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Abstract

First (or second) price auctions with optimally chosen reserve prices maximize revenue among all
possible selling procedures when buyers are risk-neutral, ex-ante identical, and the seller commits to
throw away the object for sale if no one bids above the reserve price. However, sellers seldom remove
unsold items from the market: Real estate, used cars and art reappear in later auctions. This paper
derives the profit-maximizing selling procedure when the seller, after each unsuccessful attempt to sell
the item, updates her information about the buyers’ willingness to pay and proposes an optimal selling
procedure given the updated information. We show that first- (or second-) price auctions with optimally
chosen reserve prices are revenue-maximizing when buyers are ex-ante identical. When buyers’ valuations
are drawn from different distributions, the seller maximizes revenue by assigning the good to the buyer
with the highest virtual valuation if it is above a buyer-specific reserve price. Reserve prices drop over
time. How much the optimal reserve prices drop depends on how the seller discounts the future. Inability
to commit is costly for the seller. The revenue loss is highest for intermediate values of the discount factor
and when the number of buyers is small.

Keywords: mechanism design, optimal auctions, limited commitment.
JEL Classification Codes: C72, D44, D82.

∗I am grateful to the Editor and three excellent referees for detailed and thought-provoking feedback. I am indebted to
Masaki Aoyagi and Philip Reny for their guidance and support. I had inspiring discussions with Andreas Blume, Roberto
Burguet, Patrick Kehoe, Ellen McGrattan, Ichiro Obara, Ennio Stacchetti, Balázs Szentes and Charles Zheng. Many thanks
to the seminar participants at the University of Chicago, Northwestern University, University of Pennsylvania, Yale University
and the University of Western Ontario for numerous suggestions and for very illuminating questions. I would also like to thank
the Department of Management and Strategy, KGSM, Northwestern University and the Institute of Economic Analysis, UAB,
for their warm hospitality; the Andrew Mellon Fellowship; the Faculty of Arts and Sciences at the University of Pittsburgh; the
TMR Network Contract ERBFMRXCT980203; and the National Science Foundation, Award # 0451365 for financial support.

†Leonard Stern School of Business, Kaufman Management Center, 44 West 4th Street, KMC 7-64, New York, NY 10012,
USA, vskreta@gmail.com.

1



The classic works on auctions (Myerson (1981); Riley and Samuelson (1981)) characterize the revenue-

maximizing allocation mechanism for a risk-neutral seller who owns one object and faces a fixed number of

buyers whose valuations are private information. An important assumption in these papers is that the seller

commits to withdraw the item from the market in the event that it is not sold. This commitment assumption

is far-fetched and often not met in reality. Christie’s in Chicago auctions bottles of wine that failed to sell in

earlier auctions. The U.S. government re-auctions properties that fail to sell: Lumber tracts, oil tracts, and

real estate are put up for a new auction if no bidder bids above the reserve price.1 As Porter (1995) reports,

46.8 percent of the oil and gas tracts with rejected high bids were put up for a new auction. In March 2010

the FCC announced that in 2011, it would re-auction part of the 700 MHz wireless spectrum that failed to

sell in 2009. The key issue is not only that commitment is often unrealistic, but, more importantly, that an

auction that is desirable with commitment may lead to poor outcomes if there is limited commitment.

The durable-good monopolist literature was first to study the effects of a seller’s inability to commit to

a given institution if it fails to realize all gains of trade (Bulow (1982); Gul et al. (1986); Stokey (1981).

McAfee and Vincent (1997) study an auction setup where the seller behaves sequentially rationaly. These

papers restrict the procedures the seller can employ (the seller chooses prices in the durable-goods papers

and reservation prices in McAfee and Vincent (1997))2 and show that the seller’s inability to commit erodes

monopoly profits. Here, we maintain the assumption that the seller behaves sequentially rationally, but we

allow the seller to choose any selling procedure (mechanism). Our goal is to determine which procedure

maximizes revenue and to investigate the extent to which allowing for general mechanisms enables the seller

to mitigate revenue loss due to the lack of commitment.

We consider the following scenario: There is a risk-neutral seller who owns a single object and faces I

risk-neutral buyers. Valuations are private, independently distributed across buyers, and constant over time.

The buyers and the seller interact for two periods and discount the future with the same discount factor.

At the beginning of each period, the seller proposes a mechanism to sell the object. If the object is sold,

the game ends; otherwise, the seller returns in the next period and offers a new mechanism. The game ends

after two periods even if the object remains unsold.3 We show that first- (or second-) price auctions with

optimally chosen reserve prices are revenue-maximizing when buyers are ex-ante identical. When buyers’

valuations are drawn from different distributions, the seller maximizes revenue by assigning the good to the

buyer with the highest virtual valuation if it is above a buyer-specific reserve price. Reserve prices drop

over time. How much the optimal reserve prices drop depends on the discount factor. Inability to commit is

costly for the seller. The revenue loss is highest for intermediate values of the discount factor and when the

1These examples are also mentioned in McAfee and Vincent (1997).
2Other papers that study reserve price dynamics without commitment are Burguet and Sákovics (1996), which examines

cases of costly bidding, and Caillaud and Mezzetti (2004), which looks at sequential auctions of many identical units.
3The analysis of the case of T = 2 contains the most essential insights and can be carried out with less-burdensome notation.

Section 7 presents an overview of the analysis of the case where 2 < T <∞.
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number of buyers is small.

In the U.S. the FDIC runs a large number of auctions of distressed assets (real estate, in particular).

Properties are auctioned off with reserve prices. In a number of cases, the initial reserve price is too high

and the property is sold later with a lower reserve.4 In both the U.S. and in Europe, fiscal crises have lead

to a surge in distressed assets for sale.5 The amounts that financial institutions recover from these sales

is very important for their future solvency and the health of the financial sector. Given that unsold assets

are placed back on the market, there is a lack of commitment to the initial reserve price. Our analysis

establishes that auctions with reserve prices are revenue-maximizing and that revenue loss due to the lack of

commitment is small when the seller is either very patient or very impatient and when the number of buyers

is relatively large. This last finding says that when demand exceeds supply significantly, the impact of lack

of commitment is very modest, but it also stresses that the auction design becomes more important in times

when supply surges relative to demand, as happens during a crisis.

Methodologically, this is the first paper that solves for the optimal mechanism under limited commitment

in a multi-agent environment setup allowing for a continuum of valuations, and for the possibility that

the seller controls what agents observe–the transparency of mechanisms.6 Mechanism design under non-

commitment is notoriously difficult even in single-agent environments because, as the literature on the

ratchet effect (Freixas et al., 1985; Laffont and Tirole, 1988) first observed, one cannot use the revelation

principle,7 which asserts that the choice of mechanism(s) is final. This implies that the designer can never

change the rules in the future, even though it might become obvious that better ones exist. When this

commitment assumption fails, there is no generally applicable canonical class of mechanisms.

Kumar (1985), who formulated what he refers to as the “noisy revelation principle,” provides a first

step towards providing a canonical class of mechanisms when the principal behaves sequentially rationally.8

Despite this result, finding the optimal mechanism is not simple, as showing what posteriors are optimal is

challenging. Bester and Strausz (2001) establish that for single-agent and finite-type models, it is without

loss of generality to restrict attention to mechanisms with message spaces that have the same cardinality

as the type space, and in which the agent reports his true type with strictly positive probability. However,

Bester and Strausz (2000) show that this result fails in a two-agent example in which only one agent has

4See http://www.fdic.gov/buying/historical/index.html and McAfee et al. (2002), who thoroughly document this phe-
nomenon.

5See Stovall and Tor (2011) or “Troubled European Assets Come to Market,” in The Wall Street Journal, Feb. 5 2013.
6Bester and Strausz (2007) allow a mediator to execute the principal’s mechanism and then release a noisy signal of the

agent’s choice. In other words, the mediator in Bester and Strausz (2007) controls what the principal observes. In our paper,
the transparency of mechanisms controls what agents observe. This dimension of transparency is not relevant in Bester and
Strausz (2007)’s model because there is only one agent.

7See Laffont and Tirole (1988), Salanie (1997), or, for a more recent treatment, Skreta (2006b).
8Kumar’s principle states that without any loss, we can restrict attention to mechanisms where the agents report a probability

distribution about their valuations. Kumar (1985)’s result captures the essential difference between mechanism design with
and without commitment-namely, that without commitment, in all but the first period, the principal’s posteriors beliefs are
endogenous and depend on her previous mechanism choice.
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private information.9 Again, finding the optimal set of types that each type of the agent will be randomizing

over (and with what probabilities) is not trivial.

This paper employs the approach developed in Skreta (2006b), which relies on characterizing equilibrium

outcomes. Section 2 describes necessary conditions for an outcome to be PBE − implementable, and using

these conditions as constraints, in Section 3 we formulate the seller’s search for the revenue-maximizing

sequentially rational auctions as a constraint maximization problem–Program NC. We solve Program NC in

Section 4 and show that we can find an assessment that is a PBE and it implements its solution in Subsection

4.3. These are the two main steps of the proof of the main result Theorem 1. The value of commitment is

discussed in Section 5, which also illustrates our characterization in a simple example.

To solve Program NC we analyze how the second-period optimal mechanism, which is a vector of func-

tions, varies as a function of arbitrarily complex posteriors.10 Lemma 1 formalizes the result that in the

absence of commitment, eliciting information sequentially is costly, because the buyers at t = 1 anticipate

that the seller will be exploiting this information at t = 2 and, hence, require that they be rewarded for

it in advance. Based on Lemma 1, Proposition 2 shows that the best action for the seller is to pool all

valuations below a cutoff until the second period of the game, when she has commitment power, since trying

to separate them at t = 1 is too costly. Lemma 2 establishes that, at an optimum, valuations below the cutoff

do not get the good and do not pay anything at t = 1. Lemma 3 shows that this cutoff is higher than the

revenue-maximizing reserve price with commitment (the valuation where a buyer’s virtual valuation is equal

to the seller’s value). Then, a solution of Program NC separates valuations in two groups: the-no-trade-at-

t = 1-region, where all valuations below a cutoff are pooled together with the lowest possible valuation and

never get the good, nor pay anything at t = 1, and the-trade-at t = 1-region, where the seller assigns the

object to a buyer with the highest virtual valuation at t = 1.

Apart from the challenge arising from the lack of a “revelation principle” result that is common to single-

and multi-agent environments, there are two conceptual issues specific to multi-agent environments: The first

is related to the fact that what buyers (or agents, more generally) observe at each stage–the transparency of

mechanisms–critically affects their beliefs about each other, which may, in turn, affect their future behavior.

For example, competing in a sealed bid, versus an open outcry, auction has different implications about

what buyers learn about each other. The second difference is that with multiple agents, the mechanism

designer may endogenously become privately informed over time.11 This is possible because the designer

(the seller) observes more than the agents (the buyers) observe about the behavior of their competitors;

think, for instance, of sealed-bid auctions. These two issues do not arise when there is a single buyer and

9Evans and Reiche (2008) show that the revelation principle does extend in the Bester and Strausz (2000) example if one
allows ex-ante payments, but it fails even with ex-ante payments if more than one agent has private information.

10This problem is much more challenging compared to the one in Skreta (2006b). In that paper, the optimal t = 2-mechanism
is a posted price, and the analysis of how the t = 2 optimal price varies with posteriors is much simpler.

11For a brief account of the literature on informed-principal problems, see Skreta (2011).
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compound the difficulties arising from the lack of an appropriate “revelation principle.”

In Section 6 we address the issue of transparency by introducing an alternative definition of mechanisms

that not only determines who gets the object and the payments as a function of buyers’ behavior, but

also determines what buyers know after the mechanism is played. Formally, this is done by modeling first-

period mechanisms as game forms endowed with an information-disclosure policy. Then, by applying the

information-disclosure irrelevance result from Skreta (2011), we show that the set of sequentially optimal

mechanisms at t = 2 is independent from the disclosure policy used at t = 1. We conclude that without any

loss, we can model period-one mechanisms as game forms and assume that all buyers observe all actions

chosen, which, in turn, implies that the seller does not become privately informed.

The ideas and techniques developed in the present paper have a large set of potential applications. One

area in which the designer (in this case, the buyer) chooses mechanisms sequentially is that of government

procurement and, in particular, defense procurement:12 There are typically multiple stages until the final

winner is determined; in each of these stages, sellers submit bids, and based on the bids, a subset of them

advances to the next stage. If a bidder signals too much about his private information early on, his rents

may be reduced at a later stage. Also, how bidders compete at each stage may depend on the information

they obtain about their competitors in earlier stages, so the issue of transparency arises here, too.

Our techniques could be applicable in situations where other issues relating to transparency–privacy,13

for example, are important.14 Nowadays, keeping track of buyers has become easy and inexpensive, and

the old theories that had firms or sellers treating buyers as anonymous are enhanced by ones in which the

sellers not only keep track of the buyers with whom they are dealing, but also design their pricing schemes

(coupons, loyalty programs) based on the information that they have obtained thus far.15 When sellers track

their interactions with various buyers, the issues of ratcheting and transparency are central.

Other related literature: “No sale” is not the only form of inefficiency of the classical optimal auction.

Sometimes, it allocates the object to a buyer other than the one with the highest valuation, thus leaving resale

opportunities open for the new owner. Zheng (2002) studies optimal auctions allowing for resale. With an

impressive construction, that paper derives conditions under which the optimal allocation of Myerson (1981)

can also be attained by a seller who cannot prevent resale. In Zheng (2002), there is no discounting. Here,

we look at the complementary problem of characterizing mechanisms for a seller who cannot prevent herself

from re-auctioning the good, and we allow for discounting.

12Bower and Dertouzos (1993) outline some of the commitment issues that arise in defense procurement.
13The pioneering papers on the economics of privacy are Hirshleifer (1980); Posner (1981); Stigler (1980). For a recent survey,

see Hui and Png (2006). For a paper contributing to the policy debate on privacy issues, see Varian (1996).
14Some recent work on mechanism design that addresses these issues, marries mechanism design theory with cryptography.

Two recent contributions are Izmalkov et al. (2005, 2008).
15See, for instance, Acquisti and Varian (2005) and Fudenberg and Villas-Boas (2007) for an excellent and comprehensive

survey of the work in this area.
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Other works assume sellers that have even less commitment than the seller in this paper; in particular, the

seller cannot even commit to carry out the rules of the current auction. In McAdams and Schwarz (2007), the

seller, after observing the bids, cannot commit not to ask for another rounds of bids. The current paper, in

contrast, assumes that the seller chooses revenue-maximizing procedures and commits at each stage to carry

out the mechanism for that stage. Vartiainen (2011), too, examines a symmetric model in which buyers’

types are finite and there is no discounting.16 He allows both forms of no commitment (no commitment to

current or to future mechanisms), but he assumes that all actions are publicly observable, and asks what

mechanism leads to a sustainable outcome given complete lack of commitment. He shows that, essentially,

only the English auction achieves sustainability. Again, this paper is different from Vartiainen (2011) in that

our interest is in designing optimal mechanisms and there is discounting. We also allow for a continuum of

valuations and for non-transparent mechanisms.

1 The model

A risk-neutral seller, indexed by S, owns a unit of an indivisible object, and faces I risk-neutral buyers.

We use the female pronoun for the seller and male pronoun for the buyers. The set of all players–the buyers

and the seller–is denoted by Ī = {S, 1, .., I}. The seller’s valuation is denoted by vS ≡ 0 and is common

knowledge, whereas that of buyer i, is denoted by vi, is private information and is distributed on Vi = [0, bi]

with 0 ≤ bi <∞ according to Fi, which has a continuous and strictly positive density.17 Buyers’ valuations

are distributed independently of one another and remain constant over time. We use F (v) = ×i∈IFi(vi),

where v ∈ V = ×i∈IVi and F−i(v−i) = ×j∈I
j 6=i

Fj(vj). Time is discrete and finite, and the game lasts T ≥ 2

periods. Everyone discounts the future with the same discount factor δ ∈ [0, 1]. All elements of the game,

apart from the realization of the buyers’ valuations, are common knowledge. The seller’s goal is to maximize

expected discounted revenue, whereas buyers aim to maximize expected surplus.

Players’ Choices: In each period, buyer i chooses an action from a measurable set Ai. We assume without

any loss that Ai contains all valuations Vi ⊂ Ai, but it could certainly differ from Vi. Let A = ×i∈IAi. The

seller chooses a mapping g : A → [0, 1]Ī × RĪ , which specifies for each vector of actions a, the probability

that each buyer i obtains the good at t, qti(a), and his expected payment at t, zti(a) ∈ R. Because the

seller collects buyers’ payments and keeps the good if no buyer gets it, we have ztS(a) = −Σi∈Iz
t
i(a) and

qtS(a) = 1− Σi∈Iq
t
i(a). A mechanism M = (A, g) consists of the set of actions and the mapping g.18

16In contrast to the problem in Vartiainen (2011), without discounting, our problem is trivial: In that case, the seller would
wait until the last period of the game and offer the mechanism described in Myerson (1981), obtaining the highest possible
revenue given the presence of asymmetric information.

17The fact that we take each buyer’s lowest valuation to be zero is without loss. Nothing in the analysis hinges on that.
18Each mechanism has the same set of actions for buyer i Ai. This is without loss of generality. To see this, consider a

case where the seller offers mechanisms where at t = 1 the action set is A1
i and at t = 2 it is A2

i . This can be equivelantly
represented by the seller offering a mechanism in both periods with action set Ai = A1

i ∪ A2
i , and by having the mapping g1

specify for all vectors of actions where ai ∈ A2
i \A1

i the outcome q1
i (ai, a−i) = q1

i (âi, a−i) and z1
i (ai, a−i) = z1

i (âi, a−i), for
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Timing: The timing of the game is as follows: At the beginning of period t = 1, nature determines the

buyers’ valuations. Subsequently, the seller chooses a mapping g, and buyers observe g and choose their

actions. If there is trade, the game ends; otherwise, we move to t = 2. At t = 2, the seller chooses a mapping

g, buyers observe g and choose their actions, and so forth until we reach t = T . The game ends at t = T,

irrespective of whether or not trade takes place.

Histories and Strategies: What players observe determines their beliefs about the parameters that are

not commonly known. A public history at t consists of {g(t−1), χ(t−1), a(t−1)}, where a(t−1) = a1, ..., at−1

consists of all vectors of actions buyers choose up to t; g(t−1) consists of all mappings the seller chooses up to

t, and χ(t−1) keeps track of whether trade has taken place up to t.19 The seller’s set of information sets, IS ,

coincides with the set of public histories. Her strategy σS , specifies for each element in IS a mapping g. Now,

in addition to the public history, each buyer knows the realization of his own valuation, so an information

set of buyer i at the beginning of period t, after the seller chooses gt, is ιti = {vi, g(t), χ(t−1), a(t−1)}. A

behavioral strategy of buyer i, σi, consists of a mapping from his information sets, denoted by Ii, to a

probability distribution over actions. We require strategies and beliefs to be a perfect Bayesian equilibrium

(PBE).

In our formulation, the seller observes the vector of actions buyers choose. What the seller observes

determines, in some sense, her commitment power. If the seller does not observe anything, the “commitment

solution” is sequentially rational. Similarly, if the seller could hire an intermediary to run the mechanism

without releasing any information to her, we are again back to the commitment case studied by Myerson

(1981). We assume that the seller does not have access to such intermediaries because we are interested in

finding the revenue-maximizing mechanisms when the seller lacks commitment, in the sense that she cannot

prevent herself from observing what happens in the current auction–the buyers actions–and from using this

information to design future auctions. We also assume that all buyers observe the entire vector of actions

chosen at period t. In Section 6, we establish that this is without loss, in the sense that our characterization

remains unchanged even if the seller can choose what each buyer observes–that is, the seller can control the

transparency of mechanisms.

Outcomes: The outcome of a strategy profile σ (not necessarily an equilibrium) is an allocation rule

and a payment rule. The allocation rule pi(σ)(v), i ∈ I specifies for all i ∈ I the expected, discounted

some âi ∈ A1
i . The mapping g2 can be amended analogously. Doing so does not add any new outcomes at period 1. Moreover,

it does not alter the sequentially rational allocations at t = 2, since (4.3) implies that, in equilibrium, actions associated with
identical t = 1-menus must be followed by identical t = 2 allocations and the proof of Proposition 2 shows that this t = 2
allocation is identical to the one that would be sequentially rational if we would merge all actions with identical t = 1-menus
into one. Also, the formulation allows the action set to be larger than the type space. If the seller wants to use a mechanism
with less actions then, for all “superfluous” actions ãi and all a−i, he can assign the outcome qti(ai, a−i) = qti(ãi, a−i) and
zti (ai, a−i) = zti (ãi, a−i), corresponding to some action ai in the restricted set of actions that the seller wants to employ.

19χt =

{
1 if trade takes place at t

0 otherwise .
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probability that player i ends up with the object, and xi(σ)(v), is the expected, discounted payment that

player i will incur given σ, when the realized vector of buyers’ valuations is v. These expectations are

taken from the ex-ante point of view. Analogously, we can define the outcomes of continuation games:

Specifically, fix a strategy profile σ, and suppose that the seller at t = 1 employs a mechanism that induces

the menu {qi(a), zi(a); i ∈ Ī}a∈A.20 Let p2
i (σ)(v, a) and x2

i (σ)(v, a) denote the allocation and payment rule

arising at the continuation game that starts at t = 2, after the vector of actions a was chosen at t = 1,

conditional on σ where the realized vector of buyers’ valuations is v. To simplify the notation, we often omit

σ, so, for example, we write p2
i (v, a) instead of p2

i (σ)(v, a). Then, let pi(v, a) ≡ qi(a) + qS(a)δp2
i (v, a) and

xi(v, a) ≡ zi(a)+qS(a)δx2
i (v, a) denote, respectively, the probability and payment of buyer i when the vector

of actions chosen at t = 1 is a, and the realized vector of valuations is v.

Fix a strategy profile σ and let mi (ai|.) : [0, bi] → [0, 1] be a measurable mapping of vi denoting the

probability that buyer i is choosing action ai at t = 1 when his type is vi at the strategy profile σ, and let

m(a|v) = ×i∈Imi (ai|vi) (1.1)

denote the probability that vector a is chosen at t = 1 when the buyers’ valuations are v. Then, the allocation

and payment rules implemented by a strategy profile σ are given by:

pi(v) =

∫
a∈A

m(a|v)
[
qi(a) + qS(a)δp2

i (v, a)
]
da and xi(v) =

∫
a∈A

m(a|v)
[
zi(a) + qS(a)δx2

i (v, a)
]

(v)da,

(1.2)

where m(a|v) is defined in (1.1). We also let Pi(vi) ≡ Ev−i
[pi(v)] , Xi(vi) ≡ Ev−i

[xi(v)] (respectively,

P 2
i (vi, ai) ≡ Ev−i,a−i

[
p2
i (v, a) |vi, ai

]
and X2

i (vi, ai) ≡ Ev−i,a−i

[
x2
i (v, a) |vi, ai

]
) denote the expectations of

pi and xi (respectively, of p2
i and x2

i ) from i’s perspective.

Beliefs: Let Vi(ai) denote the set that contains all valuations vi’s for which mi (ai|.) > 0; its convex hull is

denoted by V̄i(ai) ≡ [vi(ai), v̄i(ai)]. If
∫
Vi(ai)

mi (ai|ti) dFi(ti) > 0, the seller’s posterior about i’s valuation

conditional on ai is

fi(vi |ai ) =

{
mi(ai|vi))fi(vi)∫

Vi(ai)
mi(ai|ti)dFi(ti)

, for vi ∈ Vi(ai)
0 otherwise

. (1.3)

Let, also, V̄−i(a−i) = ×j∈I
j 6=i

V̄i(ai), V̄ (a) = ×i∈I V̄i(ai). Because buyers behave non-cooperatively, they choose

their actions at t = 1 independently from one another. Then, upon observing the vector of actions a, with∫
V̄ (a)

m (a|t) f(t)dt > 0, the seller’s posterior about the buyers’ valuations is

f(v |a ) ≡
{
×i∈Ifi(vi |ai ), for v ∈ V (a)

0 otherwise . (1.4)

These beliefs matter when the seller keeps the object at t = 1–that is, when qS (a) > 0. This is because

at a PBE, the seller’s choice must be a best response at each information set conditional on beliefs, which
20To simplify on notation, we omit the superscript for time by writing {qi(a), zi(a); i ∈ Ī}a∈A instead of {qti(a), zti (a); i ∈

Ī}a∈A.
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must be consistent with Bayes’ rule. At the same time, the t = 1 and the t = 2 choices of the seller together

determine the feasible m(a|v) = ×i∈Imi (ai|vi). This is because for buyer i to be choosing action ai with

probability less than one–that is, mi (ai|vi) < 1–it must be the case that i at valuation vi is indifferent

between action ai and some other action âi. These interdependencies are at the heart of the intricacies of

the problem of characterizing revenue-maximizing auctions without commitment.

Goal and solution approach: The goal is to identify a PBE where the seller’s expected revenue is

maximal. As discussed in the introduction, the standard revelation principle is inapplicable given that the

seller behaves sequentially rationally. We sidestep the difficulties that arise from the lack of an applicable

“revelation principle” by examining equilibrium outcomes rather than strategies: The seller seeks an alloca-

tion rule and a payment rule that maximize expected discounted revenue among all allocation and payment

rules implemented by a PBE of the game. In other words, the seller seeks:

max
p,x

∫
V

Σi∈Ixi(v)dF (v) (1.5)

subject to p, x being PBE implementable.

Our first goal is to translate the requirement that p and x be PBE-implementable into properties of p and

x. We call the PBE-implementable allocation and payment rules feasible.

In the remainder of the paper, we analyze the solution of the problem when T = 2, and in Section 7, we

discuss how the characterization extends, by induction, to longer-horizon games.

2 PBE-implementable allocation and payment rules

In this section, we derive necessary conditions for allocation and payment rules to be PBE-implementable.

Resource Constraints: The allocation rule p has to satisfy resource constraints, (RES): 0 ≤ pi(v) and

Σi∈Ipi(v) ≤ 1 and for all v ∈ ×i∈IV and i ∈ I.

Participation Constraints: Following Myerson (1981), we assume that the seller employs mecha-

nisms that guarantee that buyers’ expected discounted payoff is higher than their outside options, which we

normalize to zero. We call these participation constraints:

PCi : Ui(p, x, vi) ≡ Pi(vi)vi −Xi(vi) ≥ 0, for all i ∈ I, vi ∈ Vi.

Best-Response Constraints: At a PBE, buyer i’s and the seller’s strategy must be best responses at

each information set. When buyer i with valuation vi chooses some action ai at t = 1, and play proceeds

according to σ, his expected payoff is given by Uaii (vi) ≡ P aii (vi)vi −Xai
i (vi), where

P aii (vi) ≡
∫
a−i∈A−i

∫
V̄−i(a−i)

[
qi(a) + qS(a)δp2

i (v, a)
]
m(a−i|v−i)f−i(v−i)dv−ida−i (2.1)
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and Xai
i (vi) ≡

∫
a−i∈A−i

∫
V̄−i(a−i)

[
zi(a) + qS(a)δx2

i (v, a)
]
m(a−i|v−i)f−i(v−i)dv−ida−i.21 For valuations

that are choosing both ai and âi with positive probability–in other words, that are mixing between these two

actions, best-response constraints imply that they must be indifferent: That is, Uaii (vi) = U âii (vi), which

implies that a.e. it must be the case that P aii (vi) = P âii (vi) and Xai
i (vi) = X âi

i (vi). Also, best-response

constraints imply that there is no type of buyer i that can strictly benefit by mimicking another type of i.

We call these the anti-mimic (or incentive) constraints) for i :

ICi: Pi(vi)vi −Xi(vi) ≥ Pi(v′i)vi −Xi(v
′
i), for all i ∈ I, vi, v′i ∈ Vi.

Sequentially-Rationality Constraints: At a PBE, the seller’s strategy must be a best response at

each information set. In other words, whenever trade does not take place at t = 1−that is, for all vectors

a ∈ A, such that qS(a) > 0–the continuation allocation and payment rule p2, x2 must be a best response

given (1.4). Because all players observe the vector of actions chosen at t = 1, posterior beliefs are common

knowledge. Then, at each continuation game at the beginning of the last period of the game T = 2, the

seller’s problem is equivalent to finding the revenue-maximizing auction in a static setup, with the only

difference that beliefs are endogenous and depend on the vector of actions that was chosen at t = 1. Hence,

we can appeal to the revelation principle as usual. Myerson (1981) solves this problem assuming that all

buyers’ distributions of valuations have strictly positive densities. In general, distributions of valuations may

fail to have densities or fail to have strictly positive densities. In such cases, we cannot straightforwardly

express the buyers’ virtual valuations. We can, however, use the method of Skreta (2007) or of Monteiro

and Svaiter (2010), or we can appropriately approximate the problem as we explain in Appendix E, so as to

get meaningful expressions of virtual valuations.

Let Ji(vi |ai ) denote buyer i’s posterior virtual valuation at t = 2 when he chooses ai at t = 1.22 Also,

let U2(a)
i (p2, x2, vi (ai)) denote buyer i’s expected payoff at t = 2 after the vector of actions a is chosen at

t = 1, the seller employs mechanism p2, x2, and i’s valuation is at its lowest possible level given ai, namely

vi (ai). From Myerson (1981)’s analysis, it follows that the seller’s problem at the continuation game that

starts at t = 2 after a vector of actions a with qS (a) > 0 was chosen at t = 1, is

max
p2(a),x2(a)

∫
V̄ (a)

Σi∈Ip
2
i (v, a)Ji(vi |ai )f(v|a)dv − Σi∈IU

2(a)
i (p2, x2, vi (ai)), (2.2)

subject to: (i) P 2
i (vi, a) increasing in vi on V̄i (ai) ; (ii) 0 ≤ p2

i (v, a) ≤ 1, (iii) U2(a)
i (p2, x2, vi (ai)) ≥ 0, and

(iv) Σi∈Ip
2
i (v, a) ≤ 1 for all v ∈ V̄ (a) .

Myerson (1981) shows that a revenue-maximizing mechanism assigns the object with probability one to

21We can, at the cost of additional notation, define Paii and Xai
i along sequences of actions off-the-path, (for example, when

either a buyer deviated at t = 2 by misreporting in a mechanism at t = 2, or the seller proposed a mechanism not specified by
his equilibrium strategy). We decide not to do so because, for our solution approach, it suffices to investigate properties of Paii
and Xai

i along the equilibrium path.
22If the posterior is well-behaved, then it is written as usual: Ji (vi|ai) = vi − (1−Fi(vi|ai))

fi(vi|ai)
.
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the buyer (or in the case of ties, to one of the buyers) with maximal posterior virtual valuation,23 provided

that their reported valuation is above a buyer-specific reserve price. The reserve price at t = 2, r2
i (ai),

depends on i’s action at t = 1. Skreta (2006a) establishes that the optimal reserve price is given by24

r2
i (ai) ≡ inf

{
vi ∈ V̄i (ai) s.t.

∫ ṽ

v

[
sfi (s|ai)−

∫ bi

s

fi(t|ai)dt

]
ds ≥ 0, for all ṽ ∈ [v, v̄i(ai)]

}
. (2.3)

Note that (2.3) implies that r2
i (ai) ≥ vi (ai)–the smallest valuation on the support of Fi (.|ai)) .

Let vj = vj(vi, a), denote j’s valuation that satisfies

Q (vi, vj |a) ≡ Ji (vi|ai)− Jj (vj |aj) = 0. (2.4)

If vj < vj(vi, a), i’s posterior virtual valuation is higher than j’s, and the reverse if vj > vj(vi, a). Let

v−i(vi, ai, a−i), be the vector consisting of all vj(vi, a) with j different from i. An optimal allocation at t = 2

p
2(a)
i is described fully by boundaries r2

i (ai) and v−i(vi, ai, a−i).

p2
i (v, a) = 1 if vi ≥ r2

i (ai) and v−i ≤ v−i(vi, ai, a−i), (2.5)

p2
i (v, a) = 0 otherwise, and

x2
i (v, a) = p2

i (v, a)vi −
∫ vi

0

p2
i (ti, v−i, a)dti.

In what follows, we call the requirement that p2 and x2 satisfy (2.5) sequential-rationality constraints, and

we denote them by SRC (a) , since the vector of actions a summarizes the seller’s relevant information at

t = 2.

3 Formulating the seller’s problem

We start by expressing the seller’s revenue as a function of the allocation rule. Lemma 2 in Myerson

(1981), establishes that the constraints ICi, PCi and RES are equivalent to: Pi(vi) is increasing in vi;

Ui(p, x, vi) =
∫ vi

0
Pi(ti)dti + Ui(p, x, 0); Ui(p, x, 0) ≥ 0; and, finally, Σi∈Ipi(v) ≤ 1, pi(v) ≥ 0 for all i and

v ∈ V. Following Myerson (1981), the seller’s expected revenue can be expressed as
∫
V

Σi∈Ixi(v)dF (v) =∫
V

Σi∈Ipi (vi) Ji(vi)f(v)dv − Σi∈IUi(p, x, 0), where Ji(vi) ≡ vi − (1−Fi(vi))
fi(vi)

denotes buyer i’s (prior) virtual

valuation. As is standard, we assume that Ji(vi) is strictly increasing in vi for all i.25

We now formulate a constrained maximization problem, which we call Program NC:

max
{mi,qi(a),i∈Ī}a∈A

∫
V

Σi∈Ipi (v) Ji(vi)f(v)dv − Σi∈IUi(p, x, 0),

23If Ji(vi |ai ) = vi − (1−Fi(vi|ai))
fi(vi|ai)

is increasing for all vi ∈ V̄i (ai) and i ∈ I, the problem is regular, meaning that the
point-wise optimum is incentive-compatible. If not, we replace them with their “ironed” versions according to a procedure
described in Myerson (1981), Skreta (2007) or Monteiro and Svaiter (2010). In what follows, in order to avoid extra notation,
when we write Ji, we will mean its ironed version.

24This expression shows how to obtain the optimal reserve price when i’s distribution of valuations does not necessarily have
a positive density, nor satisfies the monotone hazard rate property.

25This assumption allows us to avoid the complications that result from not having well-defined virtual valuations or from
having to iron them and to focus on the ones that arise from the sequential-rationality constraints.
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where pi (v) =
∫
a∈Am(a|v)

[
qi(a) + qS(a)δp2

i (v, a)
]
da and subject to:

For all ai ∈ Ai, mi (ai|.) : [0, bi]→ [0, 1] measurable and m(a|v) = Πi∈Imi (ai|vi)

ICi : Pi(vi) increasing in vi, for all vi ∈ Vi and i ∈ I;

ICi (ai) : P aii (vi) = P âii (vi) for vi ∈ Vi(ai) ∩ Vi(âi) a.e.;

PCi : Ui(p, x, 0) ≥ 0, for all i;

RES: for all v ∈ V, 0 ≤ pi(v) ≤ 1, Σi∈Ipi(v) ≤ 1, and i ∈ I

and
∑Ī
i=S qi(a) = 1, qi(a) ≥ 0, for all i ∈ Ī;

SRC(a): for all a s.t. qS(a) > 0 and
∫
V
m(a|v)f(v)dv > 0, p2, x2 are given by (2.5) ;

Beliefs: posterior beliefs are given by (1.4) .

To solve the problem, we have to optimally specify the available t = 1 menus {qi(a), zi(a); i ∈ Ī}a∈A; and the

probabilities that buyers choose actions; that is, the mi’s, which, in turn, determine the t = 2 sequentially

rational menus through (2.5).

The following Proposition relates the value of Program NC with what the seller can achieve at a PBE:

Proposition 1. The value of Program NC is an upper bound for what the seller can achieve at a PBE.

Proof. First, recall that the revelation principle applies at t = 2 since it is the last period of the game. Hence,

the conditions we impose on each p2, x2 are necessary and sufficient, so they characterize the entire set of

feasible continuation allocation and payment rules. However, the remaining conditions are only necessary,

implying that the feasible set of Program 1 is a superset of the set of PBE−implementable allocation and

payment rules.

In what follows, we obtain a solution of Program NC, and construct an assessment that is a PBE and

that implements it. Hence, the upper bound is, indeed, achieved.

4 Revenue-maximizing sequentially rational auctions

The main result of this paper is the characterization of the revenue-maximizing sequentially rational

auctions. We first state the result and its implications, and then establish it.

Theorem 1. In revenue-maximizing sequentially rational auctions, the seller allocates at t = 1 the good to

the buyer with the highest virtual valuation if it is above a buyer-specific reserve price. If no trade takes place

at t = 1, at t = 2, the seller allocates the object to the buyer with the highest posterior virtual valuation if it

is above the seller’s value.

An interesting and practically relevant implication of Theorem 1 is the following Corollary:

12



Corollary 1. When buyers are ex-ante symmetric, the symmetric equilibrium of the game in which the seller

runs a second-price (SPA) or a first-price (FPA) auction in each period with optimally chosen reserve prices,

generates maximal revenue for the seller.

Proof. At a sequential SPA with reserve prices, conditional on submitting a bid above the reserve price, it

is a weakly dominant strategy for a buyer to submit a bid equal to his true valuation. Then, at a symmetric

equilibrium of an SPA with a reserve price, the object is assigned to the buyer with the highest valuation–

who, due to symmetry, is the buyer with the highest virtual valuation–among all buyers that submit a bid

above the reserve price that the seller has posted at t = 1. If no one bids above the reservation price at t = 1,

we go to t = 2 . Given ex-ante symmetric buyers, at a symmetric equilibrium, the buyers are symmetric

at t = 2, as well. At t = 2, an SPA assigns the object to the buyer with the highest valuation–who, due

to symmetry, is also the buyer with the highest posterior virtual valuation–if his valuation is above the

reservation price posted at t = 2.26 Similar arguments hold for first-price auctions, FPA.

We establish Theorem 1 in Subsections 4.2-4.4 as follows: We solve Program NC and then find an

assessment that is a PBE of our game and implements this solution. Then, Proposition 1 allows us to

conclude that this is the highest revenue that the seller can expect at a PBE.

4.1 Benchmark: The solution ignoring sequential-rationality constraints

To better understand the solution of Program NC, it is helpful to consider the solution of a relaxed

program–called Program C–which ignores the sequential-rationality constraints. Myerson (1981) solves this

relaxed program and shows that, at the optimum, the object goes to the buyer with the highest virtual

valuation, provided that it is above the seller’s value: This “commitment solution,”as Figure 4.1 illustrates,

is characterized by boundaries that determine the area where a buyer or the seller is awarded the good

with probability one. The boundary between buyers i and j is determined by the equality of their virtual

valuations–that is, the locus where Q (vi, vj) = Ji(vi) − Jj(vj) = 0; the boundary between buyer i and the

seller is the reserve price r∗i that satisfies (2.3) for the prior. With some abuse of notation, let 0 denote the

action chosen by valuation 0 of a buyer. Then, using this paper’s formulation, the solution can be written as:

mi (0|vi) = 1 for all vi ∈ [0, r∗i ]; mi (vi|vi) = 1 for all vi > r∗i .
27 The optimal t = 1-menu is: qS (ai, a−i) = 1

if for all i ai = 0; otherwise, qS = 0; qi (0, a−i) = 0 for all a−i, and qi (vi, v−i) = 1 if i has the maximum

virtual valuation, zero otherwise, while the optimal t = 2-menu is: p2
i (v, a) = qi (v) for all v and all i.

This solution trivially satisfies the sequential-rationality constraints if ×i∈I [0, r∗i ] is empty since, then,

qS(a) = 0 for all vectors of actions chosen with positive probability. If ×i∈I [0, r∗i ] is non-empty, however,

26If ties occur–a probability zero event given increasing virtual valuations–the lowest-index buyer among the ones who tie is
assigned the good with probability one.

27Roughly, the mi specify the optimal pooling and separating regions.
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Figure 4.1: The revenue-maximizing allocation ignoring sequential-rationality constraints when I = 2

the solution with commitment imposes that p2
i (v, a) = 0 for all i when v is in ×i∈I [0, r∗i ], which is not

sequentially rational because when the posterior beliefs have support [0, r∗i ], the seller would at least want

to give the good to i when his valuation is r∗i .28

4.2 The solution of Program NC

The fact that at the optimum of Program C, the solution pools the lower end of each buyer’s valuations,

implies that the cost of separating them (in terms of rents that they should be provided) outweighs the

benefit, so the net benefit of separation is negative. When we add the sequential-rationality constraints, the

cost of separation increases because, now, the rewards of separating a valuation must include the anticipated

reduction in the rents that occurs at t = 2 because the seller exploits the information he obtained at t = 1.

As a first step, we show that at a solution of Program NC, the seller pools the lower end of valuations

at t = 1; formally mi (0|vi) = 1 for all vi ∈ [0, v̄i] and i ∈ I, for some v̄i ∈ Vi. When mi (0|vi) = 1 for all

vi ∈ [0, v̄i], the seller’s posterior about i’s valuation when i chooses action 0 at period 1 is:

fi(vi|v̄i) =

{
fi(vi)
Fi(v̄i)

, for vi ∈ [0, v̄i]

0, otherwise
. (4.1)

28It is immediate to see that, then, the posterior virtual valuation at r∗i is equal to r∗i > 0.
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This first result is based on the following observation:

Lemma 1. For vi ∈ V̄i(ai) ∩ V̄i(âi) a.e., it holds that Uaii (vi) = U âii (vi), P aii (vi) = P âii (vi) and Xai
i (vi) =

X âi
i (vi).

Consider a valuation in Vi(ai) that, in addition to ai, chooses another action âi–that is mi (âi|vi) > 0.

Then, best-response constraints imply that Uaii (vi) = U âii (vi). Lemma 1 establishes that U âii (vi) = Uaii (vi)

for essentially all valuations in V̄i(ai) ∩ V̄i(âi), even for those that do not choose âi. This, in turn, implies

that dU
ai
i (vi)

dvi
=

dU
âi
i (vi)

dvi
a.e. on V̄i(ai) ∩ V̄i(âi), which is equivalent to

P aii (vi) = P âii (vi), a.e. on V̄i(ai) ∩ V̄i(âi). (4.2)

Recalling (2.1) and (2.5), we know that i, when choosing an action ai at t = 1, gets the good at t2 when

v−i ≤ v−i(vi, ai, a−i); then, (4.2) can be more explicitly rewritten as:29, 30

Σa−i∈A−i

∫
V̄−i

[qi(a)− qi(âi, a−i)]mi(a−i|v−i)f−i(v−i)dv−i

= δΣa−i∈A−i

∫
V̄−i

[
qS(âi, a−i)p

2(âi,a−i)
i (v)− qS(a)p

2(a)
i (v)

]
mi(a−i|v−i)f−i(v−i)dv (4.3)

= δΣa−i∈A−i

[∫ v−i(vi,ai,a−i)

v−i(a−i)

qS(a)mi(a−i|v−i)f−i(v−i)dv−i −
∫ v−i(vi,âi,a−i)

v−i(a−i)

qS(âi, a−i)mi(a−i|v−i)f−i(v−i)dv−i

]
.

Equality (4.3) tell us (even) if mixing can reduce the probability that i gets the good at t = 2 (which is

desirable from the ex-ante perspective), this reduction must be balanced exactly with the expected probability

of trade at t = 1, to maintain the indifference. Hence, sustaining the mixings requires distorting the t = 1

probabilities at an amount equal to the expected change in the t = 2 probability of trade. Equation (4.3) is

the basis for the proof of the following Proposition:

Proposition 2. At a solution of Program NC, the seller pools the lower end of valuations at t = 1: that is

mi (0|vi) = 1 for all vi ∈ [0, v̄i] and i ∈ I, for some v̄i ∈ Vi.

Proof. See Appendix B.

Lemma 1 tells us that the seller must reward separating types at t = 1 for the rent loss they expect at t = 2

due to the sequential-rationality constraints. For this reason sequential-rationality constraints increase the

cost of “separations” or complicated mixing, which is the reason behind Proposition 2: The more information

the seller can condition on at t = 2, the bigger the cost in terms of ex-ante revenue for the seller. In addition,

having more than one vector of actions at which the seller keeps the good with positive probability at t = 1

29We are integrating over V̄−i instead of over V̄−i (a−i) , since this makes no difference, as mi(a−i|v−i) = 0 for all v−i ∈
V̄−i\V̄−i (a−i).

30At vi = r2
i (ai), i’s posterior virtual valuation is zero (equal to the seller’s value) and v−i(vi, ai, a−i) = r2

−i(a−i), whereas
at vi < r2

i (ai), i’s posterior virtual valuation is below zero and v−i(vi, ai, a−i) = 0−i (i does not obtain the good at t = 2).
Note, also, that v−i(vi, ai, a−i) = 0, when given ai, trade takes place with probability one at t = 1 for all a−i, or when i’s
posterior valuation is below all his competitors’ posterior virtual valuations.
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adds additional sequential-rationality constraints, which increase further the cost of separation. Hence, at

a solution of Program NC, the seller pools the lower end of valuations at t = 1–that is, the seller chooses

mi (0|vi) = 1 for all vi ∈ [0, v̄i] and i ∈ I, for some v̄i ∈ Vi.

Given this result, we now proceed to specify the optimal t = 1-menu corresponding to the vector of

actions where all buyers choose action 0, which we denote by 0.

Lemma 2. At an optimal first-period menu, either qS(0) = 1 or qS(0) = 0. Moreover, if qS(0) = 1, then

qi(0, a−i) = 0, for all a−i–that is, buyer i never obtains the good at t = 1 when he chooses action 0, regardless

of the other buyers’ actions.

Proof. Proposition 2 establishes that at an optimum mi (0|vi) = 1 for all vi ∈ [0, v̄i]. Then, the seller’s

expected revenue can be written as:

R =

∫
×i∈I [0,v̄i]

Σi∈I
[
qi(0) + δqS(0)p2

i (v,0)
]
Ji(vi)f(v)dv +

∫
V |×i∈I [0,v̄i]

Σi∈Ipi (v) Ji(vi)f(v)dv, (4.4)

which is linear in the menu qi(0), for i ∈ Ī . Linearity implies that if we choose qS(0) so as to maximize

(4.4), ignoring all but the resource constraint of Program NC, at such a relaxed solution, either qS(0) = 1

or qS(0) = 0.

When qS(0) = 1, then qi(0) = 0 for all i, which says that no buyer obtains the good at t = 1 for vectors

of valuations in ×i∈I [0, v̄i] . Because at a vector of actions 0, a−i,with a−i, different from 0−i, vi ∈ [0, v̄i] ,

whereas vj ≥ v̄j for all j ∈ I, j 6= i, then at an optimum qi (0, a−i) = 0, for all a−i: If i does not get the

good when vj ≤ v̄j for all j ∈ I, j 6= i, he should not be getting it when competitors have higher realized

valuations.

At a revenue-maximizing allocation, the seller keeps the good when all buyers’ valuations lie below some

cutoff. At the “commitment solution,”the cutoff is r∗i , the valuation where i’s virtual valuation is zero (the

seller’s valuation). We now show that with sequential-rationality constraints, the cutoff v̄i must be (weakly)

larger than this “static” cutoff:

Lemma 3. At a solution of Program NC, v̄i ≥ r∗i : that is, ×i∈I [0, v̄i] contains the region where all virtual

valuations are below the seller’s value.

The intuition behind Lemma 3 is that the seller anticipates at t = 1 her temptation at t = 2 to over-

assign the object compared to what is revenue-maximizing from the t = 1 perspective. The reason for this

over-assignment is that at t = 2, the seller’s posterior is (4.1), and i’s posterior virtual valuation, which

is equivalent to vi − [Fi(v̄i)−Fi(vi)]
fi(vi)

, is overestimated by the term [1−Fi(v̄i)]
fi(vi)

compared to the prior virtual

valuation vi − [1−Fi(vi)]
fi(vi)

.31

31This intuition oversimplifies matters. The cutoffs (the v̄i’s) also determine the ranking of the buyers’ posterior virtual
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The optimal level of v̄i depends on the discount factor δ, which, as we illustrate in examples in Section

5, determines the revenue loss due to sequential rationality.

Lemma 3 tells us that at a solution of Program NC, the seller keeps the good at t = 1 for all vectors

of valuations where virtual valuations are below the seller’s value (and maybe a larger set of valuations).

This implies that in the remaining area of vectors of valuations, that is in V \×i∈I [0, v̄i] , at least one buyer

has a virtual valuation that is higher than the seller’s value. For V \ ×i∈I [0, v̄i] we choose the first-period

menu that maximizes (4.4) pointwise (for each v), subject to the resource constraint. Clearly, this point-wise

optimum of a relaxed program is the best that the seller can achieve.

A proposed solution is: mi (0|vi) = 1 for all vi ∈ [0, v̄i]; mi (vi|vi) = 1 for all vi. The optimal t = 1 menu

is: qS (ai, a−i) = 1 if for all i ai = 0, otherwise qS = 0; qi (0, a−i) = 0 for all a−i, qi (vi, v−i) = 1 if i has

the maximum virtual valuation; zero otherwise, while p2 is given by (2.5) , for beliefs given by (4.1). The

resulting allocation and payment rules are:

for v ∈ V \ ×i∈I [0, v̄i] : p∗i (vi, v−i) =

{
1 if i ∈ arg maxi∈I1(v) Ji(vi)

0 otherwise , (4.5)

for v ∈ ×i∈I [0, v̄i] : p∗i (vi, v−i) = δp2
i (v),

where I1(v) = {i ∈ I : vi ≥ v̄i}

x∗i (v) = p∗i (v)vi −
∫ vi

0

p∗i (ti, v−i)dti.
32 (4.6)

We now verify that indeed this proposed solution is feasible for Program NC.

Lemma 4. The allocation rule in (4.5) is feasible for Program NC.

Proof. First, observe that p∗ in (4.5) satisfies resource constraints. Moreover, it satisfies the sequential-

rationality constraints since p2 in (4.5) is given by (2.5) for beliefs given by (4.1), and 0 is the only vector of

actions that leads to no trade at t = 1 (hence, it is the only vector of actions relevant for sequential-rationality

constraints). We now show that Pi is increasing in vi. We actually establish a stronger result-namely, that

p∗i (v) is increasing in vi for each v−i : From standard arguments, it is easy to see that p∗i (v) is increasing in

vi for vi ∈ [0, bi]\{v̄i} and for all v−i. Hence, it remains to show that it does not drop at v̄i : When at least

one vj > v̄j , we have that p∗i (v̄i − ε, v−i) = 0 (where ε > 0), whereas p∗i (v̄i + ε, v−i) is either 0 or 1. In both

cases, it is increasing. Now, when for all j 6= i, vj < v̄j , we have that p∗i (v̄i − ε, v−i) is equal to either 0 or

δ, whereas p∗i (v̄i + ε, v−i) = 1 for that region of v−i; hence, again, p∗i is increasing. Finally, it is routine to

verify that given the payments specified in (4.6) , the participation constraints are satisfied.

valuations. It is then conceivable that the ranking that is supported by some vector of cutoffs with v̄i < ri for some i is optimal
because it reduces the costs of sequential-rationality constraints. We show (in Appendix C) that this cannot happen because,
roughly, the effect of v̄i’s on the ranking of posterior virtual valuations is secondary.

32Because virtual valuations are increasing, so are posterior virtual valuations; see Lemma 6 in Appendix C. Ties, then,
occur with probability zero and can be broken arbitrarily.
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Remark 1. From Lemma 4, we can conclude that (4.5) is dominant-strategy incentive-compatible since p∗i

is increasing for each realization of v−i.33

After substituting (4.5) in the objective function of Program 1, it reduces to the problem of finding

v̄ = (v̄1, ..., v̄I), with v̄i ∈ [0, bi]; that solves

max
v̄∈×i∈I [0,bi]

R(v̄) ≡ δ
∫
×i∈I [0,v̄i]

Σi∈Ip
2
i (vi) Ji(vi)f(v)dv +

∫
V \×i∈I [0,v̄i]

Jmax (v) f(v)dv, (4.7)

where Jmax (v) = maxi∈I{J1 (v1) , ..., JI (vI)} and p2 satisfies (2.5) for beliefs given by (4.1). This program

is tremendously simpler than the one we set out to solve: Instead of maximizing over an infinite dimensional

space, we are choosing the vector v̄, which is a finite-dimensional object, out of a compact set ×i∈I [0, bi].

We illustrate how to obtain this solution in an example in Section 5.

4.3 Implementation

We have, thus far, obtained a solution of Program NC described in (4.5) and (4.6). Since this solu-

tion satisfies only necessary conditions of being PBE-implementable, to complete our characterization, we

construct a strategy profile that is a PBE and that implements it:

Buyers’ strategies: When the seller proposes the mechanism described by (4.8) and (4.9) below, at

period t = 1, mi (0|vi) = 1 for all vi ∈ [0, v̄i]; mi (vi|vi) = 1 for all vi > v̄i. At t = 2, buyers report

their valuations truthfully. When the seller deviates, buyer i chooses actions described at any continuation

equilibrium.

Beliefs: Given the buyers’ behavior, when trade does not occur at t = 1, the seller’s posterior beliefs

along the path are given by (4.1).

Seller’s Strategy: The first-period mechanism has an allocation mapping

qi (vi, v−i) =

{
1 if i ∈ arg maxi∈I1(v) Ji(vi) and vi ∈ [v̄i, bi] for all i ∈ I

0 otherwise , (4.8)

where I1 (v) = {i ∈ I : vi ∈ Vi and vi ≥ v̄i}. At t = 2 the seller proposes a direct-revelation mechanism with

an allocation rule described in (2.5).34

Buyer i pays only when he wins the object: If i wins while facing some competition at t = 1–that is,

when I1(v) 6= i–he pays the lowest possible valuation that would still allow him to win given v−i–that is,

r1
i (v−i) = inf{vi such that qi(v) = 1}.35 If i does not face any competition at t = 1–that is, if I1(v) = {i}–i

33This observation is employed later, in Section 6, to establish that it is without any loss to assume that the seller employs
fully transparent mechanisms.

34Note that according to this mechanism, buyer i is not allocated the good if he chooses an out-of-equilibrium action.
35The payment rule in this region is analogous to the one described by the optimal mechanism in Myerson (1981). The

difference is that, here, not all buyers report a valuation above the cutoff at t = 1.
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pays a buyer-specific reserve price r̄1
i , so the payment mapping is:

zi(0, a−i) = 0, for all a−i ∈ A−i (4.9)

zi(vi, v−i) =

 r1
i (v−i) if i ∈ arg maxi∈I1(v) Ji(vi) and I1(v) 6= i

r̄1
i if I1(v) = i
0 otherwise

.

The payment rule (4.9) is constructed from (4.6), as follows. We rewrite (4.6)

xi(v) = qi(a(v))vi −
∫ vi

0

qi(a(ti, v−i))dti + (4.10)

δ

[
qS(a(v))p2

i (v)vi −
∫ vi

0

qS(a(ti, v−i))p
2
i (ti, v−i)dti

]
.

Given the proposed strategies for the buyers and the seller, for v ∈ ×i∈I [0, v̄i], (4.10) reduces to xi(v) =

δ
[
p2
i (v)vi −

∫ vi
0
p2
i (ti, v−i)dti

]
= δx2

i (v) , where p2 and x2 are given by (2.5). This is because for v ∈

×i∈I [0, v̄i], qS = 1, and the first two terms of (4.10) are zero. Now, for v ∈ V \×i∈I [0, v̄i], (4.10) reduces to:

xi(vi, v−i) = qi(v)vi −
∫ vi
v̄i
qi(ti, v−i)dti − δ

∫ v̄i
max{r2

i (v̄i),r2
j (v−j)} p

2
i (ti, v−i)dti, (4.11)

where r2
i (v̄i) is given by (2.3) given beliefs (4.1) and r2

j (v−j) = inf{vi ∈ [0, v̄i] such that p2
i (v) = 1}.

There are two cases to consider, depending on whether or not buyer i faces some competition at t = 1.

When buyer i faces some competition at t = 1–that is, when I1(v) 6= {i}–i pays only when he wins, and his

payment is equal to r1
i (v−i). When v−i ∈ ×j 6=i[0, v̄j ], i does not face competition at t = 1, and using qi from

(4.8) and p2 from (2.5), (4.11) can be further simplified to

xi(v) = (1− δ)v̄i + δmax
{
r2
i (v̄i), r

2
j (v−j)

}
. (4.12)

However, it is not possible to implement (4.12) as is, because it varies with v−i, whereas all buyers −i with

valuations in [0, v̄j ] pool at t = 1 and choose action 0. But given that in the case under consideration, buyer

i faces no competition at t = 1, we can use (4.12) to determine a personalized reserve price, r̄1
i , that satisfies

r̄1
i =

1

F−i(v̄−i)
Ev−i∈×j 6=i[0,v̄j ]

[
(1− δ)v̄i + δmax

{
r2
i (v̄i), r

2
j (v−j)

}]
. (4.13)

Since buyer i does not know v−i, from his perspective, he is indifferent between paying r̄1
i whenever all

other buyers choose 0 (which occurs with probability F−i(v̄−i)), or incurring payments according to (4.12).

Moreover, these two different payment methods are equivalent from the seller’s perspective, because they

are associated with the same allocation rule.

It is immediate to see that this strategy profile implements (4.5) and (4.6). Now, we establish that it

is a PBE. Given the buyers’ strategies, the seller’s strategy is a sequential best response since, at t = 2,

she proposes a direct revelation mechanism with an allocation rule described in (2.5), which is revenue-

maximizing given her posterior beliefs. Since v̄ is optimally chosen, the seller cannot do any better by
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changing the regions where trade takes place at t = 1, versus t = 2. The fact that buyers’ strategies are best

responses at t = 2 follows immediately from the incentive compatibility of the direct mechanism that the

seller employs at t = 2. Hence, the only requirement that we still need to verify is that buyers’ strategies are

best responses at t = 1. This follows from the incentive compatibility of (4.5) established in Proposition 4

and from the fact that payments are constructed from (4.6). Putting all the pieces together, we have shown

that:

Proposition 3. The allocation rule described in (4.5) is PBE-implementable.

4.4 Proof of theorem 1

In Proposition 1, we argued that the value of Program NC is an upper bound for how much the seller can

achieve at a PBE. We then showed that the allocation rule in (4.5) with optimally chosen v̄ solves Program

NC. Finally, Proposition 3 states that this solution can be implemented by an assessment that is a PBE.

Hence, this assessment is a revenue-maximizing PBE.

5 Illustration and the value of commitment

Here, we provide an illustration of the result of Theorem 1 in a simple example: Suppose that there are

I buyers whose valuations are distributed uniformly on [0, 1], that the seller’s valuation is zero, and that

T = 2. For this example, the commitment benchmark–that is, a revenue-maximizing auction without the

sequential-rationality constraints–is a second-price auction with a reserve price of v̄Ci = 0.5 for all i ∈ I.

When I = 2, the seller’s expected revenue is 0.4166.

With sequential-rationality constraints, at t = 1, buyer i gets the object if vi ≥ vj , for all i 6= j, and

vi ≥ v̄i. Given a vector of first-period cutoffs v̄ = (v̄1, ..., v̄I) , the posterior is fi(vi|v̄i) = 1
v̄i

and i’s posterior

virtual valuation is Ji(vi |v̄i ) = 2vi − v̄i. In is easy to see that the optimal t = 2 reserve price r2
i (v̄i) = v̄i

2 .

Then, at a revenue-maximizing mechanism at t = 2, buyer i obtains the object if vi ≥ vj − (v̄j−v̄i)
2 and

vi ≥ v̄i
2 for all j 6= i.

Imposing symmetry on the solution,36 (4.7) for this example reduces to:

Iδ

∫ v̄

v̄
2

(2v − 1)vI−1dv + I

∫ 1

v̄

(2v − 1)vI−1dv. (5.1)

It is straightforward to verify that the revenue-maximizing first-period cutoff is:

v̄ =
δ − 2Iδ + 2I

δ − 2I+1δ + 2I+1
. (5.2)

36Imposing symmetry on the solution (v̄i = v̄ for all i ∈ I) allows us to obtain it analytically in a clean way. If we allow
v̄i 6= v̄j the expression of expected revenue becomes more complex and the solution more tedious, but of course the solution
turns out to be symmetric. Details are available from the author upon request.
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Comparative statics: We first observe that the first-period cutoff, described in (5.2) , is increasing in δ.

Differentiating (5.2) with respect to δ, we get ∂v̄
∂δ = 2I+2I+1

(δ−2I+1δ+2I+1)2 > 0. Differentiating (5.2) with respect to

I, we get that ∂v̄
∂I =

1
2 2IIδ(δ−1)

(δ−2I+1δ+2I+1)2 ≤ 0. Hence, the first-period cutoff decreases, and it converges to 1
2 as I

gets large. The left panel of the following figure depicts how the first-period cutoff varies with the discount

factor: and where each curve corresponds to a different number of buyers; the dotted line to I = 2, the
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Figure 5.1: First-Period Cutoff

dashed line to I = 3 and the solid line to I = 10. The right panel depicts how the first-period cutoff varies

with the number of buyers and where the dotted curve corresponds to a discount factor of δ = 0.5, and the

solid line corresponds to a discount factor of δ = 0.9.

Expected revenue as a function of the discount factor when I = 2 and T = 2 is given by

8
3(7δ−8)3

(
53δ3 − 183δ2 + 210δ − 80

)
− 1

12δ
(3δ−4)2

(7δ−8)3 (21δ − 16) and is depicted by the solid line in the following

Figure 5.2 below. The dotted line on the same graph depicts the expected revenue in the commitment

benchmark. It is clear that the revenue loss is zero for extreme values of the discount factor and highest for

δ close to 0.8. Instead of the first-period cutoff, we can also look at at the first-period reserve price. For

the example under consideration and when I = 2, the first-period reserve price derived in (4.13) becomes

r̄1
i = v̄(1− 0.375δ), with v̄ = 3δ−4

7δ−8 . Interestingly, the first-period reserve price varies non-monotonically with

the discount factor.

0.0 0.2 0.4 0.6 0.8 1.0
∆

0.39

0.40

0.41

0.42

0.43

Expected Revenue

∆ = 0.5

Benchmark

0.0 0.2 0.4 0.6 0.8 1.0
∆

0.45

0.50

0.55

0.60

0.65

0.70
t = 1 Reserve Price

Figure 5.2: Left Panel: Revenue; Right Panel: First-period reserve price
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Following an analogous procedure, we can obtain the optimal cutoffs for the case where I = 2 as a

function of the discount factor for longer games.37 In the following graphs, the number of buyers is held at

two, and we depict the first-period cutoff as a function of the discount factor for games of various lengths.
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Figure 5.3: First-Period Cutoff and Length of T

The dashed line corresponds to t = 2, the dotted line to t = 3 and the solid line to t = 4. The last thick

line is the first-period cutoff of a stationary equilibrium of the t = ∞ game of McAfee and Vincent (1997).

This cutoff is implicitly given by a solution of 2v̄ − 1 = δv̄3.38

McAfee and Vincent (1997) have studied reserve price dynamics in an infinite-horizon version of our

model with symmetric buyers and the “gap case.” 39 In that case, there is always some period in which trade

takes place with probability one. Our results show that in the finite version of their model, the revenue a

seller achieves in their equilibrium is actually the highest possible.

5.1 How much is commitment worth?

For the cases of extreme discount factors–namely, for δ = 0 and for δ = 1–the revenue loss due to lack of

commitment is zero: When δ = 0, the future does not matter at all, so the sequential-rationality constraints

disappear, and the optimal vector of cutoffs is given by the vectors of valuations where all buyers’ virtual

valuations are equal to the seller’s valuation; that is, v̄(δ = 0) = (r1, ..., rI). When δ = 1, waiting is costless,

37For T = 3, we get that v1 = 640δ−500δ2+88δ3+27δ4−256
1344δ−1144δ2+284δ3+27δ4−512

; v2 =
(

3δ−4
7δ−8

)
v1; and v3 = 1

2

(
3δ−4
7δ−8

)
v1, whereas for T = 4,

we get that

v1 =
4δ + 4A2δ2 − 4A2δ − 4A2B2δ2 + 3A2B2δ3 − 4

8δ + 8A3δ2 − 8A3δ − 8A3B3δ2 + 7A3B3δ3 − 8

where A =
(640δ−500δ2+88δ3+27δ4−256)

1344δ−1144δ2+284δ3+27δ4−512
and B =

(
3δ−4
7δ−8

)
; v2 = Av1; v3 = ABv1 and v4 = 1

2
ABv1.

38More specifically, McAfee and Vincent (1997) consider a uniform [0, 1] , infinite-horizon, no-gap example, and establish
that it has a symmetric linear stationary equilibrium characterized by two numbers: γ and r.

39The optimal mechanism for every discount factor in an infinite horizon version of the game is an open and quite challenging
question.
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so the seller can wait until the last period of the game and offer an optimal mechanism without sequential-

rationality constraints. This can be achieved by selecting v̄ to be equal to the vector of the highest possible

valuations of all buyers: v̄(δ = 1) = (b1, ..., bI). This can also be seen in Figure 5.1 above. For intermediate

discount factors, an optimal vector of cutoffs is somewhere between v̄(0) and v̄(1).

For a fixed discount factor, the value of commitment increases with the length of the horizon, or, put

differently, the costs of sequential rationality increase with the number of periods. McAfee and Vincent (1997)

establish a generalized version of the Coase conjecture which states that in their environment (symmetric,

IPV, infinite-horizon, gap), as δ approaches one, the seller’s expected revenue is the same as in a game with

no reserve price (that game has, by the revenue equivalence theorem, the expected revenue of the efficient

allocation). Then, an upper bound of the value of commitment in terms of the seller’s expected revenue is

equal to the difference in revenue between the optimal Myerson benchmark and the revenue generated by

an efficient auction.

Theorem 1 implies that when the horizon is finite the seller’s maximal revenue is in between the Myerson

and the efficient benchmark. The difference between these two benchmarks depends on the number of buyers,

the discount factor, and the distribution of valuations. If the seller faces many buyers, then the probability

that trade occurs at period one is very high, and her lack of commitment becomes less important: It is when

she faces a small number of buyers that the design matters.

6 Mechanisms with Variable Transparency

We have, thus far, assumed that all players observe the entire vector of actions chosen at period t; that

is, we have assumed that the seller employs fully transparent mechanisms. This can be restrictive, since in

dynamic settings where we require players to behave sequentially rationally, what buyers observe determines

their beliefs about their competitors. Their observations may affect their future behavior and, hence, the

set of continuation equilibrium outcomes. Here, we allow for the seller to control how much buyers observe

in each period. We model this with information-disclosure policies.

An information-disclosure policy is a mapping from the vector of actions chosen by the buyers, to a vector

of messages, one for each buyer: ct : A → ∆(Λ), where Λ := ×i∈IΛi, and Λi is the set of messages that the

seller can send to buyer i. It is easy to see that this formulation encompasses full disclosure, no disclosure,

as well as intermediate cases.

We assume that all players observe the mechanism (which includes the information-disclosure pol-

icy), and whether or not trade takes place. In this modified environment, an information set of the

seller at the beginning of period t is ιtS = {M (t−1), χ(t−1), a(t−1), λ(t−1)}, and that of buyer i is ιti =

{v,M (t), χ(t−1), a
(t−1)
i , λ

(t−1)
i }.

Let pFT , xFT denote a mechanism chosen by the seller at t = 2 under full transparency. Here, we establish
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that, no matter what disclosure policy the seller employs at t = 1, the revenue-maximizing mechanism at

t = 2 coincides with pFT , xFT . Note, first, that the seller can guarantee the same revenue as under full

transparency regardless of the disclosure policy that she employs at t = 1. This is because pFT , xFT is

dominant-strategy incentive-compatible (which follows from the fact that it is strictly increasing in vi for

all v−i). However, can she do better?40 Or, more generally, would her choice differ if she employed some

other information-disclosure policy at t = 1? The following result establishes that the answer to both these

questions is no.

Proposition 4. No matter what disclosure policy the seller employs at t = 1, the set of revenue-maximizing

mechanisms at t = 2 is identical to the one derived under full transparency.

Proposition 4 states that the set of sequentially-rational mechanisms at t = 2, and, hence, the revenue

generated at t = 2 are independent of the disclosure policy employed at t = 1. Since disclosure policies can

affect revenue only through changing the revenue-maximizing choices at t = 2, we can conclude the following:

Corollary 2. Without loss of generality, we can assume that all buyers observe the entire vector of actions

chosen in the first period.

This result establishes that the earlier analysis, which imposed that the seller employ fully transparent

mechanisms, is without loss of generality.

Discussion: Proposition 4 allows us to sidestep a conceptual difficulty that arises because of the lack of

a canonical class of mechanisms for mechanism-design problems of limited commitment: It is without loss

to model a mechanism as a game form and to assume that all agents observe each other’s actions.

Some may argue that the transparency issue of the first-period mechanism can be addressed using ideas

from Myerson’s (1986) work on multi-stage games with communication. In that paper, the revelation prin-

ciple asserts that the set of communication equilibria is largest when, at each stage, the mediator privately

recommends to each player which action to choose. In our setup, this would translate to saying that the seller

simply recommends to the buyers only which actions to choose, without disclosing any additional informa-

tion. However, it is easy to see, following the exact same logic of Myerson (1986)’s revelation principle, that

when the seller discloses no information to the buyers at t = 2, this makes the set of incentive-compatible

mechanisms at t = 2 as large as possible41 and enlarges the seller’s choices. This is a good thing for her if

we are in a static setup, but it may not be so if there is limited commitment because, now, the seller has

a larger set of possible deviations at t = 2, which may make the sequential-rationality constraints costlier.

The key difference between Myerson’s and our setup is that in this paper, the information disclosed to the

40Disclosure policies affect buyers’ beliefs about each other, possibly creating correlation in their belief part of their private
information, which could allow the seller to generate higher revenue at t = 2. Affecting buyers’ beliefs is irrelevant, given that
the revenue-maximizing mechanism assuming the seller’s information is common knowledge is dominant-strategy incentive-
compatible.

41See Skreta (2011) for further details.
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buyers at some stage, affects the set of feasible choices for the seller at a subsequent stage. This is not the

case in Myerson’s (1986) setup, in which the set of choices (actions) available to the players is exogenous to

the communication device.

7 Analysis of the Problem when 2 < T <∞ : An Overview

We have shown that if T = 2, the seller maximizes expected revenue by employing a “Myerson” auction

in each period. Here, we sketch out how we can extend by induction this result for any T finite.

We describe the induction step for T = 3 : First, we establish the analog of Lemma 1, whose proof

remains essentially unchanged, with the only modification that the allocations at t = 2 are now continuation

allocations of a two-period game that starts at t = 2.42 Given Lemma 1, we can establish Proposition 2

using arguments parallel to the ones used in the T = 2 case: When two different actions of a buyer are

followed by identical t = 2 continuation allocations, we can merge the actions, and that does not change the

sequentially-rational continuation allocation at t = 2. Actions followed by different continuation allocations

increase the cost of sequential-rationality constraints. Hence, pooling the lower end of valuations at t = 1 is

optimal. Given Proposition 2, the analog of Lemma 2 for the T = 3 game follows, using arguments identical

to those in the T = 2 case.

From Proposition 2, it follows that the relevant posteriors after all buyers choose the vector 0 are trun-

cations of the priors–given by (4.1). Lemma 6 (in the Appendix) allows us, then, to conclude that that

posterior virtual valuations are strictly increasing in vi. Then, we can apply our T = 2 result to obtain the

revenue-maximizing sequentially-rational allocation rule at the continuation game that starts at t = 2 after

the vector 0 is chosen at t = 1, which is dominant-strategy incentive-compatible (recall Remark 1).

To establish Lemma 3, we need to show that the t = 1 boundary v̄i is greater or equal to r∗i (the

commitment reserve price) for all i ∈ I in the case where the problem lasts three periods. We already know

from Lemma 2 of Skreta (2006b) that the T = 3-boundaries r3
i (v̄

2
i (v̄i)) are increasing in v̄2

i (v̄i) (or, more

generally, rTi (v̄T−1
i (v̄i)) are increasing in v̄T−1

i (v̄i).) The proof of the analog of Lemma 3 mimics the one for

the two-period version of the game, after we establish that the boundaries v̄2
i (v̄i) are increasing in v̄i. The

t = 2-boundaries v̄2
i (v̄i) give the valuation of i below which the seller keeps the object at t = 2 when the

posteriors are given by equation (4.1). When T = 3, posterior virtual valuations at the continuation game

that starts at t = 2 are given by Ji (vi|v̄i) = vi − Fi(v̄i)−Fi(vi)
fi(vi)

. Notice that Ji (vi|v̄i) is decreasing in v̄i, since

Fi is increasing in v̄i. Then, because posterior virtual valuations fall when v̄i increases, the region where

the seller keeps the good at t = 2 increases; that is, v̄2
i (v̄i) is (weakly) increasing in v̄i. With this simple

observation in hand, we can straightforwardly establish Lemma 3 for the case in which the game lasts for

three periods. Lemma 4 and Proposition 3 are, then, routine to generalize. Finally, given that the T = 2

42A moment’s thought reveals that the logic of footnote 45 in the Appendix applies here as well.
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allocation is dominant-strategy incentive-compatible (recall Remark 1), we can easily establish the analog of

Proposition 4 for T = 3 and for longer finite games, and we conclude that we can, without loss, assume that

at t = 1, all buyers observe the entire vector of actions chosen.

Given the result for T = 3, we can continue to get the result for T = 4 and so forth, since all steps

followed in the case of T = 3 immediately generalize to the case of T = 4 and so forth.

8 Robustness and Concluding Remarks

We have shown that when sellers cannot resist the temptation to place back on the market items that

remain unsold, simple selling procedures are optimal: When buyers are ex-ante symmetric, first- or second-

price auctions with optimally chosen reservation prices are revenue-maximizing. Lack of commitment is

costly for the seller, especially when demand is thin and when the seller is moderately patient. Governments

sell important assets, such oil tracts, timber tracts, spectrum and treasury bills, through auctions. Optimal

design is especially important for revenue generation when the number of buyers who participate in the

auction is very small and there is little competition. This is usually the case for auctions of very valuable

assets. This observation, together with the fact that a large fraction of items that remain unsold are placed

back on the market, makes the characterization obtained in this paper a relevant extension of the optimal-

auction literature.

We now offer a few remarks on the generality of the solution. It depends (i) on the set of mechanisms that

the seller employs; (ii) on the generality of the buyers’ strategies; (iii) on what the seller observes during

play; and (iv) on the length of the time horizon. With respect to the definition of “mechanisms,” we have

been very general: We have assumed that a mechanism consists of some abstract game form endowed by

an information-disclosure policy as a way of capturing different scenarios of what buyers observe during the

play of an auction. Regarding the generality of buyers’ strategies, we have not imposed any restrictions: We

allow for mixed strategies, and for a non-convex set of types that may be choosing the same actions. Finally,

regarding what the seller observes during play, we have assumed that she observes the vector of actions that

buyers choose at each stage. This assumption makes the non-commitment constraints quite strong, and

intentionally so: The point of our analysis is to find what is best for the seller given that she cannot commit.

If we had assumed that the seller observes nothing over time, then, trivially, the commitment solution is

sequentially-rational.

A limitation of this work is that we analyze a finite-horizon problem. This goes somewhat against the spirit

of our analysis since the seller does have commitment power in the last period. However, in many situations in

practice, financial or political constraints impose a hard deadline by which an asset must be sold. For example,

financial institutions have a certain period of time to sell distressed confiscated property. Technically, an

infinite-horizon mechanism-design problem in which the designer behaves sequentially rationally is very
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complex and beyond the scope of the present paper. With such a problem, continuation allocation rules

need not be revenue-maximizing, so Lemma 1 may not hold. In addition, it seems impossible to express the

problem in a recursive way, thus precluding the use of dynamic programming techniques. It is very likely that

a characterization would be based on an argument that relies on the properties of the revenue-maximizing

mechanisms in the finite horizon established in this paper, making the current analysis a key stepping stone

towards the solution of an infinite-horizon problem.

In recent years, motivated by the large number and the importance of applications,43 there has been

substantial work on dynamic mechanism design.44 A key assumption in that literature is that the principal

can fully commit ex-ante to the mechanism for the entire relationship. The assumption of commitment

implies that the principals may behave in a time-inconsistent manner that could be inappropriate for certain

applications. Designing multi-period incentives schemes under various assumptions of commitment is an

important area since contracting parties often renegotiate or change a contract if it becomes clear that there

exist others that dominate it. A step in this direction is the work of Hörner and Samuelson (2011), who study

a revenue-management problem in the absence of commitment when the seller is posting prices. However,

general dynamic mechanism design in the absence of commitment is largely an understudied area. We hope

and expect that the ideas and tools developed in this paper will be useful for further work.

A Proof of Lemma 1

Proof. Our goal is to establish that U âii (vi) = Uaii (vi) for all, but measure zero of valuations in V̄i(ai)∩V̄i(âi).
First, consider a valuation in Vi(ai) that, in addition to ai, chooses another action âi, that is, mi (âi|vi) > 0.

Then, best-response constraints imply that at valuation vi, buyer i is indifferent between ai and âi, that is
U âii (vi) = Uaii (vi). Valuations in V̄i(ai)\Vi(ai) do not choose action ai at t = 1, (mi (ai|vi) = 0); still, we
now show that they must be indifferent between choosing ai and the action âi they are actually choosing.
We argue by contradiction: Consider a ṽi ∈ V̄i(ai) ∩ V̄i(âi) that strictly prefers âi to ai, implying that:

P âii (ṽi)ṽi −X âi
i (ṽi) > P aii (vi)ṽi −Xai

i (vi), (A.1)

for all options on the menu {P aii (vi), X
ai
i (vi)}vi∈Vi(ai)

. Given the linearity and single crossing property of
payoffs, (A.1) implies that there is an open set of valuations neighboring ṽi that strictly prefer âi to ai at
t = 1. Let

(
ṽLi , ṽ

H
i

)
be the largest such neighborhood, implying that ṽLi and ṽHi (at least weakly) prefer ai.

Then ṽLi and ṽHi either choose ai with strictly positive probability, or they are on the boundary of types
that choose ai with strictly positive probability. Given that there is a hole of

(
ṽLi , ṽ

H
i

)
in the support of the

seller’s posterior at t = 2 after he observes ai at t = 1, and because the seller employs an optimal mechanism
at t = 2, we have45

P aii (ṽHi )ṽHi −X
ai
i (ṽHi ) = P aii (ṽLi )ṽHi −X

ai
i (ṽLi ). (A.2)

43For example, the classical airline revenue-management problem, the allocation of advertising inventory, the design of
incentive schemes that take into account inter-temporal considerations of managers, etc.

44See, for example, the survey of Bergemann and Said (2011), and the references therein.
45 This is easy to see: At an optimal mechanism at t = 2, after a vector of actions ai, a−i was chosen at t = 1, the incentive

constraint for vHi not to mimic vLi is tight for all a−i, because otherwise the seller could generate strictly more revenue at t = 2,

by increasing the payments for all valuations greater or equal to vHi . This result is analogous to the one in the optimal-pricing
problem with two types, where the price is chosen to be just big enough to make the high type indifferent about mimicking the
low one.
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Note that (A.1) trivially implies that

P âii (ṽi)ṽi −X âi
i (ṽi) > P aii (ṽLi )ṽi −Xai

i (ṽLi ). (A.3)

Now observe that it is not possible that P âii (ṽi) = P aii (ṽLi ) because, then, (A.3) implies X âi
i (ṽi) < Xai

i (ṽLi )

and, in that case, both ṽi and ṽLi strictly prefer to choose âi at t = 1, which contradicts the definition ṽLi .
If P âii (ṽi) > P aii (ṽLi ), then because ṽHi > ṽi, (A.3) implies that

P âii (ṽi)ṽ
H
i −X

âi
i (ṽi) > P aii (ṽLi )ṽHi −X

ai
i (ṽLi ),

which, together with (A.2), implies that type ṽHi strictly prefers âi. Contradiction.
If P âii (ṽi) < P aii (ṽLi ), then, because ṽLi < ṽi, (A.3) implies that

P âii (ṽi)ṽ
L
i −X

âi
i (ṽi) > P aii (ṽLi )ṽLi −X

ai
i (ṽLi ),

which implies that type vLi strictly prefers âi. Contradiction.

B Appendix B: Proof of Proposition 2

The essence of the proof can be summarized as follows: When two different actions of a buyer are
followed by identical t = 2 continuation allocations, we can merge the actions (Case 1 below), and that
does not change the sequentially-rational continuation allocation at t = 2. Actions followed by different
continuation allocations increase the cost of sequential-rationality constraints (Case 2). Hence, pooling the
lower end of valuations at t = 1 is optimal.

Case 2 employs an auxiliary result Lemma 5 (proved below), that establishes the following: Let [0, vi]

denote the convex hull of valuations that choose action 0 at a PBE, and let46 r2
i (0) denote the optimal

reserve price for buyer i at t = 2 after he chose 0 at t = 1. Suppose that valuations in [0, vi] choose another
action ai and r2

i (ai) ∈ [0, vi], then, if the reserve prices are relevant in the sense that i sometimes pays the
reserve,47 then it holds that r2

i (ai) = r2
i (0). This tells us that in equilibrium the mixing (the mi(.|ai) and

mi(.|0)) must be such that the reserve prices at t = 2 are identical.

Proof. The proof of this result is based on equation (4.3). First, note that if v−i(vi, ai, a−i) < v−i(vi, âi, a−i)

for some a−i, this means that the posterior virtual valuation at vi given âi is higher than the one given ai,
so it holds that v−i(vi, ai, ã−i) < v−i(vi, âi, ã−i) for all ã−i. This implies, then, that either v−i(vi, ai, a−i) ≤
v−i(vi, âi, a−i) for all a−i, or v−i(vi, ai, a−i) ≤ v−i(vi, âi, a−i) for all a−i, or v−i(vi, ai, a−i) = v−i(vi, âi, a−i)

for all a−i.
Case 1–Same t=2 boundaries: If r2

i (âi) = r2
i (ai) and v−i(vi, ai, a−i) = v−i(vi, âi, a−i) for all a−i and

vi, the second-period allocation is identical for all a−i, regardless of whether buyer i chose ai or âi at t = 1.

We now show that if we merge these actions (buyer i pools and chooses one of the 2), the t = 2 mechanism
will remain optimal and is identical to the one that is sequentially-rational if all valuations in V̄i(ai) pool
and choose action ai. Given that the seller’s response does not differ at t = 2, regardless of whether or not
she can condition on having observed that buyer i chose ai or âi, nothing will change in the seller’s response
when she conditions on the information that i chose either ai or âi. Hence, consolidating these two actions
into one, say ai, does not change anything in terms of the seller’s choice at t = 2. We formalize this intuition
below:

For transparency of the arguments below, suppose that, other than ai, âi is the only action that is chosen
with positive probability by valuations in Vi(ai); then, we have that mi(ai|vi)+mi(âi|vi) = 1 for all Vi(ai).48

Because r2
i (âi) = r2

i (ai) and v−i(vi, ai, a−i) = v−i(vi, âi, a−i) for all a−i and vi, we have that the allocation
rule p2

i (v, âi, a−i) = p2
i (v, ai, a−i) for all i ∈ I, v and all vectors of actions a−i ∈ A−i that are chosen with

46Recall the definition of the optimal reserve prices r2
i (ai) in (2.3).

47This is always true since i will pay the reserve when all other buyers’ realized valuations are zero.
48As we explain below, the arguments generalize in a straightforward way if valuations in Vi(ai) choose other actions

associated with identical t = 2-menus.
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strictly positive probability. From now on, we call this commonly optimal allocation rule p2 (it also depends
on a−i, which is hold fixed below). Given that p2, x2 is revenue-maximizing at t = 2 given ai, for all a−i, it
satisfies that49 ∫

V

Σi∈Ip
2
i (vi, v−i) [vifi(vi|ai)− (1− Fi(vi|ai))] f−i(v−i|a−i)dv (B.1)

≥
∫
V

Σi∈I p̃
2
i (vi, v−i) [vifi(vi|ai)− (1− Fi(vi|ai))] f−i(v−i|a−i)dv

for all p̃2 feasible. By substituting the exact expressions of fi(vi |ai ) and of Fi(vi|ai), and by multiplying
through with the constant

∫ v̄i
vi
mi(ai|ti)fi(ti)dti one can easily see that (B.1) is equivalent to

∫
V

p2
i (vi, v−i)

[
vimi(ai|ti)fi(ti)−

(∫ v̄i

vi

mi(ai|ti)fi(ti)dti −
∫ vi

vi

mi(ai|ti)fi(ti)

)]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i

p2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(ai|vi)fi(vi)dv

≥
∫
V

p̃2
i (vi, v−i)

[
vimi(ai|ti)fi(ti)−

(∫ v̄i

vi

mi(ai|ti)fi(ti)dti −
∫ vi

vi

mi(ai|ti)fi(ti)

)]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i

p̃2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(ai|vi)fi(vi)dv, (B.2)

for all p̃2.

Similarly, given that p2, x2 is revenue-maximizing at t = 2 given âi, a−i, it satisfies that

∫
V

p2
i (vi, v−i)

[
vimi(âi|ti)fi(ti)−

(∫ v̄i

vi

mi(âi|ti)fi(ti)dti −
∫ vi

vi

mi(âi|ti)fi(ti)

)]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i

p2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(âi|vi)fi(vi)dv

≥
∫
V

p̃2
i (vi, v−i)

[
vimi(âi|ti)fi(ti)−

(∫ v̄i

vi

mi(âi|ti)fi(ti)dti −
∫ vi

vi

mi(âi|ti)fi(ti)

)]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i

p̃2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(âi|vi)fi(vi)dv, (B.3)

for all p̃2.

Recall that for transparency of the arguments, we have supposed that âi is the only action other than
ai that is chosen with positive probability by valuations in Vi(ai) (otherwise, we would have to write more
inequalities like the ones above, and then add up); then, we have that mi(ai|vi) + mi(âi|vi) = 1 for all
vi ∈ V̄i(ai), and by adding the two inequalities (B.2) and (B.3), we get that∫

V

p2
i (vi, v−i)

[
vifi(ti)−

(∫ v̄i

vi

fi(ti)dti −
∫ vi

vi

fi(ti)

)]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i

p2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i(v−i|a−i)fi(vi)dv

≥
∫
V

p̃2
i (vi, v−i)

[
vifi(ti)−

(∫ v̄i

vi

fi(ti)dti −
∫ vi

vi

fi(ti)

)]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i

p̃2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i(v−i|a−i)fi(vi)dv,

49Note, that it is without loss to take p2
i (., âi, a−i) (resp. p2

i (., ai, a−i)) to be defined on Vi since for vi ∈ Vi\Vi (ai) ,
mi (ai|vi) = 0.
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for all p̃2, which is equivalent to saying that the allocation rule p2 is revenue-maximizing at t = 2 when
all valuations in V̄i(ai) choose ai with probability one, in which case i is using a partitional strategy. This
implies that if we are in this case, we can without any loss assume that all valuations in V̄i(0) = [0, v̄i] choose
action 0 with probability 1 and the result follows.

Case 2–Different t=2 boundaries:50 We start by showing that pooling all valuations below vi(0) with
valuation 0 minimizes the distortions with respect to reserve prices–the boundary that determines when the
seller should keep the good rather than giving it to buyer i: Let r2

i (v̄i) denote the optimal reserve price
given posterior beliefs (4.1). Lemma 2 in Skreta (2006b) establishes that r2

i (v̄i) is increasing in v̄i, which
immediately implies that r2

i (v̄i) ≤ r2
i (bi) = r∗i . We now establish that at any PBE, truncations of the prior

lead to the highest sequentially-rational reserve prices at t = 2, compared to any other equilibrium-feasible
posterior with the same highest possible valuation in the support v̄i:

Let r2
i (0) denote the optimal reserve price for buyer i at t = 2 after i chooses action 0 at t = 1. Lemma 5

(below) implies that if r2
i (âi) < v̄i(0), then it must be the case that r2

i (âi) = r2
i (0). Suppose that we merge all

actions associated with the same reserve prices into one of them and call the merged action, 0m, as follows:
The probability that valuation vi chooses action 0m is given by mi (0m|vi) = mi (0|vi) + mi (âi|vi) +....,
where we add over all actions for which the reserve price is equal to r2

i (0). We denote the optimal reserve
price given the resulting posterior as r2

i (0m). From the analysis of the previous case, it follows that that
r2
i (0

m) = r2
i (âi) = r2

i (0). Now, we move on to compare r2
i (0

m) and r2
i (v̄i), which is the optimal reserve price

given posterior beliefs (4.1).
Claim: At any PBE, it holds that r2

i (0
m) ≤ r2

i (v̄i).
We argue by contradiction. Suppose that r2

i (0
m) > r2

i (v̄). First, observe that all actions chosen by
valuations below r2

i (0
m) lead to the same reserve price, so the seller’s posterior after observing the merged

action 0m is

fi(vi|0m) =


fi(vi)

F (r(0m))+
∫ v̄i
r(0m)

mi(0m|s)f(s)ds
, vi ∈ [0, r2

i (0
m))

mi(0
m|vi)fi(vi)

F (r(0m))+
∫ v̄i
r(0m)

mi(0m|s)f(s)ds
, vi ∈ [r2

i (0
m), v̄i]

. (B.4)

Define A (s) ≡ sfi(s) − Fi(v̄i) − Fi(s) = sfi(s) −
∫ v̄i
s
fi (t) dt and B (s) ≡ sfi(s) −

∫ v̄i
s
mi(0

m| (t) fi (t) dt.
Note, that since mi(0

m| (t) ≤ 1, we have that for all s A (s) ≤ B (s) . Recalling (2.3) and the definition of
r2
i (v̄), it follows that

∫ ṽ
r2
i (v̄)

A (s) ds for all ṽ ≥ r2
i (v̄), which, because A (s) ≤ B (s), immediately implies that

∫ ṽ

r2
i (v̄)

B (s) ds for all ṽ ≥ r2
i (v̄i),

contradicting the definition of r2
i (0

m). To put it very roughly, (B.4) puts less weight on the higher valuations
compared to (4.1).

What about the inter-buyer boundaries? This question can be addressed with a direct argument for the
case that buyers are ex-ante symmetric: In that case, at the commitment solution, the revenue-maximizing
boundary dividing the regions where i and j get the object is the forty-five degree line. When, at period one,
we pool valuations in [0, v̄i] and v̄i = v̄j = v̄ for all i, j ∈ I buyers are still symmetric in the eyes of the seller
at t = 2, so the optimal boundary dividing the regions where i and j get the object remains the forty-five
degree line. The common cutoff v̄ implies a common reservation price r2 (v̄) at t = 2. Then, the distortions
that arise from the sequential-rationality constraints arise only because r2(v̄) is below r∗, but the boundary
that specifies which buyer gets the object is not distorted. Hence, truncation achieves the ex-ante optimal
boundary and pooling all valuations below v̄i is optimal.

When buyers are asymmetric, the shape of the ex-ante optimal boundary can be very complex and
depends on the particular distributions. For this case, we employ an indirect argument: If v−i(vi, ai, a−i) ≤
v−i(vi, âi, a−i) for all a−i, or v−i(vi, ai, a−i) ≤ v−i(vi, âi, a−i), then (4.3) implies that the first-period menu

50Note that the left-hand side of (4.3) is constant. Note, also, that (4.3) has to hold for vi ∈ V̄i(ai) ∩ V̄i(âi) a.e.. Unless
v−i(vi, ai, a−i) = v−i(vi, âi, a−i) for all a−i and vi, condition (4.3) is very difficult to be sustained for all vi. Indeed, as
we establish in Lemma 5 in Appendix B, equilibrium considerations imply that if r2

i (âi) is in V̄i(ai), then it must hold that
r2
i (âi) = r2

i (ai); that is, the boundaries v−i(vi, ai, a−i) = v−i(vi, âi, a−i) for vi ≤ r2
i (ai). However, establishing this equality

for all vi ∈ V̄i(ai) ∩ V̄i(âi) seems impossible.
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must compensate buyer i for the discrepancy in the t = 2 probability of getting the object. If we merge these
actions, two things happen: First, there is no need to distort the period-1 allocation and, second, there are
fewer sequential-rationality constraints to satisfy. This increases the overall value of the seller’s program.

Lemma 5. If r2
i (âi) is in V̄i(ai) and i obtains the object with positive probability at t = 2 when his valuation

is equal to the reserve price r2
i (âi), then r2

i (âi) = r2
i (ai).

Proof. We argue by contradiction: Suppose that r2
i (âi) < r2

i (ai). Depending on whether r2
i (âi) > vi(âi) or

r2
i (âi) = vi(âi), there are two cases to consider:
Case 1: r2

i (âi) > vi(âi) : If r2
i (âi) > vi(âi), then Lemma 1 implies that for vi ∈ [vi(ai), r

2
i (âi)),

P âii (vi) is constant and equal P (1)ai
i , where P (1)ai

i (vi) ≡
∫
a−i∈A−i

∫
V̄−i(a−i)

qi(a)m(a−i|v−i)f−i(v−i)dv−ida−i
respectively for âi. Moreover, since [vi(ai), r

2
i (âi)) is contained in [vi(ai), r2

i (ai)), we get that

Pi (vi) = P âii (vi) = P
(1)âi
i = P

(1)ai
i , (B.5)

for vi ∈ [vi(ai), r
2
i (ai)). On the other hand, for all vi ∈

[
r2
i (âi) , r

2
i (ai)

]
, we have that

P âii (vi) ≥ P (1)âi
i + Σa−i∈A−i

δqS(a)

∫ r−i(a−i)

v−i(a−i)

m−i(a−i|v−i)f−i(v−i)dv−i > P
(1)ai
i ,

which follows because buyer i obtains the object with positive probability at t = 2 when his valuation is at the
reserve price vi = r2

i (âi), which contradicts (B.5). Analogously, we can argue that the case r2
i (âi) > r2

i (ai)

is impossible.
Case 2: r2

i (âi) = vi(âi): First, suppose that vi(âi) > r2
i (ai), while r2

i (âi) = vi(âi): When r2
i (âi) =

vi(âi), the posterior virtual valuation at vi(âi) is positive, implying that i obtains the good with positive
probability at t = 2. Also, because the seller chooses an optimal mechanism at t = 2, it must be the case that
the surplus for valuation vi (âi) at t = 2 must be zero; that is , P 2

i (vi, âi)vi (âi) − X2
i (vi, âi) = 0 implying

that

P âii (vi (âi)) vi (âi)−X âi
i (vi (âi)) = P

(1)âi
i vi (âi)−X(1)âi

i (B.6)

=
[
P

(1)âi
i + δP 2

i (vi, âi)]vi (âi)−
[
X

(1)âi
i + δX2

i (vi, âi)],

where X(1)âi
i (vi) ≡

∫
a−i∈A−i

∫
V̄−i(a−i)

zi(âi, a−i)m(a−i|v−i)f−i(v−i)dv−ida−i. This equality implies that for
vi < vi (âi) , it must be the case that

P aii (vi) ≤ P (1);âi
i (B.7)

otherwise, it is easy to see that vi (âi) would have an incentive to deviate.51

From (B.6) and (B.7), it follows that for r2
i (a) < vi < vi (âi),

P aii (vi) = P
(1)ai
i + Σa−i∈A−i

δqS(ai, a−i)

∫ v−i(vi,ai,a−i)

a−i

ma−i(v−i)f−i(v−i)dv−i ≤ P (1)âi
i . (B.8)

From the previous considerations, it follows that at vi (âi) + ε, it must be the case that

P âii (vi (âi) + ε) = P
(1)âi
i +Σa−i∈A−i

δqS(âi, a−i)

∫ v−i(vi(âi)+ε,âi,a−i)

vi(a−i)

ma−i(v−i)f−i(v−i)dv−i = P aii (vi (âi) + ε) .

(B.9)

51To see this, note that if Paii (vi) > P
(1)âi
i , then the fact that at a PBE strategies are best responses implies that

P
ai
i (vi) vi −Xai

i (vi) ≥ P
(1)âi
i vi −X

(1)âi
i ,

but, then, since vi < vi (âi) and Paii (vi) > P
(1)âi
i , we have that

P
ai
i (vi) vi (âi)−Xai

i (vi) > P
(1)âi
i vi (âi)−X

(1)âi
i ,

which contradicts (B.6) .
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Then, the requirement from Lemma 1 that P aii (vi) = P âii (vi), for vi a.e. in V̄i(ai), together with (B.8) and
(B.9), imply that for some ε > 0 small enough, we have that

P aii (vi (âi) + ε)− P aii (vi (âi))

≥ Σa−i∈A−i
δqS(âi, a−i)

∫ v−i(vi(âi)+ε,âi,a−i)

vi(a−i)

ma−i(v−i)f−i(v−i)dv−i;

thus, P 2
i must jump at vi + ε, which is impossible since Ji (vi (âi) |ai) ≥ Ji (vi (âi) + ε|ai) for ε sufficiently

close to zero. To see this, note that at vi (âi) , Ji (vi (âi) |ai) = vi (âi) −
∫ v̄i(ai)
vi(âi)

m
ai
i (ti)fi(ti)dti

fi(vi(âi))
whereas at

vi (âi) + ε, it is Ji (vi (âi) + ε|ai) = vi (âi) + ε−
∫ v̄i(ai)
vi(âi)+ε

m
ai
i (ti)fi(ti)dti

m
ai
i (vi(âi)+ε)fi(vi(âi)+ε)

,52 which cannot jump at vi (âi) + ε,

because mai
i (vi (âi) + ε) ≤ 1 and because fi is continuous (which implies that the ironed virtual valuation

cannot jump either).53

Hence, the only possibility is the other case, in which vi(âi) < r2
i (ai), which immediately implies that

r2
i (âi) < r2

i (ai). Again, observe, that since vi = r2
i (âi) makes no rents at t = 2, we have

P
(1)ai
i r2

i (âi)−X(1)ai
i = P

(1)âi
i r2

i (âi)−X(1)âi
i = P âii

(
r2
i (âi)

)
r2
i (âi)−X âi

i

(
r2
i (âi)

)
, (B.11)

where P âii
(
r2
i (âi)

)
= P

(1)âi
i + Σa−i∈A−iδ

∫ r−i(a−i)

v−i(a−i)
qS(a)δm−i(a−i|v−i)f−i(v−i)dv−i ≥ P

(1)ai
i , but then

(B.11) implies that all valuations in
[
r2
i (âi) , r

2
i (ai)

]
strictly prefer action âi, implying thatmi

(
ai|r2

i (ai)
)

= 0.

This contradicts the definition of r2
i (ai) because (2.3) implies that the reserve price cannot be equal to a

valuation where the density is zero.

C Proof of Lemma 3

In order to establish Lemma 3, we prove an intermediate Lemma.

Lemma 6. If Ji(vi) = vi − [1−Fi(vi)]
fi(vi)

is increasing in vi, then so is Ji(vi |v̄i ) = vi − Fi(v̄i)−Fi(vi)
fi(vi)

.

Proof. In order for Ji(vi |v̄i ) to be increasing in vi, the following inequality must hold:

f ′i(vi)[Fi(v̄)− Fi(vi)] ≥ −2f2
i (vi). (C.1)

Now, if Ji(vi) is increasing in vi, we have that:

f ′i(vi)[1− Fi(vi)] ≥ −2f2
i (vi). (C.2)

If f ′i ≥ 0, (C.1) is automatically satisfied. If f ′i < 0, then we have that

f ′i(vi) [Fi(v̄)− Fi(vi)] ≥ f ′i(vi) [1− Fi(vi)] ≥ −2f2
i (vi).

52For transparency of the arguments we suppose (without loss) that, other than ai, âi is the only action that is chosen with
positive probability by valuations in Vi(ai).

53Note that

vi (âi)−

∫ v̄i(ai)
vi(âi)

m
ai
i (ti) fi (ti) dti

fi (vi (âi))
− vi (âi) + ε+

∫ v̄i(ai)
vi(âi)+ε

m
ai
i (ti) fi (ti) dti

m
ai
i (vi (âi) + ε) fi (vi (âi) + ε)

≥ 0 (B.10)

as ε → 0 because
∫ v̄i(ai)
vi(âi)+ε

m
ai
i (ti)fi(ti)dti

m
ai
i (vi(âi)+ε)fi(vi(âi)+ε)

>

∫ v̄i(ai)
vi(âi)

m
ai
i (ti)fi(ti)dti

fi(vi(âi))
as ε → 0, which follows from the fact that

m
ai
i (vi (âi) + ε) ≤ 1.
If the difference in (B.10) is strictly positive, then the posterior virtual valuation drops at vi (âi) , so we have to consider the

ironed virtual valuation, which will be flat around a neighborhood of vi (âi)–call it J̄–which satisfies Ji (vi (âi) + ε|ai) ≤ J̄ ≤
Ji (vi (âi) |ai). These arguments imply that around the neighborhood of vi (âi) , Ji (vi (âi) |ai) does not jump upwards.
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From Lemma 2, it follows that buyer i never gets the object at t = 2 when his valuation is below the
optimal second-period reserve price denoted by r2

i (v̄i), which satisfies (2.3) for beliefs given by (4.1). With
the help of Lemma 2 and this last observation, the sellers’ expected revenue can be rewritten as:

Σi∈I

(∫ v̄i

r2
i (v̄i)

δP 2
i (vi)Ji(vi)fi(vi)dvi +

∫ b

v̄i

Pi(vi)Ji(vi)fi(vi)dvi

)
. (C.3)

We employ (C.3) to show that at a solution of Program NC, v̄i ≥ r∗i .

Proof. Our goal is to establish a solution v̄i ≥ r∗i for all i ∈ I, where r∗i is given by (2.3) for the prior. In
order to do so, we evaluate the impact of a marginal increase in v̄i on the seller’s revenue and show that it
is strictly positive whenever v̄i < r∗i , implying that at a revenue-maximizing assignment, it must be the case
that v̄i ≥ r∗i .

As a preliminary step, we show that r2
i is a continuous function of v̄i, and, hence, it is differentiable

almost everywhere. From Lemma 6, we know that if Ji(vi) is increasing, so is Ji(vi |v̄i ). Hence, r2
i is unique.

Moreover, since fi is continuous, so is Fi, which ensures that r2
i is a continuous function of v̄i, and, hence,

it is differentiable almost everywhere.54

Now, when we increase v̄i for some buyer, this has a direct and an indirect effect on (C.3). The direct
effect is a change in the range of integration for i. The indirect effect is a change on p2

j , for all j ∈ I, and it
results because an increase in v̄i changes the ranking of the posterior virtual valuations: Recall that buyer i
wins the object at t = 2 if his posterior virtual valuation is the highest, and it is above the seller’s value-that
is, we must have vi − Fi(v̄i)−Fi(vi)

fi(vi)
≥ vj − Fj(v̄j)−Fj(vj)

fj(vj) and vi − Fi(v̄i)−Fi(vi)
fi(vi)

≥ 0.

We now examine each of these effects separately. The direct effect of increasing v̄i is:

δP 2
i (v̄i)Ji(v̄i)fi(v̄i)− δP 2

i (r2
i (v̄i))Ji(r

2
i (v̄i))fi(r

2
i (v̄i))

∂r2
i (v̄i)

∂v̄i
− Pi(v̄i)Ji(v̄i)fi(v̄i) (C.4)

= −
(
Pi(v̄i)− δP 2

i (v̄i)
)
Ji(v̄i)fi(v̄i)− δP 2

i (r2
i (v̄i))Ji(r

2
i (v̄i))fi(r

2
i (v̄i))

∂r2
i (v̄i)

∂v̄i
> 0.

This inequality results from the following observations: At a solution of Program 2, Pi must be increasing,
implying that Pi(v̄i) ≥ δP 2

i (v̄i). Also, from Lemma 2 in Skreta (2006b), we have that r2
i (v̄i) is increasing in

v̄i, from which we obtain that ∂r2
i (v̄i)
∂v̄i

≥ 0. From the last two observations, it follows that this partial effect
(C.4) is strictly positive for v̄i < r∗i since if this is the case, we have Ji(v̄i) < 0, and, hence, Ji(r2

i (v̄i)) < 0.

We now move on to establish that the indirect effect of v̄i on expected revenue is zero:

Σi∈I

∫ v̄i

r2
i (v̄i)

δ
∂P 2

i (vi)

∂v̄i
Ji(vi)fi(vi)dvi = 0.

To see this, let p2(v) denote the allocation at t = 2 given v̄i, and let p̂2(v) denote the allocation rule at t = 2

given cutoff v̄i + ε when the realized vectors of valuations are v. The vector of types where these two rules
differ are at points where the ranking of i’s virtual valuation flips and are located at points where virtual
valuations are equal to each other. In other words, p2

i (v) = p̂2
i (v) for all v ∈ V−i × [0, v̄i] , except the vectors

of valuation where the ranking of virtual valuations changes. This happens along the boundaries where
posterior virtual valuations are equal, which is a set of measure zero.

Therefore, the direct effect of increasing v̄i, as captured in (C.4), is equal to the total. We can, then,
conclude that at a revenue-maximizing PBE, it must be the case that v̄i ≥ r∗i .

54This cutoff can be alternatively obtained as the solution of the optimal price by a monopolist who is facing a downward-
sloping demand [Fi(v̄i) − Fi(r2

i )]. The monopolist problem is [Fi(v̄i) − Fi(r2
i )]r2

i . The first-order necessary conditions for a

maximum (which are also sufficient givenMHR), are [Fi(v̄i)−Fi(r2
i )]−fi(r2

i )r2
i = 0 or, since fi(r2

i ) > 0, vi−
Fi(v̄i)−Fi(r

2
i )

fi(r
2
i )

= 0.

Then, the continuity of r2
i follows by the continuity of the seller’s objective function and the Theorem of the Maximum.
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D Proof of Proposition 4

Proof. When the seller has observed actions a and employed some disclosure policy that revealed a vector
of messages λ, her revenue conditional on a and λ55 can be expressed as (2.2), with an additional term as
follows: ∫

V̄ (a)

Σi∈Ipi(v, a, λ)Ji(vi|ai)f(v|a)dv − Σi∈IEv−i
[ui(vi(ai), v−i, a, λ) |a, λ ]

+

∫
V̄ (a)

Σi∈Iτi(v, a, λ)f(v |a )dv︸ ︷︷ ︸
information fees

, (D.1)

where ui(v, a, λ) = pi(v, a, λ)vi − xi(v, a, λ) and

− τi(v, a, λ) ≡ ui(v, a, λ)−
∫ vi

vi(ai)

pi(ti, v−i, a, λ)dti − ui(vi(ai), v−i, a, λ).56 (D.2)

The first two terms are the same as in (2.2) because, roughly, a buyer can still “mimic” the behavior of the
same set of valuations, as in the case where all the information that the seller has is public. The additional
term

∫
V̄ (a)

Σi∈Iτi(v, a, λ)f(v |a )dv results from the fact the seller’s and the buyers’ beliefs differ, and it can
be thought of as the sum of transfers that the seller hopes to extract from the buyers for providing them
with information about their competitors.

Step 1: Fix a strategy profile, and let π (a) denote the ex-ante probability that a is the vector of actions
chosen. In this step, we show that∫

a∈A
π(a)

∫
V (a)

Σλ∈Λc(λ |a )τi(v, a, λ)f(v |a )dvda = 0, (D.3)

where c(λ |a ) denotes the probability that the disclosure policy reveals λ when the vector of actions chosen
is a.

We first show that for a mechanism that satisfies ICi for all i ∈ I, it must hold that

Ev−i,a−i,λ−i [τi(v, a, λ) |ai, λi ] = 0. (D.4)

To see this, note that, by definition, at a truth-telling equilibrium it must be the case that

Ui(vi, ai, λi) = Ev−i,a−i,λ−i [ui(v, a, λ) |ai, λi ] . (D.5)

Also, following Myerson (1981), we can express buyer i’s expected payoff at an incentive-compatible mecha-
nism as

Ui(vi, ai, λi) = Ev−i,a−i,λ−i

[∫ vi

vi(ai)

pi(ti, v−i, a, λ)dti + ui(vi(ai), v−i, a, λ) |ai, λi

]
. (D.6)

Combining (D.5) and (D.6), we obtain that

Ev−i,a−i,λ−i

[
ui(v, a, λ)−

∫ vi

vi(ai)

pi(ti, v−i, a, λ)dti − ui(vi(ai), v−i, a, λ) |ai, λi

]
= 0. (D.7)

With the help of (D.2), (D.7) can be rewritten as Ev−i,a−i,λ−i [τi(v, a, λ) |ai, λi ] = 0, establishing (D.4).
Adding over all vi, λi, ai, we get (D.3).

Step 2: We show that given any disclosure policy, at a solution of the informed seller problem, it must
hold that Σi∈I

∫
V (a)

τi(v, a, λ)f(v |a )dv = 0 for all i ∈ I and all a, a.e..

55If the seller employs partially revealing disclosure policies, she maintains some private information herself, thus endoge-
nously becoming an informed principal. Then, a and λ, determine the seller’s type.

56For more details, see Skreta (2011).

34



For some disclosure policy c, let p, x denote a revenue-maximizing mechanism given c. From (D.3), it
follows that if for a positive measure of a, λ we have that Σi∈I

∫
V (a)

τi(v, a, λ)f(v |a )dv > 0, then, there exists

a positive measure of â, λ̂ with

Σi∈I

∫
V (â)

τi(v, â, λ̂)f(v |â )dv < 0. (D.8)

We know that pFT , xFT is feasible for the seller, given c for all realizations of a and λ because it is dominant-
strategy incentive-compatible. Then, if p, x is a revenue-maximizing mechanism at t = 2 given a disclosure
policy c, then it must be the case that for each a, λ, the seller’s revenue at p, x is as least as high as at
pFT , xFT for all a, λ. For â, λ̂, this implies that∫

V (â)

Σi∈Ipi(v, â, λ̂)Ji(vi, âi)f(v |â )dv − Σi∈IEv−i

[
ui(vi(ai), v−i, â, λ̂)

∣∣∣â, λ̂]
+

∫
V (â)

Σi∈Iτi(v, â, λ̂)f(v |â )dv

≥
∫
V (â)

Σi∈Ip
FT
i (v, â, )Ji(vi, âi)f(v |â )dv, (D.9)

where in the LHS of the inequality, we use the fact that at pFT , xFT the payoffs to the lowest valuations are
zero.

Because pFT maximizes (2.2) , it satisfies∫
V (â)

Σi∈Ip
FT
i (v, â, )Ji(vi, âi)f(v

∣∣∣ˆ̂a )dv ≥
∫
V (â)

Σi∈Ipi(v, â, λ̂)Ji(vi, âi)f(v |â )dv (D.10)

−Σi∈IEv−i

[
ui(vi(âi), v−i, â, λ̂)

∣∣∣â, λ̂] ,
which, together with (D.8), contradicts (D.9).

This step allows us to conclude, that, regardless of the realized vectors of actions at t = 1, and the
disclosure policy, the best that the seller can do at t = 2 is to choose a mechanism that maximizes the first
two terms of (D.1) , which coincide with (2.2) . The result follows.

E Implications of Sequential Rationality

By the revelation principle, we can restrict attention to incentive-compatible direct revelation mechanisms,
consisting of an assignment rule p2 : V (a) −→ ∆(Ī) and a payment rule x2 : V (a) −→ RĪ . When posterior
densities are zero, the sets of valuations Vi(ai) and V (a) = ×i∈IVi(ai) are not necessarily convex and two
difficulties arise: First, we cannot express expected revenue only as a function of the allocation rule, and sec-
ond, the formula of posterior virtual valuation is not well-defined for valuations where the posterior density
is zero. To address the first difficulty, we establish that our problem of interest is equivalent to a convexified
problem; to address the second, we approximate the problem of interest with one in which virtual valuations
are well-defined and show that the solution of the approximate problem is arbitrarily close to the one of the
problem we are interested in.

The Convexified Problem: We consider an artificial problem that has the same objective function as the
problem of interest, but a different feasible set because we impose incentive and participation constraints on
the convex hulls of Vi(ai) and V (a). Proposition 1 in Skreta (2006) shows that these problems are equivalent
in the following sense: One can obtain a solution of the program of interest by solving the convexified problem
and by restricting the solution to the actual set of valuations. Conversely, any solution of the program of
interest, can be extended appropriately to the convex hull of valuations, and it is a solution of the convexified
problem. Hence, without loss of generality, we can consider the convexified problem. The intuition for this
result is that “adding” types that occur with probability zero does not change the value of the program. For
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the convexified problem, we have, as usual, a “revenue equivalence theorem,” and we use standard arguments
to express the seller’s problem as follows:

max
p2,x2

∫
V̄ (a)

Σi∈Ip
2
i (v, a) [vifi(vi|ai)− (1− Fi(vi|ai))] f−i(v−i|a−i)dv − Σi∈IU

2(a)
i (p2, x2, vi (ai)), (E.1)

subject to: P 2
i (vi, a) increasing in vi on V̄i (ai) ; 0 ≤ p2

i (v, a) ≤ 1 and Σi∈Ip
2
i (v, a) ≤ 1 for all v ∈ V̄ (a) .

Unfortunately, we still have to deal with the fact that a buyer’s virtual valuation is not necessarily well-
defined because the density fi can be zero for some valuations on V̄i (a). The inability to divide by fi (vi|ai)
to obtain the virtual valuation creates difficulties, as one cannot compare the benefit from assigning the good
to one buyer versus another.57 We address this issue by considering another artificial program that is “close”
to the convexified problem:

The Approximate Problem: We approximate the objective function with one where the density of each

i is replaced by fεi (vi|ai) =

{
fi(vi|ai) if fi(vi|ai) > 0

ε otherwise , where ε > 0, arbitrarily small. The resulting

problem, has the same constrained set as the program in (E.1), because in (E.1) incentive and participation
constraints are imposed on V̄ (a), which includes vectors of valuations that occur with probability zero.
Moreover, the objective function is arbitrarily close to the one in (E.1) : It is routine to check that the
objective function is continuous in ε, and the feasible set is sequentially compact in the topology of point-
wise convergence (for similar arguments, see the Technical Appendix of Skreta (2006b)). Then, the Theorem
of the Maximum implies that the value and the solution of the approximate problem are arbitrarily close to
the ones of (E.1) .
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