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I.  Introduction 

 

In empirical finance and in time series applied economics in general, the least squares 

model is the workhorse.  In class there is much discussion of the assumptions of exogeneity,  

homoskedasticity and serial correlation.  However in practice it may be unstable regression 

coefficients that are most troubling.  Rarely is there a credible economic rationale for the 

assumption that the slope coefficients are time invariant.   

 Econometricians have developed a variety of statistical methodologies for dealing with 

time series regression models with time varying parameters.  The three most common are rolling 

window estimates,  interaction with trends, splines or economic variables, and state space models 

where the parameters are treated as a state variable to be estimated by some version of the 

Kalman Filter. Each approach makes very specific assumptions on the path of the unknown 

coefficients.  The first approach specifies how fast the parameters can evolve, and by using least 

squares on each moving window, employs an inconsistent set of assumptions. The second 

specifies a family of deterministic paths for the coefficients that may have undesirable or 

inconsistent implications particularly when extrapolated.  The third requires specifying a 
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stochastic process for the latent vector of parameters which may include unit roots and stochastic 

trends that are generally unmotivated and rarely based on any economic analysis.  

 There is no standardized approach that has become widely accepted.  This paper will 

propose such an approach for a wide class of data generating processes.  In addition, it will allow 

a test of the constancy of the parameter vector. 

 

II.  Dynamic Conditional Beta 

 Consider a vector of observables,  1, ,, ,... , 1,...t t k ty x x t T .  The objective is to 

characterize the conditional distribution of y given x.   In a time series context this requires 

finding  1t t tE y x .  In the very special case we generally assume, this may turn out to be linear 

in x with parameters that do not depend upon the past information set.  Much more generally, 

this regression may be linear with parameters that do depend upon the past information set.   

 A natural formulation of this problem is in terms of the joint distribution of all the 

variables conditional on the past.  Suppose 

  1 ~ ,t
t t t

t

y
N H

x


 
 
 

F  (1) 

where  ,t tH are measurable with respect to 1tF .   Then the desired conditional distribution is 

simply 

   1 1
1 , , , , , , , ,, ~ ,t t t y t yx t xx t t x t yy t yx t xx t xy ty x N H H x H H H H  
   F  (2) 

where subscripts represent natural partitions.  Thus the time varying regression coefficients that 

are needed are  

 1
, ,t xx t xy tH H   (3) 
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The betas from this expression will be called Dynamic Conditional Betas.  These betas  have 

been used in univariate settings by many authors beginning with Bollerslev, Engle and 

Wooldridge(1988) and including Engle(2009) and Brownlees and Engle(2011).  This author does 

not recall seeing the multivariate expression in (3) before.   

The expression however is very familiar if the time subscript is dropped.  In this case we 

simply have ordinary least squares.  If we use rolling regressions, then the matrices are changing 

and we can think of the regression coefficients as being approximations to (3).  The assumption 

in (1) makes it clear exactly what the rolling covariance matrices should accomplish.   These 

matrices should give conditional covariances of y with x and of x with x.  Rolling windows are 

often used to compute “historical” volatilities and correlations which are viewed as forecasts.  

The time width of the window is a central feature of historical volatilities as it regulates the 

volatility of volatility.  Naturally,  the criticisms of historical volatility forecasts apply here as 

well.  That is, a window of k days is the correct choice if the joint vector of returns on the next 

day is equally likely to come from any of the previous k days but could not be from returns more 

than k days in the past.  Because of the unrealistic nature of this specification, exponential 

smoothing is a better alternative for most cases. 

 The normality assumption is obviously restrictive but even without normality, (2) can be 

interpreted as the conditional linear projection.  The projection may be linear but with a non-

normal error which will support estimation as in Brownlees and Engle(2011).  The more difficult 

issue is that we do not observe directly either the vector of conditional means or conditional 

covariances.  A model is required for each of these.  For many financial applications where the 

data are returns, the mean is relatively unimportant and attention can be focused on the 

conditional covariance matrix.  Think for a moment of the estimate of the beta of a stock or 



4 
 

portfolio, or multiple betas in factor models, style models of portfolios, or the pricing kernel, and 

many other examples.  In these cases, a natural approach is to use a general covariance matrix 

estimator and then calculate the betas.  

  In the special case where one or more regression coefficients are time invariant, there is 

a restriction on the covariance matrix.   If the ith coefficient is time invariant then  

 1
, ,'i xx t xy t iH H    (4) 

where i  is the ith column of the identity matrix and the fact that the right hand side does not 

depend upon time is captured by the lack of a time subscript.  When there is only one regressor, 

this can be more simply be seen as  

 ,

,

yx t

xx t

H

H
  (5) 

so that the ratio of a covariance to the variance is constant.   

 

III.  Maximum Likelihood Estimation of DCB 

 Maximum likelihood estimation of the Dynamic Conditional Beta model requires 

specification of both the covariance matrix and the mean of the data vector.   In general, the 

covariance matrix and mean of these data will include unknown parameters.  Extending equation 

(1) to include a jx1 vector of unknown parameters in the mean and variance equations, we get 

      
 1

1
~ , ,t

t t t
jx

t

y
N H

x
   

 
 

 
F   (6) 

Clearly, this specification includes the wide range of multivariate volatility models that are used 

in practice such as VEC, BEKK, DCC and general classes of mean functions.  In most cases, the 

model does not satisfy assumptions for weak exogeneity as in Engle Hendry and Richard(1985) 
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because the distribution of the x variables has information about the dynamic conditional betas.  

In special cases where the covariance matrix has no unknown parameters or these can be 

partitioned in special ways, weak exogeneity can be established. 

 The MLE of q can be computed for the data vector ( ), ' 't t tz y x=  as 

  ( ) ( )( ) ( ) ( )( )1

1

1ˆ arg max log '
2

T

t tt t t t
t

H z H zq q m q q m q
-

=

= - + - -å   (7) 

Then as tb  is a function of the unknown parameters and data, the MLE is simply 

  ( ) ( )
1

, ,

ˆ ˆ ˆ
t

xx t xy t
H Hb q q

-

=   (8) 

A useful expression for the log likelihood can be found by changing variables.  Convert the 

likelihood from ( ) ( ) 1
, ,, ' , 't t t t t t yx t xx t ty x to w x where w y H H x-= - .  As the Jacobian of the 

transformation is 1, the likelihood simply has a recalculated covariance matrix which is now 

diagonal.  Setting the means to zero makes the expression easier and gives: 

  ( ) ( )
2

1
, , ,

1 1,

1 1
, ; , ; log( ) log '

2 2

T T
t

w t xx t t xx t t
t tw t

w
L y x L w x h H x H x

h
q q -

= =

æ ö ì üï ï÷ç ï ï÷ç= = - + - +í ý÷ç ÷ ï ï÷çè ø ï ïî þ
å å   (9) 

The asymptotic standard errors can be developed in the same way.  From (7), the limiting 

distribution of q̂ can be established as 

  ( ) ( )1
0

ˆ 0,T N Aq q -- ®   (10) 

where A could be the information matrix if the normality assumption is valid or a robust 

covariance matrix of the sandwich form if it is not.  See for example Bollerslev and 

Wooldridge(1992) for a proof.  Applying the mean value theorem to (8) 

  ( )( ) ( )
( ) ( )1

, ,

0, 0
ˆ ˆ ,

'

xx t xy t

t t t t

H H
G G

q q

q q
b b q q q q

q

-

=

é ù¶ ê úë û- = - =
¶

  (11) 
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where ( )0
ˆ,q q qÎ with possibly different values for different rows.  Then 

  ( ) ( )1
0,

ˆ 0, 't t t tT N G A Gb b -- ®   (12) 

and Gt can be estimated as ( )ˆtG q .    Notice that this distribution applies at each point within the 

sample as the sample size goes to infinity.  The large sample result delivers consistent estimates 

of the unknown fixed parameters q which then imply time varying standard errors for the betas. 

 

IV.  Maximum Likelihood when all betas are constant 

 In this classical case, the likelihood function can again be evaluated based on equation (1)

where the specification includes the assumption that the betas are all constant.  For convenience, 

we again assume that all means are zero.  Now we write the log likelihood as the sum of the log 

of the conditional density of y given x plus the log of the marginal density of x.  Ignoring 

irrelevant constants gives: 

 

( ) ( ) ( )

( )
( )

( ) ( )

1 1
1

2
1

, , ,
1 1,

, ; log , ,...; log ,...;

'1 1
log log '

2 2

T

t t t x t ty x
t

T T
t t

u t t txx t xx t
t tu t

L y x f y x z f x z

y x
h H x H x

h

q q q

b
q q

- -
=

-

= =

é ù= +ê úë û

æ ö ì ü- ï ï÷ç é ùï ï÷ç= - + - +÷ í ýç ê ú÷ ë ûï ïç ÷ç ï ïî þè ø

å

å å
  (13) 

In this equation  

  ( )1 ,' ,t t t t t u tu y x V u hb -= - =   (14) 

If hu is a general volatility process with no common parameters from Hxx then maximum 

likelihood estimators of beta are simply given by maximizing the first part of the likelihood.  

This is just least squares with a heteroskedastic error process. 

 The asymptotic distribution of beta is simply given by the conventional expression for 

heteroskedastic regression. 
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V.  Maximum Likelihood when some parameters are constant 

 If it is known that a subset of the regression parameters are constant, then MLE can be 

adapted to estimate jointly the fixed and varying parameters of the model.  Suppose there are k 

regressors and the first k1 are time varying and the second k2 are constant.  In this case the 

dynamic conditional betas of the first k1 elements will be the first k1 elements of the expression 

in (4).  Partitioning  1 2', ' 'x x x and then defining  0
1 1 ',0 'x x , the model can be expressed as 

 1 0
, , 1, 2 2,'t yx t xx t t t ty H H x x u    (15) 

Thus the conditional log likelihood can be evaluated by regressing y minus the first term on the 

fixed regressors and allowing heteroskedasticity in u.  The result is: 

        
2

1

, , ,
1 1,

1 1
; log log '

2 2

T T
t

u t t txx t xx t
t tu t

u
L y x h H x H x

h
  

 

               
   (16) 

Notice that the second term in curly brackets is the same in (9) (13) and (16).  In each case, the 

estimates of the covariance matrix of the x’s will be identical so any comparison of log 

likelihoods can be done simply by comparing the marginal log likelihoods.   

 

 

VI.  Testing for a constant regression coefficient 

 In this section a set of approaches will be developed for testing that one or more 

parameters is constant.  These hypotheses are basically non-nested although they more precisely 

are overlapping models.  As a non-nested hypothesis testing problem, there are several standard 

approaches.  The first developed initially by Cox(1961,1962) is a model selection approach 
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which simply asks which model has the highest value of a (penalized) likelihood.  If there are 

two models being considered, there are two possible outcomes.   

A second approach introduced by Vuong(1989) is to form a two tailed test of the 

hypothesis that the models are equally close to the true model. In this case, there are three 

possible outcomes, model 1, model 2, and that models are equivalent.  

A third approach is artificial nesting as discussed in Cox(1961,1962) and advocated by 

Aitkinson(1970)  An artificial model is constructed that nests both special cases.  When this 

strategy is used to compare two models, there are generally four possible outcomes – model 1, 

model 2, both , neither.  Artifical nesting of hypotheses is a powerful approach in this context as 

the model has a very simple form.  For the multivariate case the natural artificial nesting consists 

of estimating the following equation: 

   ,' 't t t t u t ty x x h u      (17) 

where e indicates a Hadamard product or element by element multiplication. A Wald test of the 

hypothesis that the coefficient is constant corresponds to a t-test that gamma is zero.  Similarly, a 

Wald test of the hypothesis that the coefficient is time varying corresponds to the t-test that beta 

is zero in the same regression.  This testing approach leads as always to the possibility that both 

hypotheses or neither hypothesis could be rejected.  If both are rejected, then it may be useful to 

consider the estimate of equation (17) as the accepted model.  If neither is rejected, then it might 

be natural to test them jointly and consider whether x in any form is a useful explanatory 

variable. 

 

VII.  Overlapping Models and Econometric Solutions 

 Consider two data generating processes for the same vector of time series  
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  ', ' ', 1,...,t t tz y x t T   (18) 

In the simplest case, there is only one endogenous variable and k conditioning variables.  These 

can be expressed in terms of the joint distributions conditional on past information as: 

 
 
 

1

1

~ , ,

~ , ,

t t t

t t t

z f z

z g z

 

 








F

F
 (19) 

Without loss of generality we can write each distribution conditional on the past as the product of 

a conditional and a marginal distribution each conditioned on the past.  

 
( ) ( ) ( )

( ) ( ) ( )

; ; ;

; ; ;

t t t x ty x

t t t x ty x

f z f y x f x

g z g y x g x

q q q

f f f

=

=
  (20) 

The MLEs are given by 

 

( ) ( ) ( )

( ) ( ) ( )
1

1

ˆ ˆ ˆlog ; log ;

ˆ ˆ ˆlog ; log ;

T

f t t x ty x
t

T

g t t x ty x
t

L f y x f x

L g y x g x

q q q

f f f

=

=

= +

= +

å

å
  (21) 

Model  f is said to be nested within g if for every 0   there is a *   such that 

   , , *of z g z   so that events have the same probability whether  , of z   or  , *g z   is 

the true DGP.   A similar definition applies to the notion that g is nested within f.  The models f 

and g are partially non-nested (Cox(1960),1961), Pesaran(1999)) or overlapping (Vuong(1989)) 

if there are some parameters in xQ F that lead to identical distributions.  Vuong proposes a 

sequential procedure that tests for such parameters first and upon rejecting these cases, examines 

the purely non-nested case.   The parameters   and  include parameters of the covariance 

matrix that must be estimated as well as parameters of the regression function such as the betas.  

The parameters of the covariance matrix could be the parameters of a multivariate GARCH 
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model if that is how the estimation is conducted.  If a DCC approach is used, then the parameters 

would include both GARCH parameters and DCC parameters.  From equation (3) and 

knowledge of a wide range of multivariate GARCH models, it is apparent that the only point in 

the parameter space where the fixed parameter and varying parameter are equivalent is the point 

where there is no heteroskedasticity in the observables.  Even models like constant conditional 

correlation, BEKK, VEC and DECO have no parameters that will make the betas in (3) constant 

unless both ,xx tH  and ,xy tH  are themselves constant.  Thus it is essential to determine whether 

there is heteroskedasticity in y and x to ensure that this is a non-nested problem. 

 As discussed above, several approaches to model building for non-nested models will be 

applied.   

 a)  Model Selection 

 From the maximized likelihood in  and a penalty function such as Schwarz or Aikaike, 

the selected model can be directly found.  In most cases the likelihood will have the same 

specification of the conditioning variables, x, and consequently the maximized values will satisfy  

      , 1 , 1
1 1

ˆ ˆlog ; log ;
T T

x t t t x t t t
t t

f x g x  
 

      
   
 F F  (22) 

Therefore model selection will only involve the first term in the log likelihood just as in a 

conventional regression.  Thus model selection can be based on  

        1 1, ,
1 1

ˆ ˆlog ; , log ; ,
T T

T t t t t t t f gy x t y x t
t t

LR f y x g y x pen pen  
 

    F F  (23) 

where    f g f gpen pen k k   for Aikaike Information Criterion (AIC)  and 

   *log / 2f gk k T   for Schwarz or Bayesian Information Criterion, BIC.   Here k is the total 
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number of estimated parameters in each model.  Clearly, as T becomes large, the penalty 

becomes irrelevant in model selection. 

  b) Testing Model Equality. 

 Following Vuong(1989) and Rivers and Vuong(2002), the model selection procedure can 

be given a testing framework.  The criterion in (23) has a distribution under the null hypothesis 

that the two likelihoods are the same.   The hypothesis that the likelihoods are the same is 

interpreted by Vuong as the hypothesis that they are equally close in a Kulbach Leibler sense, to 

the true DGP.  He shows that under this null, the LR criterion converges to a Gaussian 

distribution with a variance that can be estimated simply from the maximized likelihood ratio 

statistic.  Letting 

 

 
 
 

1,

1,

ˆ; ,
log

ˆ; ,

t t ty x t

t
t t ty x t

f y x
m

g y x








 
 
 
 

F

F
 (24) 

then  

  
2

2

1

1
ˆ /

T

t T
t

m LR T
T




   (25) 

and it is shown in Theorem 5.1  that 

  1/2 ˆ/ 0,1d
TT LR N   (26) 

This can be computed as the t-statistic on the intercept in a regression of mt on a constant.  Based 

on this limiting argument, three critical regions can be established – select model f, select model  

g, they are equivalent. 

 To apply this approach we substitute the log likelihood of the DCB model and the fixed 

coefficient GARCH model into (24).  From (13) and (16) we get 
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  ( )( )2 2
, , , , , ,.5 log /t f t g t f t g t f t g tm L L h h e e= - = - + -   (27) 

If a finite sample penalty for the number of parameters is adapted such as the Schwarz criterion, 

then the definition of m becomes 

  ( )( ) ( ) ( )2 2
, , , ,.5 log / log /t f t g t f t g t f gm h h k k T Te e= - + - - -   (28) 

This series of penalized log differences is regressed on a constant and the robust t-statistic is 

reported.   If it is significantly positive, then model f is preferred and if significantly negative, 

then model g is preferred.  As m in equation (28) is likely to have autocorrelation, the t-statistic 

should be computed with a HAC standard error that is robust to autocorrelation and 

heteroskedasticity.  See Rivers and Vuong(2002). 

c) The third approach is based on artificial nesting and, as discussed above in (17), is 

simply an augmented regression model which allows for heteroskedasticity.  From asymptotic 

standard errors, tests of both f and g null models can be constructed.  The simplicity and power 

of this approach make it appear to be the most useful way to apply the DCB model.  Although 

this regression has regressors that depend upon estimated parameters, this does not lead to the 

generated regressor problem of Pagan(1984).   A theorem from Wooldridge(2002) however may 

be useful to show that parameter estimates are consistent and inference is supported. 

The nested DCB model can be expressed as 

       0 0 0 0 0,t t t t t t t t ty x x x x               (29) 

When the parameter 0  .  The model that is estimated however uses the estimated value of 

ˆ  .  Wooldridge(2002) establishes in section 12.4 the conditions for consistency and correct 

inference in this model.  Consistency follows simply from the consistency of ̂ .  To establish 

that inference is correct requires the condition that 
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 

0 0

2

,

,
0tL

E
   

 
 

 

 
 

  
  (30) 

Under the standard likelihood assumptions and under the condition (10) this term in the Hessian can 

be expressed  as 

 
    

       
0 0

2

0 0 0 0

,

,,
0, , '

t t t tt
t t t t t t t t

x xL
x G x x x G

   

   
     

  
 

     
  

  (31) 

Because G consists only of lagged variables, the first term has expected value zero.  The second 

term will generally be non-zero except when 0 0  .  Thus inference on the nested DCB model 

can be done without correcting the standard errors when 0 0   which is the fixed beta null 

hypothesis.  Thus the artificially nested model is perfectly appropriate for testing the null 

hypothesis of fixed betas and is consistent under the alternative, but inference under the 

alternative should be adjusted.  An approach to this inference problem can be developed 

following Wooldridge but this has not yet been worked out. 

 

VI.  Asset Pricing and the DCB 

 Multifactor asset pricing theories begin with a pricing kernel and then derive cross 

sectional and time series implications that can be tested.  This derivation is completely consistent 

with the Dynamic Conditional Beta as described above. 

 Let ( ),t tr f be vectors of nx1 asset returns and kx1 pricing or risk factors respectively.  

The pricing factors are taken to be tradable with returns given by ft.  A pricing kernel can be 

specified as 

  't t t tm a b f= -   (32) 
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where the parameters a and b potentially change over time but the changes are not priced.  From 

the pricing kernel it is straight forward to derive the following expression: 

 

( )( ) ( )

( ) ( ) ( )

( ) ( )

( )

1 1

1 1

, , 1

, , 1

1 1 , 1 1/

1 ,

1

f
t t t t t t

f f
t t t t t t t t

f
r f t t t t t

r f t t t

E m r r E m

E r r r Cov r f b

r Var f b

E f

b

b

- -

- -

-

-

= + + =

- = +

= +

=

  (33) 

The last expression is based upon the assumption that the factors are priced with the same pricing 

kernel.  Notice that in this derivation 

  ( ) ( )
1

, , 1 1,r f t t t t t tCov r f V fb
-

- -
é ù= ë û   (34) 

which is exactly the formula for DCB as in (3).   This nxk matrix has the betas from regressions 

of asset returns on factor returns and these betas are conditional on past information. The themes 

of asset pricing come through completely in that the expected return on an asset is linear in beta 

and depends upon the risk premium embedded in the factor. 

 In Bali and Engle(2012) this empirical model is challenged to explain cross sectional 

returns in a one factor dynamic model.   It performs very well providing new evidence of the 

power of beta when it is estimated dynamically. Furthermore, they find strong evidence of 

hedging demand in the conditional ICAPM.   In Bali and Engle(2010) a similar model is 

examined from primarily a time series point of view and again evidence is found for hedging 

demands.  It is found that the most useful second factor is a volatility factor.   

 

VII.  Asset Pricing for Industry Portfolios 

 To illustrate the usefulness of the DCB in an asset pricing context, the 12 industry 

portfolios will be examined in the context of the Fama French 3 factor model.  Data are from 
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Ken French’s web site and cover the period 1963-2011 which is over 12,000 daily observations 

per return series.  For each industry the following model is estimated: 

  ( ), , ,
j f m f hml smb j j

t t j j m t t j hml t j smb t t tr r r r r r ha b b b e- = + - + + +   (35) 

The model is estimated under a variety of assumptions: 

 a) OLS with constant coefficients and robust standard errors 

 b) GJR-GARCH with constant coefficients 

 c) DCB with regression coefficients from (3) and covariance matrices estimated with 

DCC for the factors and bivariate DCC for the correlations between the dependent variable and 

each of the factors.  The GJR-GARCH model is used for each series. 

 d) NESTED DCB includes each factor both with a constant coefficient and the time 

varying coefficient. 

 Table 1 shows the test criteria for choosing between constant betas and time varying 

betas for each of the 12 industries.  The model selection criterion simply chooses the model with 

the highest value of the penalized likelihood.  In this case, seven industries are better fit with 

constant betas and five with time varying betas.  The Vuong test examines whether these 

differences are significant.  These are t-ratios and consequently at conventional levels, there are 

four industries with significant improvement using purely time varying betas and five with 

significantly better performance with constant betas.   

 When the nested model is applied there are t-statistics for each beta corresponding to pure 

time variation and pure fixed beta.   The t-statistics in Table 2 indicate that almost all the 

coefficients are significantly different from zero.  This means that the null hypothesis of zero 

fixed beta as well as the null hypothesis of no time variation are both rejected almost every time.  

There is clear evidence that time varying betas add to the explanatory power of this regression.  
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Interestingly, the coefficients on the time varying betas are typically less than one in this 

application indicating the advantage of some shrinkage. 

 From an asset pricing perspective, it is interesting to learn if the DCB model estimates are 

more consistent with asset pricing theory than fixed parameter estimates.  The multifactor pricing 

model predicts that the alpha of these regressions should be zero.  Table 3 presents t-statistics for 

each of these models from the full time series.   
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Table 1 

Testing for Constant Betas 

NAMEN SCHWARZ_DCB SCHWARZ_GARCH VUONGTEST 

buseq 1.617244 1.706647 6.308966 
chems 1.118553 1.131116 1.286670 
durbl 1.899514 1.893769 -0.316227 
enrgy 2.039066 2.076260 2.775102 
hlth 1.522259 1.433991 -5.669738 
manuf 0.605026 0.348881 -8.384324 
money 0.950317 0.875159 -3.513272 
nodur 0.686547 0.873242 14.30646 
other 0.781455 0.620909 -6.510039 
shops 1.191182 1.172615 -1.317494 
telcm 1.813173 1.787497 -2.081003 
utils 0.915316 1.011304 6.572574 

 

   

Table 2 

Tests of Nested DCB Model 

 
NAMEN FIX1 FIX2 FIX3 DCB1 DCB2 DCB3 

buseq 31.2 -11.1 -3.24 38.4 36.7 30.2
chems 23.3 -2.79 -10.6 25.9 30.0 10.9
durbl 32.0 16.7                   0.92 26.8 26.1 26.7
enrgy 32.7 6.59 -12.8 33.1 41.0 16.4
hlth 32.7 -21.7 -16.7 22.9 26.0 18.8
manuf 88.0 16.7 19.6 20.5 23.1 11.2
money 52.6 24.7 19.0 53.6 47.0 35.5
nodur 17.0 -2.12 -3.10 40.9 37.0 49.6
other 42.4 2.67 54.8 24.0 45.5 21.4
shops 20.8 -6.86 7.23 26.6 28.0 15.4
telcm 23.0 6.87 -16.5 26.0 27.8 12.1
utils 24.2 11.3 2.26 50.8 46.7 33.2
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Table 3 
 

Testing that Alpha is Zero in the Three Factor FF Model 
 

 
NAMEN TSTAT_DCB TSTAT_GARCH TSTAT_NEST TSTAT_OLS  

buseq -0.19 1.63 0.54 2.46  
chems -2.03 0.76 -0.72 0.87  
durbl -4.00 -2.70 -3.52 -2.52  
enrgy -1.33 2.16 0.24 0.85  
hlth 1.93 5.04 3.88 3.42  

manuf -3.19 -1.82 -2.66 -0.35  
money -2.51 -2.01 -2.86 -3.10  
nodur -0.65 4.15 0.38 3.74  
other -1.70 -2.60 -2.59 -2.75  
shops 0.32 2.08 0.66 1.76  
telcm -0.27 0.69 0.01 -0.14  
utils -4.13 -2.55 -3.86 -0.39  

 

 It is clear from this table that many of the alphas are significant for particular industries 

regardless of how the model is estimated.  From the NESTED DCB model, 5 industries have 

significantly negative alphas and one, health, has a significantly positive alpha.  This is slightly 

better than for the fixed parameter GARCH where there are 4 significantly negative and 4 

significantly positive alphas. 

 A few pictures reveal differences across sectors in the time series patterns of their betas 

over the last six years.  From these figures, it is clear that typically the beta on hml is the most 

variable.    Business Equipment has a negative beta on hml so trades like a growth stock.  Energy 

appears to be a value stock in 2006 and early 2007 but then switches to neutral.  Manufacturing 

loads very little on either hml or smb and Money begins neutral and then rises to be a strong 

value stock as the market declines during the financial crisis.  The market beta rises for the 

Money sector during the financial crisis but not nearly as much as it does in a one factor model.   
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Figure 1 

 

Figure 2 
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Figure 3 

 

Figure 4 
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VII. Global Systemic Risk with DCB 

 A central question in the analysis of systemic risk is the following:  “how much capital 

would a firm need to raise in order to carry on its business, if we have another financial crisis?”  

This is a question of systemic risk because the only source of capital in a financial crisis is likely 

to be the taxpayer.   The taxpayer will consider the consequences of bailing out this institution or 

letting it fail.  In a financial crisis, this institution will not be alone in requesting capital.  The 

bigger the total request the more severe the situation as the real economy cannot function without 

a viable financial sector.  Prudent regulators will foresee this event and require a sufficient 

cushion that the firms do not need to raise capital, or at least not as much, in a crisis.  Financial 

firms will also foresee this event however their costs are limited to their salaries and ownership 

positions and therefore do not include the costs imposed on the rest of society.  This systemic 

risk externality makes it clear that risks rationally taken by financial firms may be greater than 

are socially optimal.  This argument is developed in more detail in Acharya, Pedersen, Phillipon 

and Richardson(2010). 

 To measure the capital shortfall, Brownlees and Engle(2010) propose a time series 

approach which essentially estimates the beta of a firm equity on a broad market index.   

They estimate a bivariate volatility model between the return on the broad market and the equity 

return on the firm being analyzed.  This model allows volatilities and correlations to evolve and 

the process is used to simulate the probability of severely negative outcomes over an extended 

period.  Assuming that firms can only operate if capital is a non-trivial proportion of their total 

liabilities, we define SRISK as the capital that would be needed to achieve a market cap that is 

8% of the book value of assets in the event of another crisis. The input to SRISK is size, leverage 

and risk.  Each is important and a firm that wants to reduce its SRISK, can operate on any of 
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these characteristics.   A crisis is taken to be a 40% drop in global equity values over six months.   

SRISK  is computed for US firms weekly and published on the internet at 

http://vlab.stern.nyu.edu .  

 In extending this analysis to international markets and to multi-factor systemic risk 

assessments, the model is naturally generalized to a multivariate volatility model.  The data are 

considered to be the equity return on one firm, the equity return on a global index of equity 

returns, and perhaps other risk factors such as the equity return a regional index, mortgage 

returns, sovereign cds spreads, funding illiquidity measures, or other factors.  In addition, the use 

of daily data for assets that are priced in different time zones means that closing prices are not 

measured at the same time and consequently there may be some important effect from lagged 

factor returns. 

 To adapt the DCB model to this setting requires first adjusting for the timing of returns.  

In the figure below, closing prices in New York and in a foreign market are plotted on a time 

line.  It is clear that the foreign market will close before New York on day t-1 and again on day t.  

Consequently the company return will correlate with NY returns on the same day and also on the 

day before.  Thus it appears that there is a lagged effect of NY returns on foreign returns, but this 

is merely a consequence of non-synchronous trading.  

By using an ETF traded in NY which is index to a global equity portfolio the model can 

be expressed simply as  

  , , , 1
f i

i t t m t m t tR R R R ea b g -- = + + +   (36) 

To estimate this model we wish to allow the betas to vary over time and the DCB is a natural 

model.  Because of the lag however, it is important to reformulate equation (1) by allowing an 

additional lag. Otherwise the last dependent variable will be in the information set.  
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Assuming the means are zero for ease of notation 
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Thus the DCB equation becomes 

  , , , , , 1 ,i t i t m t i t m t i tR R R u       (38) 

From this expression it is clear that ( )2 0t tE u- = but this means that u potentially has a first order 

moving average term.  In fact, this must be the case if the returns of asset i measured in its own 

country time is to be a Martingale Difference.  From (38) ( ), , 1i t i tE R R - will be non-zero unless u 

has an MA(1) representation with a negative coefficient just sufficient to offset the 

autocorrelation induced by the non-synchronous data.   As in almost all asset return equations, 

there is heteroskedasticity so u must have a GARCH –MA(1) representation. 
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 The Nested DCB model is a natural approach to specifying this equation.  It has proven 

useful in the previous example and will be used here. 

     , 1 , 2 , 3 , 4 , 1i t i t m t i t m t tR R R u             (39) 

For each lag, there is both a fixed and a time varying component. 

 If global equity returns are serially independent, then an even easier expression is 

available since the covariance between these two factors is zero.  The expression for these 

coefficients can be written as  
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  (40) 

 which simplifies to 
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 The expected return of firm i when the market is in decline is called the Marginal 

Expected Shortfall or MES and is defined as 

   , 1 , ,i t t i t m tMES E R R c     (42) 

In the asynchronous trading context with DCB, the natural generalization is to consider the loss 

on two days after the global market declines on one day.  The answer is approximately the sum 

of beta and gamma from equation (38) times the Expected Shortfall of the global market. 
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approach makes clear that the regression coefficient should be based on the predicted 

covariances of endogenous and exogenous variables as well as potentially the predicted means.  

Estimation of the model is discussed in a likelihood context with some betas varying and others 

constant.  Testing the constancy of beta is a non-nested hypothesis and several approaches are 

suggested and implemented.  The most attractive appears to be artificial nesting which motivates 

the NESTED DCB model where both constant and time varying coefficients are introduced.   

The model is applied in two contexts, multi-factor asset pricing and systemic risk 

assessment.  The Fama French three factor model is applied to industry portfolios and the fixed 

beta assumption is tested.  There is strong evidence that the betas are time varying.  From plots it 

is apparent that the hml beta is the most volatile.  In the global systemic risk context a dynamic 

two factor model is estimated which allows foreign equities to respond to current as well as 

lagged global prices which is expected because of non-synchronous markets.  As a result, betas 

for global financial institutions can be followed over time.  The big European banks have had 

rising betas over the fall of 2011 as the sovereign debt crisis grows in strength.  This is an input 

to the NYU Stern Systemic Risk Ranking displayed on V-LAB which documents the serious 

nature of the current level of systemic risk. 
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