.44 
43.34 

82.06 
112.1 

348.53 
368.60 

74.76 
69.35 

S/K ≥ 1.06 
Call 
Put 

4.73 
3.88 

12.8 
15.92 

50.53 
45.84 

222.84 
158.10 

46.96 
57.25 

Total sample 
Call 
Put 

4.41 
7.49 

13.7 
27.67 

31.79 
69.31 

237.85 
315.36 

57.87 
89.01 
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Table 4 

Differences in MSE estimations between the SI model and the BS model 

This table reports the difference (in percentages) between the MSE estimations of the SI model and the 
BS model, for call and put options contracts across moneyness and maturity. The underlying asset is the 
S&P 500 index. The option's sample period is from January 3, 2005 to December 30, 2006.  The option's 
market prices are calculated using the mid-point of the end-of-the-day bid-ask quotes. 

A.  Call 

 Number of days to expiration (D) 

Moneyness (S/K) D<60 60≤D<120 120≤D<180 D≥180 Total sample 

S/K < 0.94 -2.44% -3.70% 2.20% 47.33% 46.59% 

0.94 ≤ S/K < 0.97 -1.22% 0.55% 9.63% 34.40% 30.67% 

0.97 ≤ S/K < 1.00 0.22% 3.60% 8.40% 32.46% 28.55% 

1.00 ≤ S/K < 1.03 0.91% 3.25% 7.13% 30.85% 27.13% 

1.03 ≤ S/K < 1.06 0.48% 2.29% 5.42% 20.87% 17.12% 

S/K ≥ 1.06 0.21% 0.78% 3.15% 17.19% 14.33% 

Total sample 0.45% 2.77% 7.36% 33.24% 29.51% 

B.  Put 

 Number of days to expiration (D) 

Moneyness (S/K) D<60 60≤D<120 120≤D<180 D≥180 Total sample 

S/K < 0.94 0.00% 0.25% 5.96% 43.56% 43.15% 

0.94 ≤ S/K < 0.97 0.31% 2.29% 7.74% 35.60% 34.69% 

0.97 ≤ S/K < 1.00 0.65% 3.03% 7.13% 22.67% 19.77% 

1.00 ≤ S/K < 1.03 0.90% 2.57% 5.54% 19.21% 15.01% 

1.03 ≤ S/K < 1.06 0.55% 1.73% 4.04% 14.57% 10.96% 

S/K ≥ 1.06 0.00% 0.75% 2.03% 9.97% 8.54% 

Total sample 0.53% 2.10% 4.52% 22.98% 19.69% 
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Table 5 

t-statistic of the MSE differences between the SI model and the BS model 

This table reports the t-statistics of the MSE differences between the SI model and the BS model, for call 
and put option contracts across moneyness and maturity. The underlying asset is the S&P 500 index. The 
option's sample period is from January 3, 2005 to December 30, 2006.  The option's market prices are 
calculated using the mid-point of the bid-ask quotes. The t-statistic measure is based on Huang and Wu 
(2004).  For each test (Model i - Model j), a t-value greater than 1.645 implies that the mean squared 
pricing error from model i is significantly larger than the mean squared error from model j.  A t-value 
less than -1.645 implies the opposite, i.e. model j's MSE is significantly larger than model i's MSE.  

A. Number of days in the sample 

 Number of days to expiration (D) 

Moneyness (S/K) 
Option 

type 
D<60 60≤D<120 120≤D<180 D≥180 

Total 
sample 

S/K < 0.94 
Call 
Put 

199 
173 

363 
159 

286 
85 

493 
325 

499 
420 

0.94 ≤ S/K < 0.97 
Call 
Put 

500 
258 

465 
150 

276 
140 

375 
384 

500 
460 

0.97 ≤ S/K < 1.00 
Call 
Put 

500 
500 

464 
439 

300 
313 

436 
482 

500 
500 

1.00 ≤ S/K < 1.03 
Call 
Put 

498 
500 

362 
470 

182 
317 

353 
463 

499 
500 

1.03 ≤ S/K < 1.06 
Call 
Put 

357 
500 

135 
460 

59 
313 

134 
427 

412 
500 

S/K ≥ 1.06 
Call 
Put 

320 
500 

173 
469 

59 
334 

145 
495 

422 
500 

Total sample 
Call 
Put 

500 
500 

476 
476 

337 
340 

500 
500 

500 
500 

B. Pairwise t-statistic for model comparisons 

 Number of days to expiration (D) 

Moneyness (S/K) Option 
type 

D<60 60≤D<120 120≤D<180 D≥180 Total 
sample 

S/K < 0.94 
Call 
Put 

  -7.08** 
  -1.56 

   -8.92** 
   -0.43 

      0.49 
      4.23** 

  15.06** 
  11.47** 

 14.37** 
 9.66** 

0.94 ≤ S/K < 0.97 
Call 
Put 

 -13.29** 
 -0.05 

       0.1 
    5.82** 

    11.95** 
    13.22** 

  11.87** 
  20.34** 

 12.89** 
 15.19** 

0.97 ≤ S/K < 1.00 
Call 
Put 

2.55** 
7.06** 

   17.33** 
   20.27** 

    24.08** 
    30.11** 

  19.8** 
  26.51** 

 17.99** 
 24.97** 

1.00 ≤ S/K < 1.03 
Call 
Put 

16.67** 
20.85** 

   23.94** 
   33.03** 

    23.14** 
    35.89** 

  16.11** 
  20.83** 

 15.74** 
 21.24** 

1.03 ≤ S/K < 1.06 
Call 
Put 

14.52** 
28.81** 

   16.34** 
   37.88** 

   15.09** 
   38.43** 

  10.06** 
  18.60** 

  7.47** 
 18.87** 

S/K ≥ 1.06 
Call 
Put 

8.49** 
31.91** 

   6.52** 
  26.55** 

    9.07** 
   23.38** 

  5.04** 
  20.06** 

  4.59** 
 23.57** 

Total sample 
Call 
Put 

4.61** 
19.04** 

  16.98** 
  28.86** 

   43.43** 
   32.62** 

  28.36** 
  31.6** 

 29.09** 
 37.64** 

** 99% confidence level 
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APPENDIX 

Lemma 1:  Assume that the short-term interest rate, ( )r t , follows the dynamics of 

Equation (2). Then the accumulation factor of a holding period T tτ = −  is  

(8) ( )
( )

( ) ( ) ( ), ,,

T

t

r u du
A t T B t T HR t T e e τ+

∫
= = , 

with the boundary condition ( ), 1R t t = , such that if 0β =  then  ( ) ( ) 21
,

2
A t T r t τ ατ= +   

and ( )
3

2
1

,
3

B t T ξτ= , and if 0β ≠  then ( ) ( ) ( ), ,A t T r t t T
α α
τ λ

β β

 
= + − 

 
 and  

( ) ( ) ( )2, , ,
2

B t T t T t T
ξ β

τ λ λ
β
= − − , where ( ) ( )

1
, 1t T e βτ

λ
β

−

= − .35 

Proof:  The proof adjusts a method of solving stochastic differential equations for the 

Ornstein-Uhlenbeck process combined with the stochastic Fubini theorem. We prove the 

lemma in two different parts, for the case where 0β =  and for the case where 0β ≠ . 

Part 1 ( 0β = ):  Define the process ( ) ( )( )Y u r u T u= − . 

Applying Ito’s lemma and integrating gives ( ) ( )( ) ( ) ( )
T T

t t

r u du r t T t T u dr u= − + −∫ ∫ . 

Define the process  ( ) ( ),
T

t

t T r u duΨ = ∫ . Thus ( ) ( ) ( ) ( ) ( ),
T

t

t T r t T t T u dr uΨ = − + −∫ . 

Substituting for ( )dr u  (Equation (2) with 0β = ) yields  

 ( ) ( )( ) ( ) ( ) ( )
21

,
2

T

t

t T r t T t T t T u dH uα ξΨ = − + − + −∫ . 

                                                 
35 Note that the value assigned toβ  must be a real value, β ∈R , such that ( ),B t T  is well defined as a real number. 
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Since ( ) ( )f u T uξ= −  is continuous, the variance of this Gaussian process is 36 

 ( ) ( ) ( )
32 21

,
3

T

t

V t T f u du T t ξ= = −∫ . 

Finally, a sample path of the stochastic process ( ),t TΨ  is as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )
3

2
2

1 1
,

2 3
t T r t T t T t T t H T tα ξΨ = − + − + − − . 

Part 2 ( 0β ≠ ):  Define the process  ( ) ( ) ( )T uY u r u e β− −

= ,  where 0 u T≤ ≤ . 

Applying Ito’s lemma and substituting Equation (2) for ( )dr u  gives 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )T u T udY u e du r u du dH u r u du e du dH uβ β
α β ξ β α ξ

− − − −

= − + + = + . 

Hence,   ( ) ( ) ( ) ( )( ) ( ) ( )1
T

T t T t T u

t

r T r t e e e dH uβ β βα
ξ

β

− − − − − −

= + − + ∫ . 

Defining the process ( ) ( ),
T

t

t T r u duΨ = ∫  and substituting for ( )r u  leads to  

(9) ( ) ( ) ( ) ( ) [ ] ( ),
T T T T u

u xT u T u

t t t t t

t T r t e du du e du e dH x duββ βα α
ξ

β β

− −− − − −

Ψ = + − +∫ ∫ ∫ ∫ ∫ . 

Applying the Riemann integral to the first term of Equation (9) gives  

 ( ) ( ) ( )( )
1

, 1
T

T u T t

t

t T e du eβ β
λ

β

− − − −

= = −∫ . 

Applying the stochastic Fubini theorem to the last term of Equation (9) gives 

                                                 
36 If dW is a standard Wiener process then for any continuous function [ ]: ,f t T → R ,  

( ) ( ) ( )2~ N 0,
T T

t t

f u dW u f u du
 
 
 

∫ ∫ . 
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 [ ] ( ) ( ) ( ) ( ),
T u T u T

u x u x

t t t t t

e dH x du e e dH x du x T dH xβ β β
λ

− − −

= =∫ ∫ ∫ ∫ ∫ .37 

Since ( ) ( )( ) ( )1 ,T uf u e u Tβξ
ξλ

β

− −

= − =  is continuous, the variance of the process is 

 ( ) ( ) ( ) ( ) ( )
2

2 2
2

, , ,
2

T

t

V t T f u du T t t T t T
ξ β

λ λ
β

 
= = − − − 

 
∫ . 

Finally, a sample path of the stochastic process ( ),t TΨ  is as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2, , , ,
2

t T T t r t t T T t t T t T H
α α ξ β

λ λ λ τ
β β β

 
Ψ = − − + + − − − − 

 
, 

where ( ) ( )( )1
, 1 T tt T e βλ

β

− −

= − .  ■ 

 

Lemma 2:  The excess return factor, ( )X t , follows a geometric Brownian motion 

defined by the stochastic differential form 

(10) ( ) ( ) ( ) ( )dX t X t dt X t vdW tη= + , 

with a drift  ( ) 21
0,

2
A t v
τ

η µ= − +  and a diffusion ( ) ( )2 2 2 0, 2 0,v B t B tσ ρσ= + − , 

where ( )dW t  is a standard Wiener processes, and ( ),A t T
τ

 stands for the derivative of 

( ),A t T  with respect to T tτ = − . 

Proof:  The process ( ),X t T  is defined as ( )
( )

( ) ( )
,

,

S T
X t T

S t R t T
= . 

Differentiating ( ),R t T  using Ito’s lemma gives  

                                                 
37 See Theorem IV in Protter (1990).  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )21
, , ,

2tdR t R t A t T B t T dt R t B t T dH t
 

= + + 
 

. 

Differentiating ( ),X t T  using Ito’s lemma, where for brevity the time descriptors are 

omitted, gives 
2 2 3

1 1S S
dX dS dR dSdR dRdR

R R R R
= − − + . 

Substituting for dS  and dR  and collecting terms yields 

 ( )2 21 1

2 2tdX X A B B dt X B dWµ σ ρσ σ
 

= − + + − + − 
 

 

Since Z  and H  are both Wiener processes (Gaussian distributed), W  is also a Wiener 

process with variance 2 2 2 2v B Bσ ρσ= + − . Hence dX X dt XvdWη= + , where  

21

2tA vη µ= − +

 
and 2 2 2 2v B Bσ ρσ= + − .  ■ 

 

Lemma 3:  The normalization factor ( ),F t T  is 

(11) ( ) ( ) 21
, exp ,

2
F t T A t T vµτ τ

 
= − + 

 
, 

where  ( ) ( )2 2 2 , 2 ,v B t T B t Tσ ρσ= + − . 

Proof:  By Lemma 2 21

2tdX X A v dt XvdWµ
 

= − + + 
 

.  Since the boundary condition 

is ( ), 1X t t = , then  2

0 0

1
1

2tX X A v du XvdW
τ τ

µ
 

= + − + + 
 

∫ ∫ .  Take expectation 

( ) ( ) 2

0

1
E 1 E

2tX X A v du
τ

µ
 

= + − + 
 

∫ . Hence ( ) ( ) 21
, E exp

2
F t T X A vµτ τ

 
= = − + 

 
.  ■ 

 

Lemma 4:  The discount factor, ( ),t Tϒ , of a sample random path is as follows: 
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(12) ( )
( )

( ) ( ) ( )( )
1

, exp , ,
,

t T A t T B t T H
R t T

τϒ = = − − , 

with the boundary condition ( ), 1t tϒ = . 

Proof:  Differentiating ( )
( )

1
,

,
t T

R t T
ϒ =  using Ito’s lemma and substituting for  

21

2tdR R A B dt RBdH
 

= + + 
 

, gives  21

2td A B dt BdH
 

ϒ = − ϒ − − ϒ 
 

.   

Hence ( ) ( )( ), expt T A BH τϒ = − − .  ■  

 

Lemma 5:  The expected discount factor ( ),t TΛ  is 

(13) ( ) ( ) ( )21
, exp , ,

2
t T A t T B t T τ

 
Λ = − + 

 
. 

Proof:  By Lemma 4 dϒ  follows a differential form of the geometric Brownian motion 

21

2td A B dt BdH
 

ϒ = − ϒ − − ϒ 
 

. The initial value is ( ), 1t tϒ = . Thus 

 2

0 0

1
1

2tA B du BdH
τ τ

 
ϒ = − ϒ − − ϒ 

 
∫ ∫ .  Taking expectation gives 

 ( ) ( ) 2

0

1
E 1 E

2tA B du
τ

 
ϒ = − ϒ − 

 
∫ . Hence ( ) 21

E exp
2

A B τ
 

ϒ = − + 
 

.  ■ 

 

Proof of Theorem 1:   

Applying Lemma 4 to the option price model in Equation (5) gives 

 ( ) ( )
( )

( ) ( )

, 1
, E

, ,

X t T
C t T S t K

F t T R t T

+

 
= − 

 
. 
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For simplicity, set 0t =  and omit the time descriptors. Then, 

(14) ( )

( )

( ) ( )

( )

( )

( )0 0 0

1 1
Pr 0 Pr Pr

K K K
F F F

S S S

I II

S X
C S K dS S S dS K S dS

R F F R

∞ ∞ ∞

   
= − = −   

   
∫ ∫ ∫

14444244443 144424443

, 

where ( )Pr ⋅  stands for the probability density function. 

Applying Lemma 2 for the random process X  yields ( )0, t A vWX t eµ − += .38 

We begin with the first part of Equation (14):  ( ) ( )

( )0

0 Pr
K

F
S

X
I S S dS

F

∞

 
=  

 
∫ . 

Substituting for ( )
21

20,
t A v t

F t e
µ − +

= , ( )0, t A vWX t eµ − += , and changing the variables for 

( ) t WS t eµ σ+
=  yields   ( ) ( )

( )

2

2

1

2

1
ln

0 2

0 Pr
v t vWt W t W

K
A v t

S

I S e e e dWµ σ µ σ

σ

σ

∞

− +
+ +

− +

= ∫ . 

Substituting for the log-normal probability density function, ( )2LN 0, tσ , of ( )S t : 

( )

( )

2

2

1

2

1
ln

0 2

1
0

2

W
v t

t

K
A v t

S

I S e dW
t

σ

π

 ∞ − − 
 

− +

= ∫ . 

Changing the variables, ˆW W t= , such that ( )ˆ ~ N 0,1W
, 

 and using the symmetry 

property  gives     ( )

( ) 20 1
ln

20 N

S
A v t

KI S v t
tσ

 
+ − 

= + 
 
 
 

. 

                                                 
38 Notice that the process ( )S T  is a special case of the process ( ),X t T  when ( ), 0A t T =  and ( ), 0B t T = .  The process 

( ),t Tϒ  is also a special case of the process ( ),X t T  when 0µ=  and 0σ = . 
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We apply the same procedure to part II  of Equation (14), and obtain the call formula  

( )

( ) ( )
2

2 2
1

2

0 01 1
ln ln

2 20 N N
A B t

S S
A v t A v t

K KC S v t Ke B t
t tσ σ

− +

   
+ − + −   

= + − −   
   
   
   

.  ■ 

 

Proof of Theorem 3:  The put-call parity can be written as 

( ) ( ) ( ) ( ), , ,K t T P t T S t C t TΛ = + − ,  where ( ) ( ), E ,t T t TΛ = ϒ    . 

Set  

( ) 20 1
ln

2

S
A v

Km v
τ

τ

σ τ

+ −

= +    and   

( ) 20 1
ln

2

S
A v

Kn B
τ

τ

σ τ

+ −

= − . 

Substituting for the prices of call and put options gives 

   ( ) ( ) ( )
21

2, ,
A B

P t T S t C t T Ke
τ− +

+ − = . 

Using Lemma 5:  ( ) ( ) ( ) ( ), , ,K t T P t T S t C t TΛ = + − .  ■ 

 


