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ABSTRACT

We propose a three-factor model that jointly prices the cross-section of returns

on portfolios of stocks sorted on the book-to-market dimension, the cross-section

of government bonds sorted by maturity, and time series variation in expected

bond returns. The main insight is that innovations to the nominal bond risk

premium price the book-to-market sorted stock portfolios. We argue that these

innovations capture business cycle risk and show that dividends of the highest

book-to-market portfolio fall substantially more than those of the low book-to-

market portfolio during NBER recessions. We propose a structural model that

ties together the nominal bond risk premium, the cross-section of book-to-market

sorted stock portfolios, and recessions. This model is quantitatively consistent

with the observed value, equity, and nominal bond risk premia.
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As long as some investors have access to both stock and bond markets, the absence

of arbitrage opportunities imposes cross-market restrictions on the stochastic discount

factor, henceforth SDF. Despite tremendous progress in the separate modeling of SDFs

for bond markets and stock markets, the cross-market restrictions between stocks and

bonds are typically not imposed. As a result, the state-of-the art bond pricing model

does not price stocks and the state-of-the-art equity pricing model does not price bonds.

We propose a parsimonious no-arbitrage SDF model that exploits these cross-market

restrictions to learn about the pricing of risk across stock and bond markets.

We find that three factors are able to account for most of the average return differ-

ences between book-to-market sorted equity portfolios, the aggregate stock market, and

maturity-sorted government bond portfolios. The first factor is a stock market return

factor familiar from the Capital Asset Pricing Model, the second factor is the level of

the nominal term structure, and the third factor is a proxy for the nominal bond risk

premium, the Cochrane and Piazzesi (2005) factor (CP factor).

The first contribution of the paper is to document that value portfolio returns have

a higher covariance with innovations in the nominal bond risk premium than growth

portfolio returns; see Figure 1. Combined with the positive price of risk we estimate on

innovations to the CP factor, this differential exposure results in a value premium. Dif-

ferential exposure to level shocks accounts for the difference between returns on long-term

and short-term bonds, consistent with Cochrane and Piazzesi (2008), while exposure to

the market return accounts for the aggregate equity premium. The three-factor model

reduces mean absolute pricing errors from 4.7% per year in a risk-neutral benchmark

economy to 0.4% per year (Section II). In Section V, we present similar results for dif-

ferent sub-samples and for different equity and bond portfolios. In particular, our model

does a very good job pricing corporate bond portfolios differing by credit rating, in ad-
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dition to equities and Treasuries. We also present stock-level evidence that exposure to

the CP shocks is priced in the cross-section.
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Figure 1. Exposure of value and growth portfolio returns to CP innovations.
The figure shows the covariance of innovations to the nominal bond risk premium (CP factor) and innovations to returns
on five quintile portfolios sorted on the BM ratio. Portfolio 1 is the lowest book-to-market (growth) portfolio; portfolio 5
the highest book-to-market (value) portfolio. Innovations to CP are constructed as described in Section II.

The factor model leaves two important questions unanswered. Why are value port-

folios more exposed to bond risk premium innovations than growth portfolios, and why

is the price of bond risk premium (CP ) innovations positive? We provide new empirical

evidence and a new structural model to shed light on these questions.

The second contribution of our paper is to document that the dividends of value

portfolios are substantially more cyclical than those of growth portfolios (Section III).

During the average recession, dividends on value stocks (fifth book-to-market quintile)

fall 21% while dividends on growth stocks (first quintile) rise by 2%. This 23% gap is

much higher in some recessions than in others. For example, during the Great Recession

of 2007-2009, the fall in value-minus-growth dividends was 37%. During the Great
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Depression the relative log change was -360%. The fall during the NBER recession

months underestimates the fall during the broader bust period because the NBER dates

may neither coincide with the peak nor the trough for real dividends. Focussing on

periods with a protracted fall in real dividends on the market portfolio, we find that

real dividends on the highest book-to-market portfolio fall by 53% more than those on

the lowest book-to-market portfolio. This decline in the relative dividend on value-

minus-growth is twice as high as the fall in the dividends on the market portfolio itself.

Thus, our paper provides new evidence that value stocks suffer from bad cash-flow shocks

during aggregate bad times. Since those are times of high marginal utility growth for the

representative investor, a value risk premium naturally follows. As Lakonishok, Schleifer,

and Vishny (1994) and Cochrane (2006) point out, empirical evidence that value stocks

suffer from terrible shocks during aggregate bad times has been elusive. We provide a

fresh look at the data and find clear patterns in dividend growth differences between

value and growth stocks during (and surrounding) NBER recessions. This evidence also

answers the question why the price of CP risk is positive. Since the risk that value stocks

are more exposed to than growth stocks is that associated with cyclical movements in

real economic activity, its price is naturally positive (higher activity indicates good times

for the representative investor). Section III also document the connection between the

bond risk premium and the business cycle.

The third contribution of the paper is to develop a structural asset pricing model

to understand the link between the value risk premium and changes in the nominal

bond risk premium (Section IV). In particular, we model cyclical variations in real

economic activity as an AR(1) process, whose innovations carry a positive price of risk.

Mimicking the backward-looking NBER dating procedure, we define recessions ex-post

as a sequence of negative cyclical shocks combined with a low level of economic activity,
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followed by a sequence of positive shocks. The model replicates the observed duration

of recessions. Dividend growth of value stocks has a higher loading on the state of the

business cycle than that of growth stocks. The heterogeneity in this exposure is chosen

to match the observed fall in dividends on value and growth stocks over the course of a

recession. It is the source of the value premium in the model. The model also features

aggregate dividend growth risk, which is permanent, and expected inflation shocks.

The price of aggregate dividend (positively) and expected inflation risk (negatively)

depend on the state of the business cycle. The former ensures that the return difference

between value and growth stocks does not arise from different exposure to aggregate

dividend risk (market beta), while the latter causes bond risk premia to vary over time.

We construct the CP factor inside the model; it captures fluctuations in the business

cycle. Hence, differential exposure to innovations in the CP factor is what generates

the value premium. The model is able to replicate the exposure of nominal bond and

stock portfolio returns for market return, level, and CP shocks that we document in the

data. Despite its simplicity, it generates the same size value premium, nominal bond

risk premium, equity premium, and 1- through 5-year nominal term structure as what

we see in the data for reasonably calibrated dividend growth and inflation processes.

I. Related Literature

This paper relates to several strands of the literature. The last twenty years have seen

dramatic improvements in economists’ understanding of what determines differences in

yields (e.g., Cox, Ingersoll, and Ross (1985), Duffie and Kan (1996), Dai and Singleton

(2000, 2002), Duffee (2002), Ang and Piazzesi (2003), Ang, Bekaert, and Wei (2008),

and Cochrane and Piazzesi (2008)) and returns on bonds (Campbell and Shiller (1991),
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Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009)), as well as what determines

heterogeneity in stock returns that differ in terms of size and book-to-market value

(e.g., Fama and French (1992, 1993)). Yet, these two literatures have developed largely

separately and employ largely different asset pricing factors. This is curious from the

perspective of either no-arbitrage or equilibrium asset pricing models. As long as some

investors have access to both markets, stock and bond prices ought to equal the expected

present discounted value of their future cash-flows, discounted by the same SDF. This

paper contributes to both literatures and helps to bridge the gap between them. It

speaks to a large empirical literature and a small but fast-growing theoretical literature.

On the empirical side, the nominal short rate or the yield spread is routinely used

either as a predictor of the aggregate return on the stock market or as a conditioning

variable in an estimation of a conditional beta model of the cross-section of stock returns.

Chen, Roll, and Ross (1986) were the first to study the connection between stock returns

and bond yields. Ferson and Harvey (1991) study stock and bond returns’ sensitivity to

aggregate state variables, among which the slope of the yield curve. They conclude that

time variation in equity risk premia is important for understanding the cross-sectional

variation in size and industry equity portfolios, and that interest rate risk premia are

important for understanding the cross-sectional variation in bond return portfolios. Sim-

ilarly, Fama and French (1993) find that three factors (market, size, and book-to-market)

account for the cross-sectional variation in stock returns and that two bond factors (the

excess return on a long-term bond over the short rate and a default spread) explain

the variation in government and corporate bond returns. However, all of their stock

portfolios load in the same way on their term structure factors. Ang and Bekaert (2007)

find some predictability of nominal short rates for future aggregate stock returns. Bren-

nan, Wang, and Xia (2004) write down an intertemporal-CAPM model where the real

5



rate, expected inflation, and the Sharpe ratio move around the investment opportunity

set. They show that this model prices the cross-section of stocks. Similarly, Petkova

(2006) studies the connection between the Fama-French factors and innovations in state

variables such as the default spread, the dividend-price ratio, the yield spread, and the

short rate. In contrast to this literature, our focus is on the joint pricing of stock and

bond returns, the link with dividend growth on equity portfolios, and the connection of

bond and value-minus-growth returns with the business cycle. Baker and Wurgler (2007)

show that government bonds comove most strongly with “bond-like stocks,” which are

stocks of large, mature, low-volatility, profitable, dividend-paying firms that are neither

high growth nor distressed. They propose a common sentiment indicator driving stock

and bond returns. Finally, Lustig, Van Nieuwerburgh, and Verdelhan (2010) price both

nominal bond yields and the aggregate stock market return in a no-arbitrage model

in order to measure the wealth-consumption ratio in the data; they do not study the

cross-section of bond nor stock returns.

On the theory side, several representative-agent models have been developed that are

successful in accounting for many of the features of both stocks and bonds. Examples are

the external habit model of Campbell and Cochrane (1999), whose implications for bonds

were studied by Wachter (2006) and whose implications for the cross-section of stocks

were studied separately by Menzly, Santos, and Veronesi (2004) and Santos and Veronesi

(2006). Likewise, the implications of the long-run risk model of Bansal and Yaron

(2004) for the term structure of interest rates were studied by Piazzesi and Schneider

(2006) and Bansal and Shaliastovich (2007), while Bansal, Dittmar, and Lundblad (2005)

and Bansal, Dittmar, and Kiku (2007) study the implications for the cross-section of

equity portfolios. A small but growing literature models stock and bond returns jointly.

Examples are the affine models of Bakshi and Chen (1996, 1997) in a square-root diffusion
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setting and Bakshi and Chen (2005) and Bekaert, Engstrom, and Grenadier (2005),

Bekaert, Engstrom, and Xing (2008) in a Gaussian setting, and the linear-quadratic

model of Campbell, Sunderam, and Viceira (2008) all of which explore the relationship

between aggregate stock and bond markets. Lettau and Wachter (2009) and Gabaix

(2009) additionally study the cross-section of stock returns. The former is a model with

common shocks to the risk premium in stock and bond markets, while the latter is a

time-varying rare disasters model.

Our paper contributes to the large literature on the value risk premium. Value strate-

gies call for buying stocks that have low prices relative to fundamental measures of value,

such as dividends or book assets and are associated with superior returns, unexplained

by the CAPM (e.g., Basu (1977) and Fama and French (1992)). The profession has hotly

debated whether these superior returns reflect a fair compensation for other sources of

systematic risk or a behavioral anomaly. Extrapolative investors may push up the prices

of “glamour” (growth) stocks that performed well in the recent past, allowing contrar-

ian investors to profit from their over-optimism by investing in out-of-favor value stocks

and/or shorting the growth stocks (De Bondt and Thaler 1985). To settle this debate,

Cochrane (2006) points out that “Our lives would be so much easier if we could trace

price movements back to visible news about dividends or cash flows.” But early attempts

to connect the cash flows of value and growth firms to macro-economic sources of risk

came up empty handed (Lakonishok, Schleifer, and Vishny 1994). Relative to LSV, we

study a longer sample (1926-2009 compared to 1968-1989, or 15 recessions compared

to 4), we focus on dividends, and trace those dividends more finely over the course of

NBER recessions (from the exact peak month to the trough month). We find large

differences in the cyclical behavior of value and growth dividends. Complementary work

in production-based asset pricing has linked investment behavior of value and growth
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firms during a recession to the value premium (Zhang 2005).

Finally, there is a related literature that studies the temporal composition of risk

in asset prices, including Cochrane and Hansen (1992), Kazemi (1992), Bansal and

Lehman (1997), Hansen, Heaton, and Li (2008), Alvarez and Jermann (2004, 2005),

Hansen and Scheinkman (2009), Borovicka, Hansen, Hendricks, and Scheinkman (2009),

Martin (2008), Backus, Routledge, and Zin (2008), and Backus, Chernov, and Martin

(2009). Our model connects to this discussion because it features both permanent shocks

(to aggregate dividend) and transitory shocks (to real economic activity). Relative to

this literature, we emphasize the importance of transitory cash-flow risk, as reflected in

business cycle variation in bond risk premia, and its relationship to the value premium.

II. Empirical Link Between Stocks and Bonds

In this section we develop and estimate a reduced-form, no-arbitrage SDF model

which achieves consistent risk pricing across stocks and bonds. The model suggests that

three priced sources of risk are necessary to account for the market equity risk premium,

the value premium, and the risk premia on nominal bonds of various maturities. Section

IV presents a structural asset pricing model that provides an economic intuition for the

empirical connection between stocks and bonds we document here.

A. Setup

Let Pt be the price of a risky asset and Dt+1 its (stochastic) cash-flow. Then the

nominal SDF implies Pt = Et[M
$
t+1(Pt+1 + Dt+1)]. Lowercase letters denote natural

logarithms: m$
t = log

(
M$

t

)
. We propose a reduced-form SDF, akin to that in the
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empirical term structure literature (Duffie and Kan 1996):

− m$
t+1 = y$

t +
1

2
Λ′

tΣΛt + Λ′
tεt+1, (1)

where y$
t is the nominal short-term interest rate, εt+1 is a N × 1 vector of shocks to

the N × 1 vector of demeaned state variables Xt, and where Λt is the N × 1 vector of

market prices of risk associated with these shocks at time t. The state vector in (2)

follows a first-order vector-autoregression with intercept γ0, companion matrix Γ, and

conditionally normally, i.i.d. distributed innovations, εt ∼ N (0, Σ):

Xt+1 = ΓXt + εt+1, (2)

Λt = Λ0 + Λ1Xt. (3)

The market prices of risk are affine in the state vector, where Λ0 is an N × 1 vector of

constants and Λ1 is an N × N matrix that governs the time variation in the prices of

risk.

Log returns on an asset j can always be written as the sum of expected and unex-

pected returns: rj
t+1 = Et[r

j
t+1] + ηj

t+1. Unexpected log returns ηj
t+1 are assumed to be

conditionally normally distributed. We denote the covariance matrix between shocks to

returns and shocks to the state variables by ΣXj . We define log excess returns to include

a Jensen adjustment:

rxj
t+1 ≡ rj

t+1 − y$
t (1) +

1

2
V [ηj

t+1].

The no-arbitrage condition then implies:

Et

[
rxj

t+1

]
= Covt

[
rxj

t+1,−m$
t+1

]
= Cov

[
ηj

t+1, ε
′
t+1

]
Λt ≡ ΣXj (Λ0 + Λ1Xt) . (4)
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Unconditional expected excess returns are computed by taking the unconditional expec-

tation of (4):

E
[
rxj

t+1

]
= ΣXjΛ0. (5)

The main object of interest is Λ0, which we will estimate below. Equation (5) suggests

an interpretation of our model as a simple three-factor model. In Section D, we estimate

how the market prices of risk vary with Xt (Λ1).

B. Data and Implementation

We aim to explain the average excess returns on the five value-weighted quintile

portfolios sorted on their book-to-market ratio from Fama and French (1992), the value-

weighted stock market return from CRSP (NYSE, Amex, and Nasdaq), and five zero-

coupon nominal government bond portfolios with maturities 1, 2, 5, 7, and 10 years from

CRSP. The return data are monthly from July 1952 until December 2009.

We propose three asset pricing factors in Xt: the CP factor, the LV L factor, and

the Market factor. First, a substantial bond return predictability literature shows that

bond risk premia vary over time. Cochrane and Piazzesi (2005) combine bond yields

of maturities one to five years to form the CP factor and show that it does a good

job predicting future excess bond returns. Our first asset pricing factor is the CP ,

constructed as in Cochrane and Piazzesi (2005).1 We construct the unexpected bond

1In particular, we use monthly Fama-Bliss yield data for nominal government bonds of maturities
one- through five-years. These data are available from June 1952 until December 2009. We construct
one- through five-year forward rates from the one- through five-year bond prices. We then regress the
equally-weighted average of the one-year excess return on bonds of maturities of two, three, four, and
five years on a constant, the one-year yield, and the two- through five-year forward rates. The yields
are one-year lagged relative to the return on the left-hand side. The CP factor is the fitted value of this
predictive regression. The R2 of this regression in our sample of monthly data is 23.8%, roughly twice
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returns in η as the residuals from a regression of each bond portfolio’s log excess return

on the lagged CP factor. Similarly, we assume that stock returns are also predictable

by the CP factor, and construct the unexpected stock returns in η as the residual

from a regression of each bond portfolio’s log excess return on the lagged CP factor.2

Second, we construct the level factor LV L as the first principal component of the one-

through five-year Fama-Bliss forward rates. Third, the market factor (MKT ) is the

value-weighted stock market return from CRSP.

We use a monthly VAR(1) with the CP , LV L, and MKT factors to extract inno-

vations ε in these factors. Innovations to the state vector ε follow from equation-by-

equation OLS estimation of the VAR model in (2). The innovation correlations between

our three factors are close to zero: 0.05 between LV L and CP , 0.03 between MKT and

CP , and -0.12 between Level and MKT .3

The first column of Table I shows the expected excess returns, expressed in percent

per year, on our 11 test assets we wish to explain. They are the pricing errors resulting

from a model where all prices of risk in Λ0 are zero, that is, from a risk-neutral SDF

the 12.3% R2 of the fiver-year minus one-year yield spread, another well-known bond return predictor.
2Cochrane and Piazzesi (2005) provide evidence of predictability of the aggregate market return by

the lagged CP factor. In addition, we could include the aggregate dividend-price ratio as a predictor
of the stock market. However, given the low R2 of these monthly predictive regressions, the resulting
unexpected returns are almost the same whether we assume predictability by CP , DP , both, or no
predictability at all. In an earlier version of the paper, we had the DP ratio as a factor instead of the
market return (and with stock return predictability by the lagged PD ratio), with very similar results.

3In the context of an annual model, Cochrane and Piazzesi (2008) argue that the CP factor is not
well described by an AR(1) process. In addition to the level of the term structure, they include the
slope and the curvature (second and third principal components of the Fama-Bliss forward rates) as
predictors in their VAR. The second difference is that they project forward rates on the CP factor before
taking principal components of the forward rates. Our results (in a monthly VAR) are not sensitive
to either including slope and curvature factors in our VAR to form innovations or to computing level,
slope, and curvature in the alternative fashion, or to making both changes at once. Results are available
upon request. The only difference is that the VAR innovations for CP , LV L, and MKT are nearly
uncorrelated in our procedure, whereas the correlation between CP shocks and LV L shocks is highly
negative when forward rates are orthogonalized on CP before taking principal components. We focus
on the three-factor structure because it is simpler and it maps more directly into the structural model
of Section IV. The latter also implies a MKT , LV L, and CP factor structure whose innovations are
nearly uncorrelated.
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model (RN SDF ). Average excess returns on bonds are between 1.0 and 1.8% per year

and generally increase in maturity. The aggregate excess stock market return is 6.3%,

and the risk premia on the book-to-market portfolios range from 5.7% (BM1, growth

stocks) to 10.1% (BM5, value stocks), implying a value premium of 4.4% per year.

C. Estimation Results

We estimate the three price of risk parameters in Λ̂0 by minimizing the root mean-

squared pricing errors on our J = 11 test assets. This is equivalent to regressing the J×1

average excess returns on the J×3 covariances in ΣXJ . The results from our model are in

the second column of Table I (Our Model). The top panel shows the pricing errors. Our

model succeeds in reducing the mean absolute pricing errors (MAPE) on the 11 stock

and bond portfolios to a mere 40 basis points per year. The model largely eliminates

the value spread: The spread between the fifth and the first book-to-market quintile

portfolios is 80 basis points per year. We also match the market equity risk premium

and the average bond risk premium. Pricing errors on the stock and bond portfolios are

an order of magnitude lower than in the first column and substantially below those in

several benchmark models we discuss below. In sum, our three-factor pricing model is

able to account for the bulk of the cross-sectional variation in stock and bond returns

with a single set of market price of risk estimates.

The bottom panel of the table shows the point estimates for Λ̂0. We estimate a

positive price of CP risk, while the price of Level risk is negative and that of Market

risk is positive. The signs on the last two are as expected. A positive shock to the level

factor leads to a drop in bond prices and negative bond returns. A negative shock to

bond returns increases the SDF (the representative agent’s marginal utility of wealth)
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and, hence, carries a negative risk prices. A positive shock to the market factor increases

stock returns and the SDF and should carry a positive risk price. We return at length

to the CP factor and its positive risk price below. We also report asymptotic standard

errors on the Λ0 estimates using GMM with an identity weighting matrix. The standard

errors are 37.23 for the CP factor price (98.10), 9.20 for the LV L factor price (-19.45),

and 1.42 for the MKT factor price (2.11). Hence, the first two risk prices are statistically

different from zero (with t-stats of 2.6 and -2.1), whereas the last one is not (t-stat of

1.5).

To help us understand the separate roles of each of the three risk factors in accounting

for the risk premia on these stock and bond portfolios, we switch on only one risk factor

and set the other risk prices to zero. Column 3 of Table I minimizes the pricing errors

on the same 11 test assets but only allows for a non-zero price of level risk (Column

LVL). This is the bond pricing model proposed by Cochrane and Piazzesi (2008). They

show that the cross-section of average bond returns is well described by differences in

exposure to the level factor. Long-horizon bonds have returns that are more sensitive to

interest rate shocks than short-horizon bonds; a familiar duration argument. However,

this bond SDF is unable to jointly explain the cross-section of stock and bond returns;

the MAPE is 4.23%. All pricing errors on the stock portfolios are large and positive,

there is a 4.4% value spread, and all pricing errors on the bond portfolios are large and

negative. Clearly, exposure to the level factor alone does not help to understand the high

equity risk premium nor the value risk premium. Value and growth stocks have similar

exposure to the level factor, that is, a similar “bond duration.” The reason that this

model does not do better pricing the bond portfolios is that the excess returns on stock

portfolios are larger in magnitude and therefore receive most attention in the estimation.

Consequently, the estimation concentrates its efforts on reducing the pricing errors of

13



Table I

Unified SDF Model for Stocks and Bonds - Pricing Errors

Panel A of this table reports pricing errors on five book-to-market sorted quintile stock portfolios, the value-weighted

market portfolio, and five bond portfolios of maturities 1, 2, 5, 7, and 10 years. They are expressed in percent per year

(monthly numbers multiplied by 1200). Each column corresponds to a different stochastic discount factor (SDF) model.

The first column contains the risk-neutral SDF and therefore reports the average pricing errors that are to be explained.

The second column presents our SDF model with three priced factors (Our Model). The third column presents the results

for a bond pricing model, where only the level factor is priced (LV L). In the fourth column, we only use the bond returns

as moments to estimate the same SDF as in the third column (LV L-only bonds). The SDF model of the fifth column

has the market return as the only factor, and therefore is the CAPM model (MKT ). The sixth column allows for both

the prices of LV L and MKT risk to be non-zero. The last column refers to the three factor model of Fama and French

(1992). The last row of Panel A reports the mean absolute pricing error across all 11 securities (MAPE). Panel B reports

the estimates of the prices of risk. The first six columns report market prices of risk Λ0 for (a subset) of the following

pricing factors : εCP (CP ), εL (Level), and εM (MKT ). In the last column, the pricing factors are the innovations in the

excess market return (MKT), in the size factor (SMB), and in the value factor (HML), where innovations are computed as

the residuals of a regression of these factors on the lagged dividend-price ratio on the market. Panel C reports asymptotic

p-values of χ2 tests of the null hypothesis that all market prices of risk in Λ0 are jointly zero, and of the null hypothesis

that all pricing errors are jointly zero. The data are monthly from June 1952 through December 2009.

Panel A: Pricing Errors (in % per year)
RN SDF Our SDF LV L LV L-only bonds MKT LV L + MKT FF

1-yr 1.00 -0.54 -0.12 0.64 0.89 0.61 0.79
2-yr 1.21 -0.61 -0.98 0.50 1.04 0.49 0.83
5-yr 1.52 -0.22 -2.84 0.09 1.25 0.14 0.78
7-yr 1.78 0.42 -3.35 0.11 1.38 0.08 0.80
10-yr 1.39 0.12 -4.37 -0.49 0.83 -0.63 0.16

Market 6.32 -0.72 4.77 5.82 -1.37 -1.30 -0.05

BM1 5.69 -0.08 4.20 5.21 -2.44 -2.32 0.47
BM2 6.63 -0.18 4.84 6.05 -0.86 -0.85 -0.56
BM3 7.64 0.62 5.84 7.06 0.66 0.63 -0.28
BM4 8.36 -0.32 6.59 7.78 1.55 1.51 -0.68
BM5 10.11 0.72 8.66 9.64 2.69 2.78 0.88

MAPE 4.70 0.41 4.23 3.94 1.36 1.03 0.57
Panel B: Prices of Risk Estimates Λ0

MKT 0 2.11 0 0 3.43 3.22 MKT 5.12
LVL 0 -19.45 -32.74 -10.66 0 -8.45 SMB -6.29
CP 0 98.10 0 0 0 0 HML 6.40

Panel C: P-values of χ2 Tests
H0 : Λ0 = 0 – 0.94% 0.02% – 0.08% 0.07% 0.02%
H0 : Pr. err. = 0 – 12.64% 0.00% – 0.00% 0.00% 0.00%
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stocks. To illustrate that this bond SDF is able to price the cross-section of bonds,

we estimate the same model by minimizing only the bond pricing errors (the first five

moments in the table). The fourth column of Table I (LVL - only bonds) confirms the

Cochrane and Piazzesi (2008) results that the bond pricing errors are small. However,

the overall MAPE remains high at 3.94%. The canonical bond pricing model offers one

important ingredient for the joint pricing of stocks and bonds, bonds’ heterogeneous

exposure to the level factor, but this ingredient does not help to account for equity

returns.

Another natural candidate is the canonical equity pricing model: the Capital Asset

Pricing Model. The only non-zero price of risk is the one corresponding to the MKT

factor. The fifth column of Table I (MKT ) reports pricing errors for the CAPM. This

model is again unable to jointly price stock and bond returns. The MAPE is 1.36%.

One valuable feature is that the aggregate market portfolio is priced well and the pricing

errors of book-to-market portfolio returns go through zero. This means that the model

gets the common level in all stock portfolio returns right. However, the pattern of pricing

errors contains a 5.11% value spread. Pricing errors on bond portfolios are sizeable as

well and are all positive. In the language of our model, neither book-to-market nor bond

portfolios display interesting heterogeneity in their exposure to shocks to the permanent

component of the SDF. Models such as the canonical CAPM or the consumption-CAPM,

that feature only permanent shocks, cannot jointly explain stock and bond returns.

So, while the LV L factor helps to explain the cross-sectional variation in average

bond returns and the MKT factor helps to explain the level of equity risk premia,

neither factor is able to explain why value stocks have much higher risk premia than

growth stocks. The sixth column of Table I indeed shows that having both the level and

market factor priced does not materially improve the pricing errors and leaves the value
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premium puzzle in tact.

This is where the CP factor comes in. Figure 2 decomposes each asset’s risk premium

into its three components: risk compensation for exposure to the CP factor, the level

factor, and the DP factor. The top panel is for the five bond portfolios, organized

from shortest maturity on the left (1-year) to longest maturity on the right (10-year).

The bottom panel shows the decomposition for the book-to-market quintile portfolios,

ordered from growth to value from left to right, as well as for the market portfolio (most

right bar). This bottom panel shows that all book-to-market portfolios have about equal

exposure to both MKT and LV L shocks. If anything, growth stocks (G) have slightly

higher market (CAPM) betas than value stocks (V), but the difference is small. The

spread between value and growth risk premia entirely reflects differential compensation

for CP risk. Value stocks have a large and positive exposure to CP shocks while growth

stocks have a low or even negative exposure; recall Figure 1. The differential exposure

between the fifth and first book-to-market portfolio is statistically different from zero.

Multiplying the spread in exposures by the market price of CP risk delivers a value

premium of 0.34% per month or 4.1% per year. That is, the CP factor’s contribution to

the risk premia accounts for most of the 4.4% value premium. Given the monotonically

increasing pattern in exposures of the book-to-market portfolios to CP shocks, a positive

price of CP risk estimate is what allows the model to match the value premium. The

key economic questions that are left unanswered at this point are: what economic source

of risk do CP shocks capture, and why do value stocks have higher exposure to these

shocks than growth stocks? Below we present new empirical evidence from dividend

data and a new structural model to shed light on these questions.

The top panel of Figure 2 shows the risk premium decomposition for the five bond

portfolios. Risk premia are positive and increasing in maturity due to their exposure
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to LV L risk. The exposure to level shocks is negative and the price of level risk is

negative, resulting in a positive contribution to the risk premium. This is the duration

effect mentioned above. But bonds also have a negative exposure to CP shocks. Being

a measure of the risk premium in bond markets, positive shocks to CP lower bond

prices and realized returns. This effect is larger the longer the maturity of the bond.

Given the positive price of CP risk, this exposure translates into an increasingly negative

contribution to the risk premium. Because exposure of bond returns to the equity market

shocks MKT is positive but near-zero, the sum of the level and CP contributions delivers

the observed pattern of bond risk premia that increase in maturity.

The last but one row of Table I tests the null hypothesis that the market price of

risk parameters are jointly zero. This null hypothesis is strongly rejected for all models,

including ours. The asymptotic p-value for the χ2 test, computed by GMM using the

identity weighting matrix, is less than 1% for our model. The last row reports the p-

value for the χ2 test that all pricing errors are jointly zero. Interestingly, ours is the only

model for which the null hypothesis cannot be rejected; the p-value is 13%. These tests

lend statistical credibility to our results.

We also study book-to-market decile portfolios instead of quintile portfolios, along-

side the same bond portfolios and the stock market portfolio. Table II shows that the

value spread between the tenth and first book-to-market portfolios is 5.42% per annum

(Column 1), about one percentage point higher than between the extreme quintile port-

folios. The mean absolute pricing error among these 16 assets is 5.67% per year. Our

model’s residual pricing error is a mere 0.48% (Column 2). It eliminates all but 0.24%

of the 5.42% value premium. The market price of risk estimates are nearly identical to

those obtained with the quintile portfolios. Again, the null hypothesis that all market

prices of risk are jointly zero is strongly rejected, while the null that all pricing errors are
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Figure 2. Exposure of portfolio excess returns to priced innovations.
The figure plots the risk premium decomposition into risk compensation for exposure to the MKT , LV L, and CP

factors. The top panel is for the five bond portfolios: one-, two-, five-, seven-, and ten-year maturities from left to right,
respectively. The bottom panel is for for the book-to-market decile quintile portfolios, from growth (G) to value (V), and
for the market portfolio (M). The three bars for each asset are computed as Σ′

XR
Λ0. The data are monthly from June

1952 until December 2009.

jointly zero cannot be rejected. Section V studies other sets of test assets for robustness.

One might be tempted to conclude that any model with three priced risk factors can

always account for the three salient patterns in our test assets. To highlight that such

a conjecture is false and to highlight the challenge in jointly pricing stocks and bonds,

Appendix B develops a simple model where (1) the CP factor is a perfect univariate

pricing factor for the book-to-market portfolios (it absorbs all cross-sectional variation),

(2) the LV L factor is a perfect univariate pricing factor for the bond portfolios, and (3)
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Table II

Decile Book-to-Market Portfolios

See Table I. The book-to-market quintile portfolios are replaced by decile portfolios.

Panel A: Pricing Errors (in % per year)
RN SDF Our SDF FF

1-yr 1.00 -0.53 0.83
2-yr 1.21 -0.60 0.92
5-yr 1.52 -0.18 1.02
7-yr 1.78 0.46 1.13
10-yr 1.39 0.16 0.48

Market 6.32 -0.74 -0.17

BM1 5.40 0.15 0.52
BM2 6.30 -0.33 0.20
BM3 6.86 -0.23 0.13
BM4 6.49 -0.24 -1.06
BM5 7.49 0.64 -0.13
BM6 7.59 0.17 -0.22
BM7 7.42 -1.35 -0.84
BM8 9.34 0.71 0.03
BM9 9.83 0.81 0.79
BM10 10.82 0.39 0.45

MAPE 5.67 0.48 0.56
Panel B: Prices of Risk Estimates Λ0

MKT 0 2.13 MKT 4.47
LVL 0 -19.19 SMB -2.92
CP 0 97.88 HML 5.95

Panel C: P-values of χ2 Tests
H0 : Λ0 = 0 – 1.26% 0.03%
H0 : Pr. err. = 0 – 26.28% 0.03%
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the CP and the Level factor are uncorrelated. It shows that such a model generally

fails to price the stock and bond portfolios jointly. This failure arises because the bond

portfolios are exposed to the CP factor, while the stock portfolios are not exposed to the

LV L factor. Consistent risk pricing across stocks and bonds only works if the exposures

of maturity-sorted bond portfolios to CP are linear in maturity, with the same slope (in

absolute value) as the level exposures. The data happen to approximately satisfy the

three assumptions underlying the stark model, but this was not a foregone conclusion.

Appendix B thus underscores the challenges in finding a model with consistent risk prices

across stocks and bonds.

D. Time-varying Risk Prices

Having estimated the constant market prices of risk, Λ0, we turn to the estimation

of the matrix Λ1, which governs the time variation in the prices of risk. We allow the

price of level risk Λ1(2) and the price of market risk Λ1(3) to depend on the CP factor.

We use two predictive regressions to pin down this variation in risk prices. We regress

excess returns on a constant and lagged CP :

rxj
t+1 = aj + bjCPt + ηj

t+1,

where we use either excess returns on the stock market portfolio or an equally-weighted

portfolio of all bond returns used in estimation. Using equation (4), it then follows:






Λ1(2)

Λ1(3)




 =






ΣX,Market(2:3)

ΣX,Bonds(2:3)






−1

×






bMarket

bBonds




 .

20



Following this procedure, we find that Λ̂1(2) = −796 and Λ̂1(3) = 47. This implies that

equity and bond risk premia are high when CP is high, consistent with the findings of

Cochrane and Piazzesi (2005).

III. Documenting Two Empirical Links

Before we present the structural model, we turn to the data and document two

important linkages that help connect the reduced form from the previous section to the

structural model of the next section. First, we show that dividends on value stocks fall

considerably more than those of growth stocks during recessions. Second, we connect

bond risk premia, as measured by the CP factor, to business cycles.

A. Value Stocks’ Dividends Fall More in Recessions

We use monthly data on dividends and inflation from January 1926 until December

2009. Inflation is measured as the change in the Consumer Price Index from the Bu-

reau of Labor Statistics. Dividends on five book-to-market sorted portfolios are based

on cum-dividend and ex-dividend returns from Kenneth French’ data library. To elimi-

nate seasonality in dividends, we construct annualized dividends by adding the current

month’s dividends to the dividends of the past 11 months, where the latter are rein-

vested at the risk-free rate.4 We form log real dividends by subtracting the log change

in the CPI from the log of nominal dividends. We are left with monthly time series

of 997 observations. We define recessions following the NBER’s Business Cycle Dating

committee.

4Not reinvesting dividends yields similar results. Binsbergen and Koijen (2010) show that reinvesting
monthly dividends at the market return severely impact properties of dividend growth.
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Figure 3 plots log real dividends on book-to-market quintile portfolios 1 (G) and

5 (V). For ease of readability, the sample is split in two: before and after 1952. The

raw data show strong evidence that dividends on value stocks fall substantially more in

recessions than in expansions. Value stocks show strong cyclical fluctuations whereas

dividends on growth stocks are, if anything, slightly pro-cyclical. The two most obvious

examples of the differential cash-flow behavior of value and growth are the Great Depres-

sion in the left panel (1929-1933) and the Great Recession in the right panel (December

2007-June 2009), but the same pattern holds during most recession periods (e.g., 1973,

1983, 1991, 2001). During the Great Depression, the log change in real dividends from

the peak is -400% for Value, -60% for the Market, and -40% for Growth. In the Great

Recession, dividends fell 31% for Value, 13% for the Market, while Growth dividends

rose 6%.
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Figure 3. Dividends on value, growth, and market portfolios.
The figure plots the log real dividend on book-to-market quintile portfolios 1 and 5 and on the CRSP value-weighted
market portfolio. Dividends are constructed form cum- and ex-dividend returns on these portfolios. Monthly dividends
are annualized by reinvesting the dividends received during the year at the risk-free rate. The data are monthly from
December 1926 until December 2009 and are sampled every three months in the figure.

Strictly adhering to the NBER recession dates understates the change in dividends
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from the highest to their lowest point over the cycle. For example, dividends on Value-

minus-Growth fall by 37% during the December 2007-June 2009 recession, but by 103%

during the May 2007-December 2009 period. The difference arises mostly because V-G

dividends fall another 54% between June and December 2009. Similarly, the Value-

minus-Growth dividends fall by 80% (88%) in the period surrounding the 1991 (2001)

recession compared to a 13% (26%) drop between the NBER peak and the last month of

the recession. Figure 4 plots the log difference between V and G portfolios (right axis)

as well as NBER recessions (bars).

To get at these broader boom-bust cycles in dividends more systematically, we al-

ternatively define busts as periods where real dividends on the market portfolio drop by

5% or more over a protracted period (6 months or more). There are 11 such periods in

the 1926 to 2009 sample. They last an average of 32 months and real dividends on the

market portfolio fall by 25%, on average. Real dividends on the growth portfolio fall by

17% on average, while those on the value portfolio fall by 70%, a difference of 53%. In

all but two of these periods (starting in 1941 and in 1951), dividends on value stocks fall

by more than those on growth stocks. The average ratio of the fall in the V-G dividend

to the fall in the market dividend is 2.0. In other words, the periods with large sustained

decreases in real dividends on the market are associated with much larger declines in

the dividends on value than on growth.

In the calibration of the model below, we -conservatively- match the behavior of div-

idends as measured over the course of the official NBER recession months. In particular,

we calibrate to an observed fall in log annual real dividends on value stocks of 21.0%

(fifth book-to-market quintile), on the market portfolio of 5.2%, and a rise in dividends

on growth stocks of 2.1% (first quintile).
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Figure 4. Dividends on value-minus-growth and NBER recessions.
The figure plots the log real dividend on book-to-market quintile portfolios 5-1, plotted against the right axis. The
yellow bars indicate official NBER recession dates. Dividends are constructed form cum- and ex-dividend returns on these
portfolios. Monthly dividends are annualized by reinvesting the dividends received during the year at the risk-free rate.
The data are monthly from December 1926 until December 2009 and are sampled every three months in the figure.

B. Bond Risk Premia and Business Cycles

The second empirical link we document is between bond risk premia and the business

cycle. We show that the CP factor is not only a strong forecaster of future bond returns,

but also of future economic activity. We will use this evidence in our model of the next

section where the bond risk premium will reflect compensation for business cycle risk,

and the CP factor will forecast the next year’s aggregate real cash flow growth.

We consider the following predictive regression in which we forecast future economic

activity, measured by the Chicago Fed National Activity Index (CFNAI ),5 using the

5The CFNAI is a weighted average of 85 existing monthly indicators of national economic activity. It
is constructed to have an average value of zero and a standard deviation of one. Since economic activity
tends toward trend growth rate over time, a positive index reading corresponds to growth above trend
and a negative index reading corresponds to growth below trend.
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current CP factor:

CFNAIt+k = ck + βkCPt + εt+k, (6)

where k is the forecast horizon expressed in months. The regressions are estimated by

OLS and we calculate Newey-West standard errors with k − 1 lags. The sample runs

from March 1967 until December 2009 because that is when the CFNAI is available.

Figure 5 shows the coefficient βk in the top panel, its t-statistic in the middle panel,

and the regression R-squared in the bottom panel. The forecast horizon k is displayed

on the horizontal axis and runs from 1 to 36 months. The key finding is the strong

predictability of the CP factor for future economic activity. All three statistics display a

hump-shaped pattern, gradually increasing until approximately 18 months and gradually

declining afterwards. The maximum t-statistic is about 4.2, which corresponds to an

R-squared value of 15%. The results suggest that a high CP reading strongly predicts

higher future economic activity 12 to 24 months ahead.

The positive relationship between CP and better economic prospects suggests why

the price of CP risk is positive: innovations to CP are good news and lower the marginal

utility of wealth for investors.6 This finding also explains intuitively why value stocks

are riskier than growth stocks. We showed that value stocks have a higher exposure to

CP shocks than growth stocks. This implies that value returns are high, exactly when

economic activity is expected to increase, that is, when the marginal value of wealth for

investors is low. This makes value stocks riskier than growth stocks and results in the

value premium. We formalize this intuition in the next section.

6This requires the income effect to dominate the substitution effect, which could be obtained for
example from Epstein-Zin preferences with a preference for early resolution of uncertainty. In the next
section, we model preferences in a reduced-form way.
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Figure 5. Economic activity predicted by the CP factor.
The top panel displays the predictive coefficient βk in (6), the middle panel the t-statistic, and the bottom panel the
corresponding R-squared value. We consider k = 1, . . . , 36 months of lags, displayed on the horizontal axis in each panel,
and the t-statistics are computed using Newey-West standard errors with k − 1 lags. The sample is March 1967 until
December 2009.

Figure 6 plots the CP factor (right axis) against NBER recessions (shaded areas).

Consistent with the predictability regressions, the CP factor is low before the start of

most recessions in the post-1952 sample. It subsequently increases over the course of

a recession, especially towards the end of the recession when better times are around

the corner. Indeed, if we split each recession in three equal-length phases, then the CP
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factor typically falls from the last month of the first phase to the last month of the

second phase, but rebounds strongly between the last month of the second phase and

the last month of the third phase (which is the last month of the recession).7 The relapse

in CP in late 2008, during the Great Recession of 2007-2009, suggests that the bond

markets feared that the recession was far from over.
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Figure 6. CP factor and NBER recessions.
The figure plots the CP factor (solid line, against the right axis) and the NBER recessions (shaded areas). The sample
is July 1952 until December 2009.

A similar result to the one above appears in the working paper version of Cochrane

and Piazzesi (2005), where CP is shown to forecast real gross domestic product growth.

Brooks (2010) shows that the CP factor has a 35% contemporaneous correlation with

news about unemployment, measured as deviations of realized unemployment from the

consensus forecast.8

7The mean across the 10 NBER recessions in the post-1952 sample for the CP factor is 0.007 in the
last month of the first phase, -0.002 in the last month of the second phase, and 0.013 in the last month
of the third phase.

8A related literature studies the reverse predictability of macro-economic factors for future bond
returns. Cooper and Priestly (2008) show that industrial production in deviation from its trend forecasts
future bond returns; Joslin, Priebsch, and Singleton (2010) incorporate this finding in an affine term
structure model. Ludvigson and Ng (2009) shows that a principal component extracted from many
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IV. Structural Model with Business Cycle Risk

This section provides a simple structural asset pricing model to shed light on the

empirical results from Section II. In particular, it proposes an answer to the two key

questions: what economic source of risk do CP shocks capture, and why do value stocks

have higher exposure to these shocks than growth stocks? The model connects the

nominal bond risk premium to the state of the business cycle. In turn, it connects the

state of the business cycle to the cash flow properties of value and growth stocks. Both

links are based on the evidence presented in Section III. The fact that value stocks

have dividends that fall substantially more over the course of a recession than those of

growth stocks naturally results in a value premium because recessions are times a high

marginal utility growth (a high SDF). As in the reduced-form model, value stocks are

more exposed to innovations in the bond risk premium than growth stocks. Hence, the

model provides structural labels for the reduced-form shocks: The CP shock corresponds

to a cyclical shock to the real economy, the LV L shock captures an expected inflation

shock, and the MKT shock captures a (permanent) dividend growth shock. A numerical

illustration shows that market prices of risk can be found that deliver equity, book-to-

market, and nominal bond risk premia of the same magnitude as the data for dividend

growth processes that match the data. All derivations are relegated to the appendix.

macroeconomic series also forecasts future bond returns. While macro-economic series do not fully soak
up the variation in bond risk premia, there clearly is an economically meaningful link between them.
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A. Setup

The main driving force in the model is the mean-reverting process for st, which

describes the state of the business cycle:

st+1 = ρsst + σsε
s
t+1.

Since this variable moves at business cycle frequency, the persistence ρs is moderate.

Real dividend growth on asset i = {G, V, M} (Value, Growth, and the Market) is given

by:

∆di
t+1 = γ0i + γ1ist + σdiε

d
t+1 + σiε

i
t+1. (7)

If γ1i > 0, dividend growth is pro-cyclical. The shock εd
t+1 is an aggregate dividend

shock, while εi
t+1 is an (non-priced) idiosyncratic shock; the market portfolio has no

idiosyncratic risk; σM = 0. The key parameter configuration is γ1V > γ1G so that value

stocks are more exposed to cyclical risk than growth stocks. Inflation is the sum of a

constant, a mean-zero autoregressive process which captures expected inflation, and an

unexpected inflation term:

πt+1 = π̄ + xt + σπεπ
t+1,

xt+1 = ρxxt + σxε
x
t+1.

All shocks are cross-sectionally and serially independent and standard normally dis-

tributed.

To simplify our analysis, we assume that market participants’ preferences are sum-

marized by a real stochastic discount factor (SDF), whose log evolves according to the
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process:9

−mt+1 = y +
1

2
Λ′

tΛt + Λ′
tεt+1.

where the vector εt+1 ≡
(
εd

t+1, ε
x
t+1, ε

s
t+1

)′
and y is the real interest rate. The risk price

dynamics are affine in the state of the economy st:

Λt = Λ0 + Λ1st

As in the reduced form model, the structural model features three priced sources of

risk: aggregate dividend growth risk, which carries a positive price of risk (Λ0(1) > 0),

inflation risk (Λ0(2) < 0), and cyclical risk (Λ0(3) > 0). Choosing Λ1(2) < 0 makes the

price of inflation risk counter-cyclical. As we show below, this makes bond risk premia

increase pro-cyclical. We also set Λ1(1) > 0 resulting in a pro-cyclical price of aggregate

dividend risk. The log nominal SDF is given by m$
t+1 = mt+1 − πt+1.

B. Asset Prices

We now study the equilibrium bond and stock prices in this model.

B.1. Bond Prices

It follows immediately from the specification of the real SDF that the real term

structure of interest rates is flat at y. Nominal bond prices are exponentially affine in

9For similar approaches see Bekaert, Engstrom, and Grenadier (2005), Bekaert, Engstrom, and Xing
(2008), Lettau and Wachter (2009), Campbell, Sunderam, and Viceira (2008), and David and Veronesi
(2009).
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the state of the economy and in expected inflation:

P $
t (n) = exp

(
A$

n + B$
nst + C$

nxt

)
,

with coefficients that follow recursions described in the appendix. As usual, nominal

bond yields are y$
t (n) = − log(P $

t (n))/n. The appendix shows that nominal interest

rates increase (bond prices fall) with inflation: C$
n < 0. Nominal interest rates also

increase with the state of the economy st (B$
n < 0) when Λ1(2) < 0. These signs are

consistent with intuition.

The nominal bond risk premium, the expected excess log return on buying an n-

period nominal bond and selling it one period later (as an (n−1)-period bond), is given

by:

Et

[
rx$

t+1(n)
]

= −covt

(
m$

t+1, B
$
n−1st+1 + C$

n−1πt+1

)

= Λ0(2)C$
n−1σx + Λ0(3)B$

n−1σs
︸ ︷︷ ︸

Constant component bond risk premium

+ Λ1(2)C$
n−1σxst

︸ ︷︷ ︸

Time-varying component bond risk premium

,

In this model, all of the variation in bond risk premia comes from cyclical variation in

the economy, st. This lends the interpretation of CP factor to st. Because C$
n−1 < 0,

Λ1(2) < 0 generates lower bond risk premia when economic activity is low (st < 0).

The constant bond risk premium contains compensation for inflation shocks and cyclical

shocks. Inflation exposure results in a positive risk compensation (first term); it increases

in maturity. Since most of the common variation in bond yields is driven by the inflation

shock, we can interpret it as a shock to the level of the term structure (LV L). Long

bonds are more sensitive to level shocks, the traditional duration effect. Exposure to the

cyclical shock subtracts from the risk premium (second term). Indeed, a positive shock

to the bond risk premium lowers bond prices and returns, and more so for long than for
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short bonds.

B.2. Stock Prices

We show in the appendix that the log price-dividend ratio on stock (portfolio) i is

affine in st:

pdi
t = Ai + Bist,

where

Bi =
γ1i − Λ1(1)σdi

1 − κ1iρs

.

and the expression for Ai is given in the appendix. Stock i’s price-dividend ratios is

pro-cyclical (Bi > 0) when dividend growth is more pro-cyclical than the risk premium

for the aggregate dividend risk of asset i: γ1i > σdiΛ1(1). The equity risk premium on

portfolio i can be computed to be:

Et

[
rxi

t+1

]
= covt

(
−m$

t+1, r
i
t+1 + πt+1

)

= Λ0(1)σdi + Λ0(3)κ1iBiσs
︸ ︷︷ ︸

Constant component equity risk premium

+ Λ1(1)σdist
︸ ︷︷ ︸

Time-varying component equity risk premium

.

The equity risk premium provides compensation for (permanent) aggregate dividend

growth risk (first term) and for cyclical risk (second term). Risk premia vary over time

with the state of the economy (third term). As we showed above, the data suggest that

value stocks’ dividends fall more in recessions than those of growth stocks (γ1V > γ1G).

With σdV ≈ σdG, this implies that BV > BG. Because the price of business cycle risk

Λ0(3) is naturally positive, the second term delivers the value premium.
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B.3. Link with Reduced-form Model

To make the link with the reduced-form model of Section II clear, we study the link

between the structural shocks and the reduced form shocks. In the model, shocks to the

market return (MKT) are given a linear combination of εd and εs shocks:

εMKT
t+1 ≡ rM

t+1 − Et[r
M
t+1] = σdMεd

t+1 + κ1MBMσsε
s
t+1

We construct the CP factor in the same way as in the data, from yields on 1- through

5-year yields and average excess bond returns.10 The model’s CP factor is perfectly

correlated with the process s, and has a innovations that differs by a factor σCP : εCP
t+1 =

εs
t+1σ

CP . Finally, since expected inflation drives most of the variation in bond yields

in the model, LV L shocks in the model are proportional to expected inflation shocks:

εLV L
t+1 = εx

t+1σ
L. Denote ε̃ = [εMKT , εLV L, εCP ]′. Associated with ε̃, we can define market

prices of risk Λ̃, such that SDF innovations remain unaltered: Λ′
tεt+1 = Λ̃′

tε̃t+1. It is

easy to verify that Λ̃0(1) = Λ0(1)/σdM , Λ̃0(2) = Λ0(2)/σL, and Λ̃0(3) = Λ0(3)/σCP −

κ1MBMσsΛ0(1)/(σdMσCP ).

For each asset, we can compute covariances of unexpected returns with the MKT ,

LV L, and CP shocks inside the model. In the data, Figure 2 showed that the covariance

of value and growth stocks returns with MKT shocks was similar across portfolios. In

the model that covariance is given by:

cov(ri
t+1 − Et[r

i
t+1], ε

MKT
t+1 ) = σdMσdi + κ1MBMκ1iBiσ

2
s .

10See footnote 1. Since the model has a two-factor structure for bond yields and forward rates, we use
only the two- and the five-year forward rates as independent variables in the CP regression of average
excess returns on forward rates.
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A calibration where BM ≈ 0 and σdV ≈ σdG will replicate the observed pattern (the

linearization constant κ1i will be close to 1 for all portfolios). Second, the covariance of

stock portfolio returns with CP shocks is given by:

cov(ri
t+1 − Et[r

i
t+1], ε

CP
t+1) = κ1iBiσsσ

CP .

The model generates a value premium because of differential exposure to CP shocks

when BV > BG. When σdV ≈ σdG, the stronger loading of expected dividend growth

of value stocks to st (γ1V > γ1G) makes BV > BG. Put differently, in the model -as in

the data- returns on value stocks are more exposed to bond risk premium shocks than

returns on growth stocks. Third, stock return innovations have a zero covariance with

LV L shocks in the model by construction, similar to the small exposures in the data.

Likewise, we can compute covariances of bond return innovations with the MKT ,

LV L, and CP shocks. In that order, they are:

B$
nκ1MBMσs, C$

nσxσ
L, B$

nσsσ
CP .

When BM ≈ 0, exposure of bond returns to the market factor shocks is close to zero.

Exposure to level shocks is negative: an increase in the level of interest rates reduces

bond prices and returns. Exposure to CP shocks is also negative: an increase in the bond

risk premium reduces bond prices and returns. Both exposures become more negative

with the horizon because B$
n and C$

n increase in absolute value with maturity n.
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C. Calibration

To illustrate the model’s quantitative implications for bond risk premia and equity

risk premia on various book-to-market sorted portfolios, we conduct a calibration and

model simulation. The crucial new ingredient in the model is the differential cyclicality

of value and growth dividends. In the interest of space, Appendix A.3 discusses the

calibration in detail. Here we focus on the new aspects of the calibration and the main

results.

The most important parameter is γ1i, which measures how sensitive dividend growth

is to changes in real economic activity. In light of the empirical evidence in Section III.A,

we choose γ1i to match the log change in annual real dividends between the peak of the

cycle and the last month of the recession for the Growth, Value, and Market portfolios

to the observed change in the 1927-2009 data (the average over all 15 recessions in our

sample). The model matches these changes for γ1G = −.00004, γ1V = .00976, and

γ1M = .00248. Note that γ1V > γ1G delivers a greater fall of dividends on value stocks

in recessions, the central mechanism behind the value premium.

In order to measure how dividends change over the recession, we have to define

recessions in the model. Our algorithm mimics several of the features of the NBER

dating procedure: (i) The recession is determined by looking back in time at past real

economic activity (st in the model) and its start is not known in real time, (ii) there

is a minimum recession length, and (iii) it captures the notion that the economy went

through a sequence of negative shocks and that economic activity is at a low level. We

split each recession into three equal periods and refer to the last month of each period as

the first, second, and third stage of the recession. The s process is negative at the start

of the recession, falls considerably in the first stage of a recession, continues to fall in the

35



second stage, and partially recovers in the last stage. Our recession dating procedure,

described in more detail in the appendix, is novel, matches the empirical distribution of

recession duration, and generates interesting asset pricing dynamics during recessions,

to which we return to below.

The rest of the dividend growth parameters are chosen to match the observed mean

and volatility. Inflation parameters are chosen to match mean inflation, and the volatility

and persistence of nominal bond yields. The market price of expected inflation risk is

chosen to match the 0.6% slope of the term structure (5-year minus 1-year), while the

market price of aggregate dividend risk and the market price of CP risk are chosen

to generate the 7.28% equity risk premium and the 5.22% value premium observed

in the 1927-2009 sample. The model matches also the average excess bond return,

averaged across maturities, and its volatility. Put differently, the model matches the

mean, volatility, and twelve-month autocorrelation of the CP factor.

The main result from the calibration exercise is that the model is able to replicate

the three-factor risk premium decomposition we uncovered in Section II. Figure 7 is the

model’s counterpart to Figure 2 in the data. There is a match in terms of the relative

contribution of each of the three sources of risk to the equity and bond risk premium.

Finally, our model implies interesting asset pricing dynamics over the cycle. The CP

factor, or nominal bond risk premium, starts out negative at the start of the recession,

falls substantially in the first stage of the recession, falls slightly more in the second

stage, before increasing substantially in the third stage of the recession. This pattern

for bond risk premia is reflected in realized bond returns. In particular, the negative risk

premium shocks at the start of a recession increase bond prices and returns, and more

so on long-term than short-term bonds. An investment of $100 made at the peak in a

portfolio that goes long the 30-year and short the 3-month nominal bond gains $8.0 in
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Figure 7. Exposure of portfolio excess returns to priced innovations in model.
The figure plots the risk premium decomposition into risk compensation for exposure to the CP factor, the Level factor,
and the MKT factor. The top panel is for the five bond portfolios (1-yr, 2-yr, 5-yr, 7-yr, and 10-yr) whereas the bottom
panel is for growth (G), value (V), and market (M) stock portfolios. The results are computed from a 10,000 month model
simulation under the calibration described in detail in Section C.

the first stage of the recession. The gain further increases to $11.7 in the second stage,

before falling back to a $7.4 gain by the last month of the recession. The latter increase

occurs as consequence of the rising bond risk premium. Taken over the entire recession,

long bonds gain in value so that they are recession hedges (Campbell, Sunderam, and

Viceira 2008). The same is true in the data, where the gain on long-short bond position

is $6.1 by the last month of the recession. Value stocks are risky in the model. Their

price-dividend ratio falls by 21% in the first stage compared to peak, continues to fall

to -34%, before recovering to -29% by the end of the recession. In the data, the pd ratio

on value stocks similarly falls by 16% in the first stage, falls further to -26%, before

recovering to +4%. Value stocks perform poorly, losing more during the recession than
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growth stocks, both in the model and in the data.

One important feature the model (deliberately) abstracts from are discount rate

shocks to the stock market. As a result, the price-dividend ratio and stock return are

insufficiently volatile and reflect mostly cash-flow risk. While obviously counter-factual,

this assumption is made to keep the exposition focussed on the main, new channel: time

variation in the bond risk premium, the exposure to cyclical risk, and its relationship to

the value risk premium.11

We conclude that the model delivers a structural interpretation for the MKT , LV L,

and CP shocks. CP shocks reflect cyclical shocks to the real economy, which naturally

carry a positive price of risk. The model quantitatively replicates the unconditional risk

premium on growth, value, and market equity portfolios, and bond portfolios of various

maturities, as well as the decomposition of these risk premia in terms of their MKT ,

LV L, and CP shock exposures. Furthermore, it delivers a realistic term structure of

interest rates and bond risk premia. It does so for plausibly calibrated dividend growth

and inflation processes.

V. Robustness

This section considers several exercises investigating the robustness of our empirical

results in Section II. First, we use a different weighting matrix in the market price of

11One could write down a richer model to address this issues, but only at the cost of making the
model more complicated. Such a model would feature a market price of aggregate dividend risk which
varies with some state variable z. The latter would follow an AR(1) process with high persistence, as in
Lettau and Wachter (2009). All price-dividend ratios and expected stock returns would become more
volatile and more persistent, generating a difference between the business-cycle frequency behavior of
the bond risk premium and the generational-frequency behavior of the pd ratio. This state variable
could differentially affect value and growth stocks, potentially lead to a stronger increase in the pd ratio
of value than that of growth in the last stage of a recession. This would shrink the cumulative return
gap between value and growth stocks during recessions, which the model now overstates.
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risk estimation. Second, we compare our results to alternative pricing models. Third,

we do a subsample analysis. Fourth, we study additional stock and bond portfolios.

Fifth, we study individual-level stock returns.

A. Weighted Least-Squares

Our cross-sectional estimation results in Table I assume a GMM weighting matrix

equal to the identity matrix. This is equivalent to minimizing the root mean-squared

pricing error across the 11 test assets. The estimation devotes equal attention to each

pricing error, an leads to a RMSE of 47bp per year. A natural alternative to the identity

weighting matrix is to give more weight to the assets that are more precisely measured.

We use the inverse covariance matrix of excess returns, as in Hansen and Jagannathan

(1997). This amounts to weighting the bond pricing errors more heavily than the stock

portfolio pricing errors in our context. When using the Hansen-Jagannathan distance

matrix, we find a MAPE of 52bp per year compared to 41bp per year. However, the

weighted RMSE drops from 47bp to 23bp per year. The reason for the improvement

in RMSE is that the pricing errors on the bonds decrease substantially, from a MAPE

of 38bp to 13bp per year. Finally, the price of risk estimates in Λ̂0 are comparable to

those in the benchmark case. The price of CP risk remains positive and is estimated

to be somewhat lower than in the benchmark case, at 57.27 (with a t-statistic of 4.3).

The market price of level risk remains statistically negative (-14.29 with t-statistic of

-2.1), and the price of market risk remains positive (2.58 with a t-statistic of 2.2). The

null hypothesis that all pricing error parameters are jointly zero continues to be strongly

rejected. We conclude that our results are similar when we use a different weighting

matrix.
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B. Alternative Pricing Models

In Section II, we compare our SDF model to a SDF model that has been designed

to price bonds, as proposed by Cochrane and Piazzesi (2008), and the CAPM, the

most basic model for pricing stocks. It might also be interesting to also compare the

model to the three-factor model of Fama and French (1992), which offers a better-

performing alternative to the CAPM for pricing the cross-section of stocks. We ask

how well it prices the cross-section of book-to-market stocks and government bonds over

our monthly sample from June 1952 until December 2008. We use the market return

(MKT), the size (SMB), and the value factor (HML) as pricing factors and price the

same 11 (16) test assets as in Tables I (II). The last column of each table contains the

pricing errors for the Fama-French models. The MAPE is 57 (56) basis points per year

with 11 test assets (16 test assets), which is somewhat higher than the 41 (48) basis

points of our model in the second column. In both cases, the slightly worse fit in the

last column is due to higher pricing errors on the bond portfolios. Tests of the null

hypothesis that all pricing errors are jointly zero are rejected at conventional levels. We

have verified that this rejection is due to the higher pricing errors on the 1-, 2-, and

5-year bond moments. This finding is consistent with the findings in Fama and French

(1993) who introduce additional pricing factors beyond MKT, SMB, and HML to price

bonds. Our results suggest that three factors suffice. In unreported results, we find that

the difference between the MAPE of our model and the Fama-French model increases

when we weight the 11 Euler equation errors by the inverse of their variance as opposed

to equally. In addition, there remains a statistical difference between the p-values of χ2

tests of the null that all pricing errors are jointly zero between our model (5%) and the

FF model (<1%) with the alternative weighting matrix. The reason is that our model

fits the bond return moments better.
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C. Subsample Analysis

Table I shows that our main empirical results are robust for various subsamples.

When we start the analysis in 1963, an often-used starting point for cross-sectional

equity analysis (e.g., Fama and French (1993)), we find very similar results. The left

columns of Table III shows a MAPE of 39 basis points per year, close to the 41 basis

points MAPE in the full sample. Our model improves relative to the Fama-French

three-factor model, which has a pricing error of 71 basis points in this subsample. There

are no monotone patterns in the pricing errors on bonds or book-to-market quintile

portfolios left. In the right columns, we investigate the results in the second half of our

sample, 1980-2009. Mean absolute pricing errors fall further to 36 basis points, while

the MAPE under the Fama-French model rises to 91 basis points. Panel B of Table

III shows that the price of risk estimates are similar to the ones from the benchmark

estimation. Finally, Panel C shows that in both subsamples, we reject the null that the

prices of risk are zero, but we fail to reject the null that all pricing errors are jointly

zero. These subsample results use LV L and CP factors which are estimated over the

entire sample. We have also re-estimated the state vector (e.g., the CP factor) over the

subsample in question, with similar results.

D. Other Test Assets

Given that we found a unified SDF that does a good job pricing the cross-section and

time-series of book-to-market sorted stock and maturity-sorted bond returns, a natural

question that arises is whether the same SDF model also prices other stock or bond

portfolios. In addition, studying more test assets allows us to address the Lewellen,

Shanken, and Nagel (2009) critique. They argue that explanatory power of many risk-
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Table III

Other Sample periods - Pricing Errors

This table reports robustness with respect to different sample periods. It is otherwise identical to Table I. The data are

monthly from January 1963 through December 2009 in the left columns and from January 1980 until December 2009 in

the right columns.

Panel A: Pricing Errors (in % per year)
1963-2009 1980-2009

RN SDF Our SDF FF RN SDF Our SDF FF
1-yr 1.06 -0.48 0.82 1.36 0.06 0.99
2-yr 1.23 -0.74 0.80 1.90 -0.13 1.07
5-yr 1.69 0.00 0.85 2.82 0.04 0.94
7-yr 2.02 0.46 0.93 3.40 0.09 0.77
10-yr 1.71 -0.02 0.30 3.41 -0.01 0.16

Market 5.16 -0.77 -0.12 6.47 -0.86 0.54

BM1 4.52 0.07 0.75 6.19 -0.01 0.53
BM2 5.62 -0.02 -0.59 7.65 0.72 -0.63
BM3 6.07 0.22 1.00 7.00 0.10 -1.46
BM4 7.64 -0.50 -0.47 7.73 -0.95 -1.05
BM5 9.67 1.00 1.14 9.94 0.99 1.86

MAPE 4.22 0.39 0.71 5.78 0.36 0.91
Panel B: Market Prices of Risk

MKT 0.96 4.37 1.73 5.35
LVL/SMB -19.77 -4.36 -20.21 -14.66
CP/HML 71.21 6.14 46.73 2.96

Panel C: P-values of χ2 Tests
H0 : Λ0 = 0 – 3.48% 0.20% – 4.37% 1.47%
H0 : Pr. err. = 0 – 14.13% 0.01% – 36.23% 0.53%
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based models for the cross-section of (size and) value stocks may be poorly summarized

by the cross-sectional R2.

One of their proposed remedies is to use more test assets in the evaluation of as-

set pricing models. Our benchmark results address this criticism already by adding

maturity-sorted government bond portfolios to the cross-section of book-to-market stock

portfolios. In addition, we now study several other sets of test assets. We start by adding

corporate bond portfolios. Then we study replacing ten decile book-to-market portfolios

by ten size decile portfolios, 25 size and book-to-market portfolios, and ten earnings-price

portfolios.

D.1. Adding Corporate Bond Portfolios

One asset class that deserves particular attention is corporate bonds. After all, at

the firm level, stocks and corporate bonds are both claims on the firm’s cash flows albeit

with a different priority structure. We ask whether, at the portfolio level, our SDF

model is able to price portfolios or corporate bonds sorted by ratings class. Fama and

French (1993) also include a set of corporate bond portfolios in their analysis but end up

concluding that a separate credit risk factor is needed to price these portfolios. Instead,

we find that the same three factors we used so far are able to price the cross-section of

corporate bond portfolios.

We use data from Citi’s Yield Book for four investment-grade portfolios: AAA, AA,

A, and BBB. Return data for these portfolios are available monthly from October 1980

until December 2009. Their annualized excess returns are listed in the first column of

Table IV. In a first exercise, we calculate Euler equations errors for these four portfolios,

using our SDF model presented in Section II. That is, we do not re-estimate the market
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price of risk parameters Λ̂0, but simply calculate the pricing errors for the corporate

bond portfolios. The resulting annualized pricing errors are listed in the second column

of Table IV. The model does a reasonable job pricing the corporate bonds: pricing errors

are on average below 1% per year, compared to excess returns of more than 3.5% per

year. The mean absolute pricing error among all fifteen test assets (five BM portfolios,

the market portfolio, five Treasury bond portfolios, and four corporate bond portfolios)

is 61 basis points per year.

Equally interesting is to re-estimate the market price of risk parameters of the SDF

model when the corporate bond portfolios are included in the set of test assets. We do

not allow for additional priced factors; the CP , LV L, and MKT factors remain the only

three priced risk factors. The third column of Table IV shows that the corporate bond

pricing errors are now below 60 basis points per year on average. The overall MAPE on

all 15 assets is 51 basis points per year, a mere 8 basis points above the MAPE when

corporate bonds were not considered and 10 basis points less than when the corporate

bonds were not included in the estimation. Finally, comparing Columns 2 and 3, the

point estimates for the market prices of risk Λ0 in Panel B are similar for the models

with or without corporate bonds. The last column reports results for the Fama-French

three-factor model. Its pricing errors are higher than in our three-factor model; the

MAPE is 110 basis points. Average pricing errors on the corporate bond portfolios are

more than 1% per year, and monotonically declining in credit quality. We fail to reject

the null that all pricing errors are jointly zero, while the FF model continues to strongly

reject it.
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Table IV

Unified SDF Model for Stocks, Treasuries, and Corporate Bonds

Panel A of this table reports pricing errors on 10 book-to-market-sorted stock portfolios, the value-weighted market

portfolio, five Treasury bond portfolios of maturities 1, 2, 5, 7, and 10 years, and four corporate bond portfolios sorted

by S&P credit rating (AAA, AA, A, and BBB). They are expressed in percent per year. The estimation period for stock

and Treasury bond portfolios is June 1952 through December 2009, while the corporate bond portfolio data are available

only from October 1980 until December 2009.

Panel A: Pricing Errors (% per year)
RN SDF Our SDF Our SDF FF

not re-estimated re-estimated
1-yr 1.37 -0.13 0.05 0.93
2-yr 1.97 -0.34 -0.07 0.93
5-yr 3.04 0.48 0.79 0.66
7-yr 3.72 0.18 0.60 0.36
10-yr 3.64 -0.30 0.15 -0.46

Market 6.15 -0.84 -0.88 0.95

BM1 5.80 -0.21 -0.41 0.55
BM2 7.31 0.80 0.73 -1.27
BM3 6.71 0.00 -0.01 -1.93
BM4 7.63 -1.08 -0.78 -1.39
BM5 9.93 1.35 1.58 2.21

Credit1 3.58 -1.09 -0.60 0.76
Credit2 3.79 -0.90 -0.41 0.84
Credit3 4.03 -0.91 -0.41 1.18
Credit4 4.42 -0.60 -0.13 2.10

MAPE 4.87 0.61 0.51 1.10
Panel B: Prices of Risk Estimates

MKT 2.04 2.14 5.76
LVL/SMB -34.33 -30.18 -20.83
CP/HML 96.22 85.55 2.86

Panel C: P-values of χ2 Tests
H0 : Λ0 = 0 – – 9.35% 1.46%
H0 : Pr. err. = 0 – – 18.71% 0.21%
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D.2. Different Stock Portfolios

Table V shows three exercises where we replace the five book-to-market sorted port-

folios by other sets of stock portfolios. In the first three columns we use ten market

capitalization-sorted portfolios alongside the bond portfolios and the market. The first

column shows the risk premia to be explained (risk neutral SDF). Small firms (S1) have

about 3.8% higher risk premia than large stocks (S10). Our model in the second column

manages to bring the overall mean absolute pricing error down from 6.0% per year to

0.42% per year, comparable to the 41% we obtained with the book-to-market quintile

portfolios and the 0.48% with the book-to-market decile portfolios. This MAPE is com-

parable to that in the Fama-French model in the third column. The Fama-French model

does better eliminating the spread between small and large stocks, whereas our model

does better pricing the bond portfolios alongside the size portfolios.

The next three columns use earnings-price-sorted quintile stock portfolios. The high-

est earnings-price portfolio has an average risk premia that is 6.8% higher per year than

the lowest earnings-price portfolio. Our model reduces this spread in risk premia to 1.9%

per year, while continuing to price the bonds reasonably well. The MAPE is 89 basis

points per year compared to 61 in the Fama-French model.

The last three columns use the five-by-five market capitalization- and book-to-market-

sorted portfolios. Our three-factor model manages to bring the overall mean absolute

pricing error down from 7.53% per year to 1.28% per year. This is again comparable to

the three-factor Fama-French model of 1.13%. Relative to the FF model, ours reduces

the pricing errors on the hard-to-explain S1B1 portfolio, but makes a larger error on the

S1B4 and S1B5 portfolios.

The market price of risk estimates Λ0 in Panel B of Table V are comparable to those
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we found for the book-to-market portfolios in Table I. Panel C shows that we reject the

null hypothesis that all market prices of risk are zero, albeit at the 10% level for the

size portfolios. We fail to reject the null hypothesis that all pricing errors are zero on

the size and earnings-price portfolios, and marginally reject the null (at the 4% level)

for the twenty-five portfolios.

E. Individual Firm Returns

As a final robustness check, we investigate whether exposure to CP shocks is associ-

ated with higher risk premia not only among stock and bond portfolios, but also among

individual stocks.

Our first sample is the CRSP universe, which contains 2.88 million firm-month

observations on 22,811 firms and 689 months between August 1952 and December

2009, the same sample period as our results in Section II. Our second sample is the

CRSP/Compustat universe, which contains 2.04 million firm-month observations on

17,673 firms and 558 months between July 1963 and December 2009. For each stock-

month pair, we estimate the covariance between monthly CP innovations and the stock’s

return based on 60-month rolling windows. We consider both monthly and annual re-

balancing. In the monthly rebalancing exercise, we sort stocks into five portfolios based

on their CP -exposure and calculate the quintile portfolio returns over the next month,

value-weighting stocks within each portfolio. In the annual rebalancing exercise, we

sort stocks each year in December based on their CP -exposure and calculate the quin-

tile portfolio returns over the next 12 months, again value-weighting stocks within each

portfolio. Annual rebalancing is what is done to construct the book-to-market sorted

portfolios we used in Section II. The latter data set contains accounting information,
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Table V

Other Stock Portfolios - Pricing Errors

This table reports robustness with respect to different stock market portfolios, listed in the first row. Panel A of this

table reports pricing errors (in % per year) on various stock portfolios, the value-weighted market portfolio, and five bond

portfolios of maturities 1, 2, 5, 7, and 10 years. Each column corresponds to a different stochastic discount factor (SDF)

model. The first column contains the risk-neutral SDF. The second column presents our SDF model with three priced

factors (Our). The third column refers to the three factor model of Fama and French (FF). The last row of Panel A

reports the mean absolute pricing error across all securities (MAPE). Panel B reports the estimates of the prices of risk.

The data are monthly from June 1952 through December 2009.

Panel A: Pricing Errors (in % per year)
10 Size Portfolios 5 Earnings-Price Portfolios 25 Size and Value Portfolios

Assets RN SDF Our SDF FF Assets RN SDF Our SDF FF Assets RN SDF Our SDF FF
1-yr 1.00 -0.12 0.71 1.00 -1.36 0.78 1.00 -1.24 0.85
2-yr 1.21 -0.17 0.79 1.21 -1.42 0.84 1.21 -1.30 1.02
5-yr 1.52 0.07 0.98 1.52 -0.53 0.89 1.52 -0.48 1.31
7-yr 1.78 0.51 1.28 1.78 0.58 1.00 1.78 0.58 1.58
10-yr 1.39 0.10 0.34 1.39 0.53 0.28 1.39 0.52 0.90

Market 6.32 -0.75 -0.09 6.32 -1.10 -0.10 6.32 -0.08 0.21

S1 9.46 1.56 -0.13 EP1 4.83 -0.33 0.61 S1B1 3.37 -3.07 -5.02
S2 8.98 0.07 0.02 EP2 6.07 -0.86 -0.55 S1B2 9.47 -0.39 0.49
S3 9.49 0.82 0.24 EP3 7.53 -0.32 -0.92 S1B3 9.61 -0.19 0.45
S4 8.86 0.28 0.17 EP4 9.38 1.08 -0.05 S1B4 11.99 3.72 2.25
S5 9.04 0.01 0.41 EP5 11.63 1.62 0.72 S1B5 13.45 3.57 1.82
S6 8.36 -0.17 -0.12 S2B1 5.18 -1.57 -1.77
S7 8.37 -0.40 0.25 S2B2 8.63 0.00 0.45
S8 7.83 -0.85 -0.47 S2B3 10.90 1.39 1.67
S9 7.25 -0.23 -0.82 S2B4 11.09 1.26 0.89
S10 5.68 -0.60 0.35 S2B5 15.51 2.96 0.11

S3B1 6.30 -1.70 0.44
S3B2 8.97 -0.20 0.82
S3B3 9.49 -0.08 0.39
S3B4 10.63 0.41 0.73
S3B5 11.99 1.31 0.37
S4B1 6.87 0.02 1.84
S4B2 7.16 -1.27 -0.76
S4B3 9.28 -0.36 0.23
S4B4 9.77 -2.14 0.13
S4B5 10.02 -1.67 -1.66
S5B1 5.80 2.07 2.20
S5B2 6.37 1.14 0.27
S5B3 6.82 0.87 -0.13
S5B4 6.74 -2.16 -2.21
S5B5 7.77 -2.03 -2.56

MAPE 6.03 0.42 0.45 4.79 0.89 0.61 7.53 1.28 1.13

Panel B: Market Prices of Risk
MKT 2.43 6.39 1.68 5.28 1.31 3.77
Level/SMB -14.65 -19.19 -27.41 -3.63 -26.53 1.98
CP/HML 66.12 20.67 166.57 9.85 157.48 8.01

Panel C: P-values of χ2 Tests
H0 : Λ0 = 0 – 1.72% 2.30% – 0.84% 0.00% – 1.12% 0.00%
H0 : Pr. err. = 0 – 9.76% 0.47% – 11.05% 0.01% – 3.97% 0.00%
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such as the book-to-market ratio, and is used in most empirical work at the stock level.

Therefore, the Compustat, annual rebalancing case is our main case.

Table VI reports post-formation CP -exposures, average returns, and CAPM alphas

of the quintile portfolios. The results from the Compustat sample are in the left columns,

those from the CRSP sample in the right columns. The annual rebalancing results are

in the top panels, while the monthly rebalancing is reported in the bottom panels. In

both samples, firms with high CP betas have higher average returns, CAPM alphas, and

KLN alphas. The difference between the highest and lowest quintile is 4.1% per year

(2.6%) in the Compustat sample under annual (monthly) rebalancing and 3.5% (3.0%)

in the CRSP sample under annual (monthly) rebalancing. This represents a substantial

fraction of the 4.4% annual value premium in our sample. We note that portfolio sorting

based on rolling-window regressions can dampen the true spread in returns between high-

and low-exposure stocks.12 In light of this attenuation bias, the spreads we find between

CP-exposure sorted portfolios seem economically substantial. The 5-1 spread in CAPM

alphas is 0.4% per year lower than that of returns. Applying our CP market price of risk

estimate of 98 from Table I to the differential CP -exposure of the CP -sorted portfolios

leads to a 1.7-2.7% annual return spread, close to the reported difference in average

returns. We conclude that CP -sorted portfolios of individual stocks lend support to our

earlier findings.13

12To illustrate, we regress the returns on the five book-to-market quintile portfolios on the three
Fama-French factors using 120-month rolling-window regressions. In each month, we assign each quintile
portfolio to an HML-quintile portfolio by sorting on the estimated rolling-window HML exposure. The
resulting spread between the highest and lowest HML-quintile portfolio is only 1.6%, compared to the
4.4% value spread between these portfolios.

13We obtain similar results using longer rolling windows to compute the CP -exposure, using expand-
ing windows, or using equal-weighting instead of value-weighting to compute portfolio returns. We also
obtain similar results when we control for differential exposure of the quintile portfolios to MKT and
LVL innovations.
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Table VI

CP -beta Sorts

For each stock-month pair, we estimate the covariance between monthly CP innovations and the stock’s return based on

60-month rolling windows. In the monthly rebalancing exercise, we sort stocks based into five portfolios based on their

CP -exposure and calculate the quintile portfolio returns over the next month, value-weighting stocks within each portfolio

(bottom panels). In the annual rebalancing exercise (top panels), we sort stocks each year in December based on their

CP -exposure and calculate the quintile portfolio returns over the next 12 months, again value-weighting stocks within

each portfolio. We winsorize the CP -exposures at the 1% and 99% levels and exclude stocks with a market capitalization

below $100,000. The table reports the CP -exposures, average returns, and CAPM alphas of the quintile portfolios. All

entries are multiplied by 1200 so as to express them as a percentage per year. The left panels are for the CRSP/Compustat

universe from 1963.7 to 2009.12. The right panels are for the universe of CRSP stocks from 1952.8 to 2009.12.

CP-exp avg ret capm alpha CP-exp avg ret capm alpha
Compustat/annual rebalancing CRSP/annual rebalancing

1 0.023 3.325 -1.514 1 0.016 4.443 -1.758
2 0.030 4.391 0.244 2 0.025 5.227 -0.074
3 0.042 5.893 1.765 3 0.026 6.758 1.422
4 0.045 6.229 1.600 4 0.030 7.245 1.455
5 0.041 7.441 2.262 5 0.032 7.907 1.263

5-1 0.017 4.116 3.776 5-1 0.017 3.464 3.021

Compustat/monthly rebalancing CRSP/monthly rebalancing
1 0.022 3.648 -1.243 1 0.013 4.766 -0.999
2 0.026 4.348 0.170 2 0.018 4.645 -0.237
3 0.029 5.295 1.014 3 0.018 6.780 1.746
4 0.039 6.207 1.622 4 0.024 6.950 1.641
5 0.049 6.268 0.997 5 0.036 7.727 1.530

5-1 0.027 2.620 2.240 5-1 0.023 2.962 2.528
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VI. Conclusion

This paper makes three contributions. First, we estimate a parsimonious three-factor

model that explains return differences between average excess returns on book-to-market

sorted stock portfolios, the aggregate stock market portfolio, government bond portfolios

sorted by maturity, and corporate bond portfolios. The first factor is the traditional

CAPM market return factor, the second one is the level of the term structure, and the

third factor captures fluctuations in the nominal bond risk premium. We show that the

value portfolio returns have a higher exposure to bond risk premium shocks than the

returns on the growth portfolio. With a positive estimate for the market price of bond

risk premium shocks, this differential exposure delivers the value risk premium. Second,

we provide and calibrate a structural model that links nominal bond risk premia shocks

to the returns on value and growth stocks. The main state variable in the model is

the state of the real economy. When economic activity is low and suffers a sequence of

negative shocks, the economy is in recession. Bond risk premia fall, thereby increasing

bond prices; bonds are a recession hedge. During recessions, dividends on the value

portfolio fall by more than those on growth, and so do their returns. Value stocks’ cash

flows are more exposed to cyclical shocks, the same shocks that drive the bond risk

premium. The model replicates the empirical finding that the value premium is due

to higher exposure of value returns to bond risk premium shocks. Third, we provide

empirical evidence that dividends on value portfolios fall by more in recessions than

those on growth stocks. This evidence supports the main driving force in the model.

Taken together, this paper provides a new mechanism linking the properties of stock

and bond prices, obviating the need for a behavioral explanation of the value anomaly.

Rather, it resuscitates a central role for business cycle risk in asset pricing.
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Appendix

Appendix A. Derivations Structural Model

In this appendix we provide derivations of the asset pricing expressions given in the main

text. We also list the parameters used in the numerical example, and how they were chosen.

It is the simplest structural model that provides the link between the state of the economy,

the nominal bond risk premium, and value/growth stocks.

Appendix A.1. Nominal Bond Prices and Risk Premia

The nominal SDF is given by:

m$
t+1 = mt+1 − πt+1

= −y − π̄ − xt −
1

2
Λ′

tΛt − Λ′
tεt+1 − σπεπ

t+1

The price of an n-period bond is given by:

Pn
t = exp

(

A$
n + B$

nst + C$
nxt

)

.
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The recursion of nominal bond prices is given by:

Pn
t = Et

(

Pn−1
t+1 M$

t+1

)

= Et

(

exp

(

A$
n−1 + B$

n−1st+1 + C$
n−1xt+1 − y − π̄ − xt −

1

2
Λ′

tΛt − Λ′
tεt+1 − σπεπ

t+1

))

= exp

(

A$
n−1 − y − π̄ − xt −

1

2
Λ′

tΛ
+
t B$

n−1ρsst + C$
n−1ρxxt

)

×

Et

(

exp
(

B$
n−1σsε

s
t+1 + C$

n−1σxε
x
t+1 − Λ′

tεt+1 − σπεπt + 1
))

= exp
(

A$
n−1 − y − π̄ − xt + B$

n−1ρsst + C$
n−1ρxxt

)

×

exp

(
1

2
[B$

n−1]
2σ2

s +
1

2
[C$

n−1]
2σ2

x − B$
n−1σsΛt(3) − C$

n−1σxΛt(2) +
1

2
σ2

π

)

,

which implies:

A$
n = A$

n−1 − y − π̄ +
1

2
[B$

n−1σs]
2 +

1

2
[C$

n−1σx]2 +
1

2
σ2

π − B$
n−1σsΛ0(3) − C$

n−1σxΛ0(2),

B$
n = B$

n−1ρs − C$
n−1σxΛ1(2),

C$
n = −1 + C$

n−1ρx.

The starting values for the recursion are A$
0 = 0, B$

0 = 0, and C$
0 = 0. The expression for C$

n

can be written more compactly as:

C$
n = −

1 − ρn
x

1− ρx

ρx < 0,

implying that bond prices drop (nominal interest rates increase) when inflation increases. If

Λ1(2) < 0 then B$
n < 0, implying that nominal bond prices fall (interest rates rise) in business

cycle expansions (st > 0). Both signs seem consistent with intuition.

The nominal bond risk premium, which is the expected excess return in logs and corrected
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for a Jensen term:

Et

[

rx$
t+1(n)

]

= −covt

(

m$
t+1, p

n−1
t+1 − pn

t

)

= covt

(

Λ′
tεt+1, B

$
n−1st+1 + C$

n−1xt+1

)

= Λt(2)C
$
n−1σx + Λt(3)B

$
n−1σs

= Λ0(2)C
$
n−1σx + Λ0(3)B

$
n−1σs + Λ1(2)C

$
n−1σxst.

Appendix A.2. Stock Return, Price-Dividend Ratio, and Equity Risk Pre-

mium

The return definition implies:

rt+1 = ln (exp (pdt+1) + 1) + ∆dt+1 − pdt

≃ ln
(
exp

(
pd

)
+ 1

)
+

exp
(
pd

)

exp
(
pd

)
+ 1

(
pdt+1 − pd

)
+ ∆dt+1 − pdt

= κ0 + κ1pdt+1 + ∆dt+1 − pdt,

where:

κ0 = ln
(
exp

(
pd

)
+ 1

)
− κ1pd,

κ1 =
exp

(
pd

)

exp
(
pd

)
+ 1

.

We conjecture that the log price-dividend ratio is of the form:

pdt = A + Bst,
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The price-dividend ratio coefficients are obtained by solving the Euler equation:

Et

(

M$
t+1R

$
t+1

)

= 1.

We suppress the dependence on i in the following derivation:

1 = Et (exp (mt+1 − πt+1 + κ0 + κ1pdt+1 + ∆dt+1 − pdt + πt+1))

0 = Et (mt+1) +
1

2
Vt (mt+1) + Et (κ0 + ∆dt+1 + κ1pdt+1 − pdt)

+
1

2
Vt (∆dt+1 + κ1pdt+1) + Covt

(
−Λ′

tεt+1,∆dt+1 + κ1pdt+1

)

= −y + κ0 + γ0 + γ1st + (κ1 − 1) A + (κ1ρs − 1) Bst

+
1

2
σ2

d +
1

2
σ2 +

1

2
κ2

1B
2σ2

s − Λt(1)σd − Λt(3)κ1Bσs.

This results in the system:

0 = −y + κ0 + γ0 + (κ1 − 1) A +
1

2
σ2

d +
1

2
σ2 +

1

2
κ2

1B
2σ2

s − Λ0(1)σd − Λ0(3)κ1Bσs,

0 = (κ1ρs − 1)B − Λ1(1)σd + γ1,

Rearranging terms, we get the following expressions for the pd ratio coefficients, where we

makw the dependence on i explicit:

Ai =
1
2σ2

di + 1
2σ2

i + 1
2κ2

1iB
2
i σ2

s − Λ0(1)σdi − Λ0(3)κ1iBiσs − y + κ0i + γ0i

1 − κ1i

,

Bi =
γ1i − Λ1(1)σdi

1 − κ1iρs

.

Note that Bi can be positive or negative depending on the importance of dividend growth

predictability (γ1i) and fluctuations in risk premia (Λ1(1)σdi).

61



The equity risk premium on portfolio i can be computed as follows:

Et

[
rxi

t+1

]
= covt

(

−m$
t+1, r

i
t+1 + πt+1

)

= cov
(

Λ′
tεt+1, κ1iBiσsε

s
t+1 + σdiε

d
t+1

)

= Λ0(1)σdi + Λ0(3)κ1iBiσs + Λ1(1)σdist.

Appendix A.3. Calibration in Detail

In this appendix, we provide the details of our calibration. We start by describing how we

define recessions in the model. Second, we describe the calibration of dividends and inflation

processes. Third, we describe the choice of market price of risk parameters. A summary of

this discussion is found in the main text.

Recessions in the Model Our calibration of recessions mimics the NBER dating proce-

dure. The parameters we chose generate a simulated distribution over the length of recessions

that matches several moments of the empirical distribution. We now describe this procedure

in detail.

Recessions in the model are determined by the dynamics of the state process st. Define

the cumulative shock process χt ≡
∑K

k=0 εs
t−k, where the parameter K governs the length of

the backward-looking window. Let χ and χ be the pth
1 and pth

2 percentiles of the distribution

of χt, respectively, and let s be the be the pth
3 percentile of the distribution of the s process.

Whenever χt < χ, we find the first negative shock between t−K and t; say it occurs in month

t − j. If, in addition, st−j < s, we say that the recession started in month t − j. We say that

the recession ends the fist month that χt+i > χ, for i ≥ 1. We assume that a new recession

cannot start before the previous one has ended.

We find the recession parameters (K, p1, p2, p3) by matching features of the fifteen recessions
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in the 1926-2009 data. In particular, we consider the fraction of recession months (19.86% in

the data), the average length of a recession (13.3 months), the minimum length of a recession

(6 months), the 25th percentile (8 months), the median (11 months), the 75th percentile (14.5

months), and the maximum length (43 months). We simulate the process for st for 10,000

months, determine recession months as described above, and calculate the weighted distance

between the seven moments in the simulation and in the data. We iterate on the procedure

to find the four parameters that minimize the distance between model and data.14 The best

fit has 19.70% of months in recession, an average length of 12.0 months, a minimum of 6,

25th percentile of 8, median of 11, 75th percentile of 14, and maximum of 43 months. The

corresponding parameters are K = 7 months, p1 = 17, p2 = 37, and p3 = 29.

To describe how the variables of interest behave over the course of a recession, it is conve-

nient to divide each recession into three equal stages, and to keep track of the value in the last

month of each stage. More precisely, we express the variable in percentage difference from the

peak, which is the month before the recession starts. For example, if a recession lasts 9 (10)

months, we calculate how much lower dividends are in months 3, 6, and 9 (10) of the recession,

in percentage terms relative to peak. Averaging these numbers over recessions indicates the

typical change of the variable of interest in three stages of a recession. The third-stage number

summarizes the behavior of the variable over the entire course of the recession. We apply this

procedure equally to the data and the model simulation.

We set ρs = .9355 to exactly match the 12-month autocorrelation of the CP factor of .435.

This low annual autocorrelation is consistent with the interpretation of s as a business-cycle

frequency variable. We set σs = 1; this is an innocuous normalization. The s process is negative

at the start of the recession (1.6 standard deviations below the mean), falls considerably in

the first stage of a recession (to 3.2 standard deviations below the mean), continues to fall in

the second stage (to -3.9 standard deviations), and partially recovers in the last stage (to -2.9

14The weighting matrix is diagonal and takes on the following values: .9, .9, .7, .5, .7, .5, and .5,
where the weights are described in the same order as the moments in the text. We use an extensive
grid search and limit ourselves to integer values for the parameters.
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standard deviations).

Dividend and Inflation Parameters We calibrate parameters to match moments of

real dividend growth on the market portfolio, value portfolio (fifth book-to-market quintile),

and growth portfolio (first quintile) for 1927-2009 (997 months). Since nominal bond yields are

unavailable before 1952, we compare our model’s output for nominal bond yields and associated

returns to the average for 1952-2009. In our model simulation, we reinvest monthly dividends

at the risk-free rate to compute an annual real dividend series, replicating the procedure in

the data. We calculate annual inflation as the twelve-month sum of log monthly inflation, as

in the data.

The most important parameter is γ1i, which measures how sensitive dividend growth is

to changes in real economic activity. In light of the empirical evidence presented above, we

choose γ1i to match the log change in annual real dividends between the peak of the cycle

and the last month of the recession. In the data, the corresponding change is -21.0% for value

stocks (the fifth BTM portfolio), + 2.2% for growth stocks (first BTM portfolio), and -5.2%

for the market portfolio (CRSP value-weighted portfolio). Given the parameters governing the

s dynamics and the recession determination described above, the model matches these changes

exactly for γ1G = −.4e − 4, γ1V = 97.6e − 4, and γ1M = 24.8e − 4. Note that γ1V > γ1G

delivers the differential fall of dividends on value and growth stocks.

We choose γ0G = .0010, γ0V = .0044, and γ0M = .0010 to exactly match the unconditional

mean annual log real dividend growth of 1.23% on growth, 5.26% on value, and 1.23% on the

market portfolio. We choose σdM = 2.09% to exactly match the unconditional volatility of

annual log real dividend growth of 10.48%. We set σdG = 1.94% and σdV = 2.23% in order to

match the fact that the covariance of growth stocks with market return innovations is slightly

higher than that of value stocks. However, the difference needs to be small to prevent the value

premium from being due to differential exposure to market return shocks. To be precise, this
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difference makes the contribution of the market factor to the value premium equal to 0.44%

per year, the same as in the data. We set the idiosyncratic volatility parameter for growth

σG = 3.48% to match exactly the 13.75% volatility of dividend growth on growth stocks, given

the other parameters. We set σV = 10.94% because the volatility of dividend growth on value

stocks of 48.93%. The 12-month autocorrelation of annual log real dividend growth in the

model results from these parameter choices and is -.01 for G, .21 for V, and .29 for M, close

to the observed values of .11, .16, and .29, respectively.

We choose π̄ = .0026 to exactly match average annual inflation of 3.06%. We choose ρx =

.989 and σx = .03894% to match the unconditional volatility and 12-month autocorrelation

of nominal bond yields of maturities 1- through 5-years (1952-2009 Fama-Bliss data). In the

model, volatilities decline from 3.13% for 1-year to 2.58% for 5-year bonds. In the data,

volatilities decline from 2.93% to 2.72%. The 12-month autocorrelations of nominal yields

range from .88 to .84 in the model, and from .84 to .90 in the data. Our parameters match

the averages of the autocorrelations and volatilities across these maturities. We choose the

volatility of unexpected inflation σπ = .7044% to match the volatility of inflation of 4.08%

in the data. The 12-month autocorrelation of annual inflation is implied by these parameter

choices and is .59 in the model , close to the .61 in the data. We set the real short rate

y = .0018, or 2.1% per year, to match the mean 1-year nominal bond yield of 5.37% exactly,

given all other parameters.

Market Prices of Risk We set Λ0(1) = .2913 to match the unconditional equity risk

premium on the market portfolio of 7.28% per year (in the 1927-2009 data). The market price

of expected inflation risk Λ0(1) = −.0986 is set to match the 5-1-year slope of the nominal

yield curve of 0.60%. The term structure behaves nicely at longer horizons with 10-year yields

equal to 6.27% per year, and 30-year yields equal to 6.49% per year. The average of the annual

bond risk premium on 2-year, 3-year, 4-year, and 5-year bond returns, which is the left-hand

side variable of the CP regression, is 0.75% in the model compared to 0.87% in the data. The
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mean CP factor is .0075 in model and .0075 in the data. We set the market price of cyclical

risk Λ0(3) = .0249 in order to match the 5.22% annual value premium (in the 1927-2009 data).

We set Λ1(1) = .1208 in order to generate a slightly negative BM = −6.24e− 4. As argued

above, the near-zero BM prevents the value premium from arising from exposure to market

return shocks, and it prevents bond returns from being heavily exposed to market risk. The

slight negative sign delivers a slightly positive contribution of exposure to market return shocks

to bond excess returns, as in the data (recall Figures 2 and 7). In particular, it generates a 15

basis point spread between ten-year and 1-year bond risk premia coming from market exposure,

close to the 30 basis points in the post-1952 data. Finally, we set Λ1(1) = −0.0702 in order to

exactly match the volatility of the CP factor of 1.55%. The volatility of the average annual

bond risk premium on 2-year, 3-year, 4-year, and 5-year bonds is 3.93% in the model and 3.72%

in the data. As mentioned above, ρs is chosen to match the persistence of CP . Thus the model

replicates the mean, volatility, and persistence of the CP factor and the nominal bond risk

premium. The maximum annualized log Sharpe ratio implied by the model, E[
√

Λ′
tΛt]

√

(12)

is 1.44. Unfortunately, there is no easy comparison with the numbers in the empirical section

(bottom panel of Table I).

Appendix B. How Pricing Stocks and Bonds Jointly Can Go

Wrong

Consider two factors F i
t , i = 1, 2, with innovations ηi

t+1. We normalize σ
(
ηi

t+1

)
= 1. Let

cov
(
η1

t+1, η
2
t+1

)
= ρ = corr

(
η1

t+1, η
2
t+1

)
. We also have two cross-sections of test assets with

excess, geometric returns rki
t+1, i = 1, 2 and k = 1, ...,Ki, with innovations εki

t+1. We assume

that these returns include the Jensen’s correction term. Suppose that both cross-sections

exhibit a one-factor pricing structure:

E
(

rki
t+1

)

= cov
(

εki
t+1, η

i
t+1

)

λi, i = 1, 2.
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The first factor perfectly prices the first set of test assets, whereas the second factor prices the

second set of test assets. We show below that this does not imply that there exists a single

SDF that prices both sets of assets.

Consider the following model of unexpected returns for both sets of test assets:

εk1
t+1 = E

(

rk1
t+1

)

η1
t+1,

εk2
t+1 = E

(

rk2
t+1

)

η2
t+1 + α2kη

3
t+1,

with cov
(
η2

t+1, η
3
t+1

)
= 0. Unexpected returns on the first set of test assets are completely

governed by innovations to the first factor, whereas unexpected returns on the second set of

test assets contain a component α2kη
3
t+1 that is orthogonal to the component governed by

innovations to the second factor. These η3 shocks are not priced (by assumption). We assume

that they are correlated with the η1 shocks: cov
(
η1

t+1, η
3
t+1

)
6= 0.

This structure implies:

cov
(

εki
t+1, η

i
t+1

)

= E
(

rki
t+1

)

var
(
ηi

t+1

)
= E

(

rki
t+1

)

,

and hence λi = 1, i = 1, 2. Then we have:

cov
(

εk1
t+1, η

1
t+1

)

= E
(
rk1
t+1

)
, cov

(

εk1
t+1, η

2
t+1

)

= E
(

rk1
t+1

)

ρ,

cov
(

εk2
t+1, η

1
t+1

)

=
(
rk2
t+1

)
ρ + α2kcov

(
η1

t+1, η
3
t+1

)
, cov

(

εk2
t+1, η

2
t+1

)

= E
(

rk2
t+1

)

.

The main point is that, if α2k is not proportional to E
(
rk2
t+1

)
, then there exist no Λ1 and

Λ2 such that:

E
(

rki
t+1

)

= cov
(

εki
t+1, η

1
t+1

)

Λ1 + cov
(

εki
t+1, η

2
t+1

)

Λ2.
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On the other hand, if there is proportionality and α2k = αE
(
rk2
t+1

)
, then we have:

cov
(

εk2
t+1, η

1
t+1

)

= E
(

rk2
t+1

) (
ρ + αcov

(
η1

t+1, η
3
t+1

))
= E

(

rk2
t+1

)

ξ,

and Λ1 and Λ2 are given by:

Λ1 =
1 − ρ

1 − ξρ
, and Λ2 =

1 − ξ

1 − ξρ
.

This setup is satisfied approximately in our model, where the first set of test assets are the

book-to-market portfolios, η1 are CP innovations, the second set of test assets are the bond

portfolios, and η2 are level innovations. Unexpected bond returns contain a component η3 that

is uncorrelated with level innovations, but that is correlated with CP innovations. Unexpected

book-to-market portfolio returns, in contrast, are largely uncorrelated with level innovations.

The result above illustrates that consistent risk pricing is possible because unexpected bond

returns’ exposure to CP shocks has a proportionality structure. This can also be seen in the

top panel of Figure 2.
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