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Many document classification applications require human understanding of the reasons for data-driven clas-

sification decisions: by managers, client-facing employees, and the technical team. Predictive models treat

documents as data to be classified, and document data are characterized by very high dimensionality, often

with tens of thousands to millions of variables (words). Unfortunately, due to the high dimensionality, under-

standing the decisions made by document classifiers is very difficult. This paper begins by extending the most

relevant prior theoretical model of explanations for intelligent systems to account for some missing elements.

The main theoretical contribution of the work is the definition of a new sort of explanation as a minimal set

of words (terms, more generally), such that removing all words within this set from the document changes

the predicted class from the class of interest. We present analgorithm to find such explanations, as well as a

framework to assess such an algorithm’s performance. We demonstrate the value of the new approach with a

case study from a real-world document classification task: classifying web pages as containing objectionable

content, with the goal of allowing advertisers to choose notto have their ads appear there. A second empiri-

cal demonstration on news-story topic classification uses the 20 Newsgroups benchmark dataset. The results

show the explanations to be concise and document-specific, and to be capable of providing better understand-

ing of the exact reasons for the classification decisions, ofthe workings of the classification models, and of the

business application itself. We also illustrate how explaining documents’ classifications can help to improve

data quality and model performance.
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1. Introduction

Document classification systems classify text documents automatically, based on the words,

phrases, and word combinations therein (hereafter, “words”). Business applications of document
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classification are becoming increasingly widespread, especially with the introduction of low-cost

micro-outsourcing systems for annotating training corpora. Prevalent applications include senti-

ment analysis (Pang and Lee 2008), spam identification (Attenberg et al. 2009), web page classifi-

cation (Qi and Davison 2009), legal document classification(Tseng et al. 2007), medical document

triage (Wallace et al. 2010), and document classification for topical web search (Pant and Srini-

vasan 2005), just to name a few. Classification models are built from labeled data sets that encode

the frequencies of the words in the documents. Importantly for this paper, and different from many

data mining applications, the document classification datarepresentation has very high dimension-

ality, with the number of words and phrases typically ranging from tens of thousands to millions.

The main contribution of this paper is to examine in detail animportant aspect of the business

application of document classification that has received little attention in the research literature.

Specifically, organizations often need to understand the exact reasons why classification models

make particular decisions. The need comes from various perspectives, including those of managers,

customer-facing employees, and the technical team. To understand these needs more deeply, in the

next section we extend an existing theoretical model from the Information Systems (IS) literature

to include these various perspectives.

As a concrete illustration, consider an application currently receiving substantial interest in on-

line advertising: keeping ads off of objectionable web content (eMarketer April 27, 2010). Having

invested substantially in their brands, firms cite the potential to appear adjacent to nasty content as

the primary reason they do not spend more on on-line advertising. To help reduce the risk, docu-

ment classifiers are applied to web pages along various dimensions of objectionability, including

adult content, hate speech, violence, drugs, bomb-making,and many others. However, because the

on-line advertising ecosystem supports the economic interests of both advertisersandcontent pub-

lishers, black-box models are insufficient. Managers cannot put models into production that might

block advertising from substantial numbers of non-objectionable pages, without understanding the

risks of incorporating them into the product offering. Customer-facing employees need to explain
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why particular pages were deemed objectionable by the models. And the technical team needs

to understand the exact reasons for the classifications made, so that they can address errors and

continuously improve the models.

Popular techniques to build document classification modelsinclude naive Bayes, linear and non-

linear support vector machines (SVMs), classification-tree based methods (often used in ensem-

bles, such as with boosting (Schapire and Singer 2000)), K-nearest neighbor (Han et al. 2001) and

many others (Hotho et al. 2005). Because of the massive dimensionality, even for linear and tree-

based models, it is very difficult to understand exactly how agiven model classifies documents. It

is essentially impossible for a non-linear SVM or an ensemble of trees. Understanding the classi-

fications requiresconciseexplanations, which here we define as explanations that refer to only a

very small fraction of the total vocabulary, in contrast to existing explanation approaches which in

most cases include large fractions of the vocabulary.

Understanding particular classifications also provides other important benefits. Not only can we

get improved understanding of the classification model, theexplanations also can provide a novel

lens into the complexity of the business domain. For example, in Explanation 1 (shown below;

described fully in Section 3.3), the word ‘welcome’ as an indication of adult content initially seems

strange. Upon investigation/reflection we understand thatin some cases an adult website’s first

page contains a phrase similar to‘Welcome to ... By continuing you confirm you are an adult and

agree with our policy’. The explanation brings this complexity to light.

We introduce this problem, tying it in to the existing literature on explanations for decision

systems and extending the relevant theory to account for modern, data-driven modeling. In line

with this theory, we then introduce the first (to our knowledge) technique that directly addresses the

explanation of the decisions made by document classifiers. The technique focuses on explaining

why a document is classified as a specific class of interest (e.g., “objectionable content” or “hate

speech”). Finally, we present a case study based on data froma real application to the business

problem of safe advertising discussed above, and an empirical follow-up study on benchmark data
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sets (from news classification). These studies demonstratethat the methods can be effective, and

also flush out additional important issues in explaining document classifications, such as the need

for hyper-explanations.

Explanation 1: An example explanation why a web page is classified as having adult content.

If words (welcome fiction erotic enter bdsm adult)are removed then class changes from adult to non-adult.

2. Explanations and Statistical Classification Models

Explaining the decisions made by intelligent decision systems has received both practical and

research attention for decades, and a complete review is well beyond the scope of this paper.

Nonetheless, there are important results from prior work that help to frame, motivate, and explain

the specific gap in the current state of the art that this paperaddresses.

2.1. Model-based decision systems and instance-specific explanations

Starting as early as the celebrated MYCIN project in the 1970sstudying intelligent systems for

infectious disease diagnosis (Buchanan and Shortliffe 1984), the ability for intelligent systems

to explain their decisions was understood to be necessary for effective use of such systems and

therefore was studied explicitly. The document classification systems that are the subject of this

paper are an instance of decision systems (DSs): systems that either (i) support and improve human

decision making (as with the characterization of decision-support systems by Arnott (2006)), or (ii)

make decisions automatically. The focal application of this paper’s case study falls in the second

category: billions of attempts to place advertisements aremade each day, and each decision is

made in a couple dozen milliseconds. Model-based decision systems have seen a steep increase in

development and use over the past two decades (Banker and Kauffman 2004). We focus on models

produced by large-scale automated statistical predictivemodeling systems (Shmueli and Koppius

2011), for which generating explanations can be particularly problematic.

Different applications impose different requirements forunderstanding. Consider three differ-

ent application scenarios, both to add clarity in what follows, and so that we can rule out one of
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them. First, in some applications it is important to understand every decision that the DSmay pos-

sibly make. For example, for many applications of credit scoring (Martens et al. 2007) regulatory

requirements stipulate that every decision be justifiable,and often this is required in advance of

the official “acceptance” and implementation of the system.Similarly, one could easily see that a

medical decision system may need to be completely transparent in this respect. The present paper,

about individual case-specific explanations, is not intended to apply to systems such as these.1

In contrast, consider applications where one needs to explain the specific reasons for some sub-

set of the individual decisions (cf., the theoretical reasons for explanations summarized by Gregor

and Benbasat (1999), discussed below). Our case study falls into this category. Often, this need

for individual case explanations arises because particular decisions need to be justified after the

fact, because (for example) a customer questions the decision or a developer is examining model

performance on historical cases. Furthermore, to revealproblemswith the classification of docu-

ments it may be more efficient for an analyst to study concise explanations than the documents

themselves. Alternatively, a developer may be exploring decision-making performance by giving

the system a set of theoretical test cases. In both scenarios, it is necessary for the system to provide

explanations for specific individual cases.2 Other examples in the second scenario include fraud

detection (Fawcett and Provost 1997), many cases of targeted marketing, and all of the document

classification applications listed in the first paragraph ofthis paper.

In a third application scenario, every decision that the system actually makes must be under-

stood. This often is the case with a classical decision-support system, where the system is aiding a

human decision maker, for example for forecasting (Gönül et al. 2006) or auditing (Ye and Johnson

1995). For such systems, again, it is necessary to have individual case-specific explanations.

1 The current prevailing interpretation of this requirementfor complete transparency argues for a globally comprehen-

sible predictive model. Indeed, in credit scoring generally the only models that are accepted are linear models with a

small number of well-understood, intuitive variables. Such models are chosen even when non-linear alternatives are

shown to give better predictive performance (Martens et al.2007).

2 Individual case-specific explanations may also be sufficient in many applications. For this paper it is only important

that they be necessary.
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2.2. Cognitive perspectives on model explanations

Gregor and Benbasat (1999) provide a survey of empirical workon explanations from intelligent

systems. They find that explanations are important to users when there is some specific reason and

anticipated benefit, when an anomaly is perceived, or when there is an aim of learning.

Their theoretical analysis brings to the fore three ideas that are critical for our context. First,

they introduce the reasons for explanations: to resolve perceived anomalies, a need to better grasp

the inner workings of the intelligent system, or the desire for long-term learning. Second, they

describe the type of explanations that should be provided: they emphasize the need not just for

general explanations of the model, but for explanations that are context-specific. Third, Gregor and

Benbasat emphasize the need for “justification”-type explanations, which provide a justification

for moving from the grounds to the claims, in contrast to rule-trace explanations. In statistical

predictive modeling, the “rule trace” often entails simplythe application of a mathematical function

to the case data, with the result being a score representing the likelihood of the case belonging

to the class of interest, with no justification of why. There is little existing work on methods for

explaining modern statistical models extracted from data that satisfy these latter two criteria, and

none (to our knowledge) that provide such explanations for the very high-dimensional models that

are the focus of this paper.

An important subtlety that is not brought out explicitly by Gregor and Benbasat, but which

is quite important in our contemporary context is the difference between (i) an explanation as

intended to help the user to understand howthe worldworks, and thereby help with acceptance

of the system, and (ii) an explanation of howthe modelworks. The latter case can be further

subdivided into (a) how the model works in general, and (b) how the model works on a particular

instance. The explanation thereby either can help with acceptance, or can focus attention on the

need for improving the model. When the model reflects reality well, then this also will support (i).

2.3. Kayande et al.’s 3-gap framework

In order to examine more carefully why explanations are needed and their impact on decision

model understanding, long-term learning, and improved decision making, we turn to the recent
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work by Kayande et al. (2009). This work focuses on the same context as we do in our case study,

specifically where data are voluminous, the link between decisions and outcomes is probabilistic,

and the decisions are repetitive. They presume that it is highly unlikely that decision makers can

consistently outperform model-based DSs in such contexts.

Prior work has suggested that when users do not understand the workings of the DS model,

they will be skeptical and reluctant to use the model, even ifthe model is known to improve deci-

sion performance, see, e.g., Umanath and Vessey (1994), Limayem and De Sanctis (2000), Lilien

et al. (2004), Arnold et al. (2006), Kayande et al. (2009). Further, decision makers need impe-

tus to change their decision strategies (Todd and Benbasat 1999), as well as guidance in making

decisions (Silver 1991). Kayande et al. introduce a “3-gap”framework (Figure 1) for understand-

ing the use of explanations to improve decision making by aligning three different “models”: the

user’s model, the system’s model, and reality. Their results show that guidance toward improved

understanding of decisions combined with feedback on the potential improvement achievable by

the model induce decision makers to align their mental models more closely with the decision

model, leading to deep learning. This alignment reduces thecorresponding gap (Gap 1), which in

turn improves user evaluations of the DS. It is intuitive to argue that this then improves acceptance

and increases use of the system. Under the authors’ assumption that the DS’s model is objectively

better than the decision maker’s (large Gap 3 compared to Gap2), this then would lead to improved

decision-making performance, cf., Todd and Benbasat (1999). Expectancy theory suggests that

this will lead to higher usage and acceptance of the DS model,as users will be more motivated to

actually use the DS if they believe that a greater usage will lead to better performance (De Sanctis

1983).

2.4. An extended gap framework

The framework of Kayande et al. is incomplete in two important ways, which we now will address

in turn. First, Kayande et al. do not address the use of explanations (or other feedback) to improve

the DS model. Technically this incompleteness is not an incompleteness in their 3-gap framework,
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Figure 1 3-Gap framework by Kayande et al. (2009).

because improving the model fits as closing Gap 2. Indeed, theauthors note specifically that “to

provide high-quality decision support, the gap between theDSS model and the true model must

be small (Gap 2).” However, in the paper, Kayande et al. focustheir attention on closing Gap 1

between the user’s mental model and the DS model. They justify this with the explicit assumption

“that the DSS model is of high objective quality (small Gap 2)and that it is of better quality than

the user’s mental model (large Gap 3).” Even when the model’sperformance generally is much

better than the user’s, in many applications there still areplenty of cases where the user is correct

when the model is wrong. True mistakes of the model, when noticed by a user, can jeopardize user

trust and acceptance.

More generally, we need research that focuses on a user-centric theoretical understanding of the

production of explanations with a primary goal of improvingdata-driven models based on feedback

and iterative development. This is important because as model-based systems increasingly are built

by mining models from large data, users may have much less confidence in the model’s reasoning

than with hand-crafted knowledge-based systems. There arelikely to be many cases where the

decisions are erroneous due either to biases in the process,or to overfitting the training data (Hastie

et al. 2001). As pointed out by Gregor and Benbasat (1999), a user will want an explanation when

she perceives an anomaly. The resultant explanation may help the user to learn about how the world
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(a) Proposed 7-Gap model highlighting the gaps

between the users’ models and reality. Understanding

document classifications can close these gaps, helping

users to understand the world better, thereby improving

acceptance of the system.
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(b) Proposed 7-Gap model highlighting the gaps

between the users’ models and the DS’s model. These

gaps can be closed in either direction: improving users’

understanding of how the DS model works, or helping to

improve the DS model. Improving the DS model, in turn,

helps close the vertical gap between the DS model and

reality.

Figure 2 7-gap extension to Kayande et al.’s 3-gap framework, showing that (i) explanations can

close more than just the gap between the user’s mental model and the DS model, and (ii) the

extension of a single user to three relevant user roles: client, manager and developer.

works (Kayande et al. 2009), and thereby improve acceptance. However, it alternatively may lead

to the identification of a flaw in the model, and lead to a development effort focused on improving

the model. At a higher level, this ability for the users and the developers to collaborate on fixing

problems with the system’s decision-making may also improve user acceptance, because the user

sees herself as an active, integral part of the system development, rather than a passive recipient

of explanations as to why she is wrong about the world.Therefore, our first extension to the 3-gap

framework is thatexplanationscan be used to improve the model—closing Gap 2 (and Gap 1) in

the other direction—as well as to improve user understanding.
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This leads us to the second important incompleteness in the framework of Kayande et al. The

3-gap framework considers a single, monolithic “user” of the decision system. We contend that to

better understand the uses of explanations in the context ofpractices within contemporary organi-

zations, we need to differentiate between different roles of people who interact with the decision

system.3 In order to understand how explanations are or should be used, there are at least three

different roles that are important to distinguish: developers, managers, and customers.

Figures 2a and 2b present a 7-gap extension to Kayande et al.’s framework. The extended frame-

work makes three novel contributions. First, it clarifies the bidirectional nature of the gap closing

that can be achieved via explanations: explanations can lead to changes in user mental models;

they also can lead to changes in the DS model. Second, the extended framework divides out three

different user roles. Each different role has different needs and uses for explanations, as will be

illustrated in the context of our case study. Third, the extended framework distinguishes between

two quite different sorts of user understanding, which bothare important: understanding reality

better, and understanding the DS model better.

More specifically, Figure 2a illustrates how the extended model breaks apart the closing of the

gap between the different user roles and reality. In each case, explanations can give the user better

understanding of the domain. However, although customers,managers, and developers all need to

accept the DS model, “acceptance” means different things for each. In our case study application

of web page classification for safe advertising, explanations of why ads are blocked on certain

pages can increase acustomer’s understanding of the sorts of pages on which her ads are being

shown (a difficult task in modern online display advertising). If these include hate speech pages

on user-generated content sites, this may substantially increase the user’s acceptance of the need

in the first place for the DS.Managersseeing explanations of blocked pages can better understand

the landscape of objectionable content, in order to better market the service.Developerscan better

3 We discuss different roles rather than different sorts of people, because in some contexts the same person may play

more than one of the roles.
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understand the need for focused data collection, in order toensure adequate training data for the

classification problems faced (Attenberg and Provost 2010,Attenberg et al. 2011). In sum, assum-

ing (as do Kayande et al.) that the DS model is relatively close to reality, a better understanding

of the domain should improve: acceptance by customers and managers, marketing and sales by

managers, and efficiency and efficacy of developers.

Figure 2b highlights the gaps between the users’ mental models and the DS model. The arrows

moving from the mental models toward the DS model break apartdifferent sorts of understanding

that underlie the gap closing that explanations may provide, inherent in the treatment by Kayande

et al. In the case of data-driven statistical models, all thedifferent user roles may need to achieve

some level of understanding of the decision system, in orderto improve acceptance (in line with

prior research). At the top of the figure, clients/customersmay need to have the specific decisions of

the system justified. As represented by the middle gap, managers need to understand the workings

of the DS model: customer-relationship managers need to deal with customer queries regarding

how decisions are made. Even in applications for which black-box systems are deployed routinely,

such as fraud detection (Fawcett and Provost 1997),managersstill need to have confidence in the

operation of the system (middle gap) and may need to explain to customers reasons for particular

classifications when errors are made. Operations managers need to “sign off” on models being

placed into production, and prefer to understand how the model makes its decisions, rather than

just to trust the technical/data science team. Developmentmanagers need to understand specific

decisions when they are called into question by customers orbusiness-side employees. Finally,

(bottom gap) the data science developers themselves need tounderstand the reasons for decisions

in order to be able to debug/improve the models (discussed next). Holistic views of a model and

aggregate statistics across a “test set” may not give sufficient guidance as to what exactly is wrong

and how the model can and should be improved.

The dashed arrows (emanating from the DS model) represent gap-closing in the other direction,

by improving the DS model. The explanation methods introduced in this paper can have asub-

stantial impact on improving document classification models from the users’ perspectives. Despite



Martens and Provost: Explaining Data-Driven Document Classifications
12

the stated goals of early research on data mining and knowledge discovery (Fayyad et al. 1996),

very little work has addressed support for the process of building acceptable models, especially

in business situations where various parties must be satisfied with the results. Recently, there is

increasing research focus on using advanced statistical models that mimic a certain behavior in

the real world, without understanding the meaning of that behavior (Norvig 2011). The design we

introduce provides support for such understanding. The DS model can move closer to the mental

models of people playing each of the different user roles, tothe extent that they were correct on the

specific flaws that were improved upon. Presumably these gap closings also would improve accep-

tance. Possibly equally important for acceptance would be the increase in the users’ perception

that the model can be improved when necessary.

Note that, when improved, the model is likely also to move closer to reality (the vertical, dashed

arrow). We say “is likely to” because since there is a gap between each user’s mental model and

reality, it may be that moving the model closer to the mental model of some user actually moves

it further away from reality. We will not examine that possibility in this paper.4 The extended

gap model also highlights the existence of the vertical gapsbetween user roles. Closing these

gaps also is important to DS development (see, e.g., Sambamurthy and Poole (1992), Barki and

Hartwick (2001)). For example, to avoid conflicts managers and developers should have similar

mental models. Producing good explanations may address these gaps indirectly, as closing the gaps

between the user roles and reality and between the user rolesand the DS model may act naturally

to close these vertical gaps between user mental models. We do not address these vertical gaps

directly in this paper.

4 We have omitted the possibility that reality can move closerto the DS model in our treatment. However, this is not

necessarily out of the question. The “true” classificationsof documents are subjective in certain domains, and it may

be that a broadly used classification system changes the accepted subjective class definitions. Further, in dynamic

domains the production of documents may co-evolve with system development and usage. Authors may write docu-

ments differently based on their knowledge of the algorithms used to find or process them. Such issues are beyond the

scope of this paper.
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3. Explaining Documents’ Classifications

Prior research has examined two different sorts of “explanation” procedures for understanding

predictive models: global explanation and instance-levelexplanation (Craven and Shavlik 1996,

Martens et al. 2007, Robnik-Šikonja and Kononenko 2008,Štrumbelj et al. 2009,̌Strumbelj and

Kononenko 2010, Baehrens et al. 2010). Global explanations provide improved understanding of

the complete model, and its performance over the entire space of possible instances. Instance-level

explanations provide explanations for the model’s classification of an individual instance.

In the previous section we presented reasons for preferringinstance-level explanations over

global explanations, drawing on prior IS research. We now will present additional reasons why

existing methods are not ideal (or not suitable) for explaining classifications of documents in par-

ticular, and then we will present a new approach that addresses the drawbacks.

3.1. Key Aspects of Document Classification

We focus on textual document classification, where a score isproduced representing the predicted

likelihood (or strength of belief) of the document belonging to some discrete class or category,

based on the values of a large number of independent variables representing the words.5 There

are several ways in which document classification differs from traditional data mining for com-

mon applications such as credit scoring, medical diagnosis, fraud detection, churn prediction and

response modeling. First, the data instances have less structure. Technically, one can engineer a

feature-vector representation from the sequence or bag of words, but this leads us to our second

main difference. In a feature-vector representation of a document data set, the number of variables

is often orders of magnitude larger than in the “standard” classification problems presented above.

Thirdly, the values of the variables in a text mining data setdenote the presence, frequency of

occurrence, or some positively weighted frequency of occurrence of the corresponding word (see

below).

5 Technically, text document classification applications generally use “terms” that include not only individual words,

but phrases, metadata terms, n-grams, etc. For this paper, we call all these “words.” Cases where the terms are not

comprehensible to a human present a limitation of our approach.
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These three aspects of document classification all are critical for the explanation of classifier

decisions. The first two combine to render existing explanation approaches relatively useless (as

we discuss in detail next). The third, however, presents thebasis for the design of the solution

we propose. Specifically, with all such document classification representations, removing words

always corresponds to reducing the value of the corresponding variable or setting it to zero.

A few technical details of document classification are important here. All non-textual symbols,

such as punctuation, are removed from each document, unlessthey are specifically included for

their semantic relationship to the classification task. Fora set ofn documents and a vocabulary

of m words, ann×m dataset is created with the value tfi j on row i and columnj denoting the

frequency of wordj in documenti (“term frequency”). As such, each document is described by a

sparse numerical row vector. As most of the words available in the vocabulary will not be present

in any given document, most values will be zero, and a sparse representation typically is used.

Often a weighting scheme is applied to the frequencies, where the weights reflect the importance of

the word for the specific application (Hotho et al. 2005). A commonly used data-driven weighting

scheme istfidf : xi j = tf i j × idf j where the weight of a word is the “inverse document frequency,”

which describes how uncommon the word is:id f (w j) = log(n/n j) with n j the number of docu-

ments that contain wordw j .

Classification models are built using a training set of “labeled” documents, meaning we know

the value of the “target” variable being predicted/estimated. The resultant classification model, or

classifier, maps any document to one of the predefined classes, and more specifically generally

maps it to a score representing the likelihood of belonging to the class; this score is compared

to a threshold for classification. Based on an independent test set, the performance of the model

can be assessed by comparing the true labels with the predicted labels. Note that Latent Semantic

Analysis (LSA) (Deerwester et al. 1990) is sometimes used for indexing and information retrieval

(e.g., Sidorova et al. (2008)). Its clustering over the identified concepts can provide improved

understanding, but is different from making or explaining prediction models based on labeled data.
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3.2. Global explanations

The most common approach to understanding a predictive model is to examine the coefficients of

a linear model. Unfortunately such an approach is impracticable for a model with 104 to 106 vari-

ables. For such applications, the most common approach for alinear model is to list the variables

(words in our case) with the highest weights. To understand more complex models such as neural

networks (Bishop 1996) and non-linear support-vector machines (SVMs) (Vapnik 1995), the prin-

cipal approach is rule extraction: rules or trees are extracted that mimic the black box as closely as

possible (Craven and Shavlik 1996, Martens et al. 2007). The motivation for using rule extraction

is to combine the desirable predictive behavior of non-linear techniques with the comprehensibil-

ity of decision trees and rules. Previous benchmarking studies have revealed that when it comes

to predictive accuracy, non-linear methods often outperform traditional statistical methods such

as multiple regression, logistic regression, naive Bayesian and linear discriminant analysis (see,

e.g. Baesens et al. (2003), Lessmann et al. (2008)). For some applications however, e.g., medical

diagnosis and credit scoring, a clear explanation of how thedecision is reached by models is a

crucial business requirement and sometimes a regulatory requirement.

These rule extraction approaches are not suitable for our present problem for several reasons.

Not all classifications are explained by these rule extraction approaches (as we will demonstrate

for the most common approach). For some instances that seem to be explained by the rules, more

refined (and therefore more accurate) explanations exist. In addition, often one is only interested

in the explanation of the classification of a single data instance. For example, because it has been

brought to a manager’s attention because it has been misclassified or simply because additional

information is required for this case (to address a perceived anomaly, or for other learning).

In addition, global explanations do not provide much insight for document classification any-

way, because of the massive dimensionality. For a classification tree to remain readable it can not

include thousands of variables (or nodes). Similarly, listing all these thousands of words with their

corresponding weights for a linear model will not provide much insight into individual decisions.

Considering our running example of web page classification for safe advertising, what we want to

know is‘Why did the model classify this particular web page as containing objectionable content?’
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3.3. Instance-level explanations

Over the past few years, instance explanation methods have been introduced that explain the pre-

dictions for individual instances (Robnik-Šikonja and Kononenko 2008,Štrumbelj et al. 2009,

Štrumbelj and Kononenko 2010, Baehrens et al. 2010). Generally, these methods provide a real-

valued score to each of the variables that indicates to what extent it contributes to the instance’s

classification. This definition of an explanation as a vectorwith a real-valued contribution for each

of the variables makes sense for many classification problems, which often have relatively few vari-

ables (e.g. the median number of variables for the popular UCIbenchmark datasets is 18.5 (Hettich

and Bay 1996)). For document classification, however, due to the high-dimensionality of the data,

this sort of explanation is not ideal, and possibly not useful at all. Considering our safe-advertising

problem, an explanation for a web page’s classification as a vector with thousands of non-zero

values can hardly be considered comprehensible. Although the words with the highest contribu-

tions will have the biggest impact on the classification, we still don’t know which (combination of)

words actually led to any given classification.

Aside from the unsuitable format of these previous explanations, previous instance-based expla-

nation approaches are unable to handle high-dimensional data computationally. The sample-based

approximation method of̌Strumbelj and Kononenko (2010) is reported to be able to handle up to

about 200 variables, even there requiring hours of computation time. The authors acknowledge that

for such data sets other approaches should be introduced:

Arguably, providing a comprehensible explanation involving a hundred or more features is a

problem in its own right and even inherently transparent models become less comprehensible

with such a large number of features(Štrumbelj and Kononenko 2010).

Because of this inability to deal with the high-dimensionality of text mining data sets, as well as

the explanation format as a real-valued vector, these methods are not applicable for explaining

documents’ classifications.

In focusing on document classification, we take advantage ofthree main observations to define

a slightly different problem from that addressed by prior work, that will address the motivating
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business needs and that we will be able to solve efficiently. The first observation is that in many

document classification problems there really are two quitedifferent explanation problems. We

often are interested specifically in one of them: why documents were classified as a particular focal

class (a “class of interest”). Considering our web page classification setting, we will focus primarily

on explaining why a page has received (rightly or wrongly) a “positive” classification of containing

objectionable content. The asymmetry is due to the negativeclass being a default class: if there

is no evidence of the class of interest (or of any of the classes of interest), then the document is

classified as the default class. In this paper we will not treat in detail the other explanation problem.

The question of why a particular page hasnot received a positive classification can be important

as well, but reflection tells us that it is indeed a very different problem. Often the answer is “the

page did not exhibit any of the countless possible combinations of evidence that would have led

the model to deem it objectionable.” The problem here generally is “how do I fix the model given

that I believe it has made an error on this document.” This is afundamentally different problem and

thereby should require a very different solution—for example, an interactive solution where users

try to explain to the system why the page should be a positive,for example using dual supervision

(Sindhwani and Melville 2008), or a relevance feedback/active learning system where chosen cases

are labeled and then the system is retrained (Attenberg et al. 2011). These are important problems,

but are beyond the scope of this paper.

The second important observation is that in contrast to the individual variables in many predic-

tive modeling tasks, individual words can be quite comprehensible. Thus for us an explanation will

be a set of words present in the document such that removing all occurrences of these words results

in a different classification (defined precisely below). Theinnate comprehensibility of the words

often will immediately give deep intuitive understanding of the explanation. As we will see, when

it does not it can indicate problems with the model.

The third observation is that in document classification, removing all occurrences of a word

always sets the corresponding variable’s value to zero. This will allow us to formulate an optimiza-

tion problem for which we can find solutions fast.
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3.4. Explaining the Classification of Documents

As discussed above, the question we address is‘Why is this document classified as a non-default

class?’To answer this question the technique(s) we introduce will provide an explanation as a set

of words present in the document such that removing these words causes a change in the class.

Only when all the words in the explanation are removed does the class change (the set is minimal).

To define the explanation formally (see Definition 1) we need to recall that a documentD ∈D

is a bag (multiset) of words. LetWD be the corresponding set of words. We presume that classi-

fications are based on a classifierCM, which is a function from documents to classes. Later, our

heuristic algorithm will presume thatCM incorporates at least one scoring functionfCM ; classifica-

tions will be based on scores exceeding thresholds (in the binary case), or choosing the class with

the highest score (in the multiclass case). The majority of classification algorithms operate in this

way, including all that we discuss in this paper.

DEFINITION 1. Given a documentD consisting ofmD unique wordsWD from the vocabulary

of m words:WD = {wi , i = 1,2, . . . ,mD}, which is classified by classifierCM : D → {1,2, . . . ,k}

as classc. We define anexplanation for document D’s classificationas a setE of words such that

removing all words inE from the document leadsCM to produce a different classification. Further,

an explanationE is minimal in the sense that removing any subset ofE does not yield a change in

class. Specifically:

E is an explanation forCM(D) ⇐⇒

1. E ⊆WD (the words are in the document),

2.CM(D\E) 6= c (the class changes), and

3.∄E′ ⊂ E : CM(D\E′) 6= c (E is minimal).

D\E denotes the result of removing the words inE from documentD.

Definition 1 is specifically tailored to document classification. It provides intuitive explanations in

terms of words present in the document, and we will be able to produce such explanations even
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in the massively dimensional input spaces typical of document classification. More specifically,

Definition 1 differs from those of prior approaches in that the explanation is a set of words rather

than a vector. It also defines the size of the explanation as the cardinality ofE. Our empirical

analysis will reveal that explanations typically are quitesmall (often about a dozen words) as

compared to the size of the vocabulary, and as such the technique is able to effectively transform

the high-dimensional input space to a low-dimensional explanation. This is of crucial importance

in order to provide explanations that address the business problems at hand, such as a manager’s

or a customer’s need to understand a classifier’s decision, obtaining better understanding of the

domain, or improving the document classification model’s performance.

The goal of the present approach seems to align with that of inverse classification (Mannino and

Koushik 2000). However, the explanation format, the specific optimization problem, and the search

algorithms are quite different. First, for document classification, we should only consider reducing

the values for the corresponding variables. Increasing thevalue of variables does not make sense.

Second, we don’t need to decide on step sizes for changes in the values, as removing the occur-

rences of a word corresponds to setting the value to zero. In the optimization routine of inverse

classification, the search problem is exactly to find the minimal distance for each dimension. The

optimization is completely different for explanations of documents’ classification, as we will dis-

cuss next. Third, applying inverse classification approaches to document classification generally is

not feasible, due to the huge dimensionality of these data sets. Our approach takes advantage of the

sparseness of document representations, and only needs to consider those words actually present

in the document. Finally, we provide a general framework to obtain explanations independent of

the classification technique.

The desire to be model-independent is important and worth discussing further. Some firms use

different model types for different document classification problems. For document classifica-

tion, complicated non-linear models are often used, such asnon-linear SVMs (Joachims 1998) or

boosted trees (Schapire and Singer 2000). These models are incomprehensible globally. Explain-

ing the individual decisions made by such models to a client,manager, or subject-matter expert is a
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natural application of our approach. When alinear model is being used, one could argue simply to

list the topk words that appear in the document with the highest positive weights as an explanation

for the class (assuming we are explaining class 1 versus class 0). The choice ofk can be set to 10

for example. A more suitable choice fork would follow our definition and be the minimal number

of top words such that removing thesek words leads to a class change. This is exactly what our

approach would provide with a linear model. Finally, although they are often cited as producing

comprehensible models, classification trees for document classification do not provide the sort of

explanations we need (as in Definition 1): they do not explainwhat words actually are responsible

for the classification. All words from the root to the specificleaf for this document may be impor-

tant for the classification, but some of these words are likely not present in the document (the path

branched on the absence of the word) and we do not know which (minimal) set of words actually

is responsible for the given classification.

Finally, note the link withK- (different from thek above) Nearest Neighbor (KNN) approaches.

If such a technique is used as classification method, see, e.g. D’Silva et al. (2011), Han et al.

(2001), showing theseK nearest neighbors and their classes “explains” why the model had chosen

that classification. This technical “explanation” notwithstanding, the comprehensibility of such

classification models is disputable. What is it exactly aboutthe present document that makes it most

similar to a set of documents that yield the predicted class?The KNN technique does not tell me: if

the document had been slightly different would it simply be closer to a different set of documents

that yields the same predicted class? Below we discuss how showing the nearest neighbor(s) as an

explanation for the classification made byanytype of model can be used as secondary support for

an explanation, for example, showing training data that mayhave been mislabeled and led a model

to make erroneous classifications (see Hyperexplanation 3). This can help us to improve a model

if the explanation reveals an error.

4. Finding Document Classification Explanations

The discussion above allows us to understand the problem more precisely from an optimization

perspective. Unlike the settings in prior work, here we are looking for the shortest paths in the space
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defined by wordpresence, based on the effect on the surface defined by the document classification

model, which is in a space defined by more sophisticated word-based features (e.g., frequency or

tfidf, as described above). Conceptually, given a document vocabulary withm words, consider a

mask vectorµ to be a binary vector of lengthm, with each element of the vector corresponding to

one word in the vocabulary. An explanationE can be represented by a mask vectorµE with µE(i) =

1 ⇐⇒ wi ∈ E (otherwise,µE(i) = 0). Recall that the size of the explanation is the cardinalityof

E, which becomes the L1-norm ofµE. ThenD\E is the Hadamard product of the feature vector of

documentD (which may comprise frequencies or tfidf values) with the one’s complement ofµE.

Thus, finding a minimal explanation corresponds to finding a mask vectorµE such thatCM(D\E) 6=

CM(D) but if any bit ofµE is set to zero to formE′, CM(D\E′) =CM(D).

To our knowledge, this sort of explanation for document classification has not previously been

formalized or examined carefully, so before presenting algorithms for producing document expla-

nations, we should discuss the possible objectives precisely.

4.1. Objectives and Performance Metrics

Although Definition 1 is quite concise, the objectives for analgorithm searching for such expla-

nations can vary greatly. A user may want to: (1) Find one or more minimum-sized explanation:

an explanation such that no other explanation of smaller size exists. (2) Find all minimal explana-

tions. (3) Find all explanations of size smaller than a givenk. (4) Find l explanations, as quickly

as possible (l = 1 may be a common objective). (5) Find as many explanations aspossible within

a fixed time period. Combinations of such objectives may also be of interest. To allow the evalua-

tion of different explanation procedures for these objectives, we must define a set of performance

metrics:6

Search effectiveness:

6 Note that explanation accuracy is not a major concern: as an explanation by definition should change the predicted

class, it is straightforward to ensure that explanations produced always are correct. What is important with regards to

the usefulness of an explanation (or set of explanations) ishow complex the explanation is, and how long it took for

the algorithm to find the explanation.
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1. PE: Percentage of test instances explained (%)

Explanation complexity:

2. AWS: Average number of words in the smallest explanation (number)

Problem complexity:

3. ANS: Average number of smallest explanations given (number)

4. ANT: Average number of total explanations given (number)

Computational complexity:

5. ADF: Average duration to find first explanation (seconds)

6. ADA: Average duration to find all explanations (seconds)

These performance metrics describe the behavior of a document explanation algorithm. In a

separate analysis, one can also employ a domain expert to verify the explanations. An interesting

question that is beyond the scope of this paper is: if the explanations are counterintuitive, does that

reflect on the explanation-finding method? Or only on the underlying classification model that is

being explained? We will show that some explanations revealthe overfitting of the training data by

the modeling procedure, which often is not revealed by traditional machine learning evaluations

that examine summary statistics (error rate, area under theROC curve, etc.).

4.2. Complete Enumeration of Explanations of Increasing Size

A straightforward approach to producing explanations is toconduct a complete search through

the space of all candidate word combinations, starting withone word, and increasing the number

of words until an explanation is found. The candidate word combinations are all combinations of

words in the document (rather than in the vocabulary), for which a subset of the words was not

already found to be an explanation. This approach starts by checking whether removing any one

word w from the document would cause a change in the class label. If so, we add the explaining

rule ‘if word w is removedthen the class changes’. We check this for all of the words that are

present in the document. For a document withmD words, this requiresmD evaluations of the classi-

fier. If the class does not change based on one word only, the case of several words being removed
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simultaneously will be considered. First, the algorithm considers all word combinations of size 2,

then 3 and so on. For combinations of 2 words, the algorithm makesmD × (mD −1) evaluations,

for all combination of 3 wordsmD×(mD−1)×(mD−2) evaluations, and more generally for com-

binations ofk words we needmD!/(mD − k)! = O(mk
D) evaluations. This complete search scales

exponentially with the number of words in the document. Therefore, it is inpracticable for all but

the smallest documents. It could be used for small documents, such as explaining the classifications

of search queries, sentiment predictions for Twitter posts, or classifications based on non-standard

documents such as ad targeting classification based on collections of visited URLs. Note that if the

goal of the search is to find anexplanation, the complete search is almost certain not to exhaus-

tively search the space. If a short explanation exists, thenthe complete search may be quite fast for

such short documents. However, as the search will be impracticable for most document settings,

including the domains of our experiments, we will not consider complete search further.

4.3. Explaining Documents’ Classifications: A Heuristic-search Approach

As the number of potential explanations scales exponentially with the number of features, com-

plete search is impracticable for most real document classification problems. We now introduce a

heuristic search approach, formally described in Algorithm 1. It is designed specifically to find one

or more minimal solutions in reasonable time. However, it isnot guaranteed to find all minimal

solutions or the shortest solution. (We will see below that it indeed is optimal in a certain, important

setting.) The approach is based on two notions:

1. Heuristic search guided by local improvement:We assume that the underlying classifica-

tion model will always be able to provide a probability estimate or score7 in addition to a categori-

cal class assignment. We will denote this score function forclassifierCM by fCM(·). The algorithm

starts by listing all potential explanations of one word, and calculating the class and score change

7 No explicit mapping to [0, 1] is necessary; a score that ranksby likelihood of class membership is sufficient. The

scores for different classes must be comparable in the multiclass case, so in practice scores often are scaled to [0,1]. For

example, support-vector machines’ output scores are oftenscaled to (0,1) by passing them through a simple logistic

regression (Platt 1999).



Martens and Provost: Explaining Data-Driven Document Classifications
24

Algorithm 1 SEDC: Search for Explanations for Document Classification (via Best-first Search

with Pruning)
Inputs:
WD = {wi, i = 1,2, . . . ,mD} % DocumentD to classify, withmD words
CM : D→{1,2, . . . ,k} % Trained classifierCM with scoring functionfCM

max iteration= 30 % Maximum number of iterations
Output :
Explanatory list of rule R

1: c=CM(D) % The class predicted by the trained classifier
2: p= fCM(D) % Corresponding probability or score
3: R= {} % The explanatory list that is gradually constructed
4: combinationsto expandon= {}
5: P combinationsto expandon= {}
6: for i = 1→ mD do
7: cnew=CM(D\wi) % The class predicted by the trained classifier if wordwi did not appear in the document
8: pnew= fCM (D\wi) % The probability or score predicted by the trained classifier if word wi did not appear in

the document
9: if cnew 6= c then

10: R= R∪ ‘ if wordwi is removedthenclass changes’
11: else
12: combinationsto expandon= combinationsto expandon∪wi

13: P combinationsto expandon= P combinationsto expandon∪ pnew

14: end if
15: end for
16: for iteration= 1→ max iterationdo
17: combo= word combination incombinationsto expandon for which

(p− p combinationsto expandon) is maximal% The best first
18: comboset= create all expansions ofcombowith one word
19: comboset2 = remove combinations containing already found explanations ofR from comboset% The pruning

step
20: for all combosCo in comboset2 do
21: cnew= CM(D \Co) % The class predicted by the trained classifier if the words inCo did not appear in the

document
22: pnew= fCM (D\Co) % The probability or score predicted by the trained classifier if the words inCo did not

appear in the document
23: if cnew 6= c then
24: R= R∪ ‘ if wordsCo are removedthenclass changes’
25: else
26: combinationsto expandon= combinationsto expandon∪Co

27: P combinationsto expandon= P combinationsto expandon∪ pnew

28: end if
29: end for
30: end for

for each. The algorithm proceeds as a straightforward heuristic best-first search. Specifically, at

each step in the search, given the current set of word combinations denoting partial explanations,

the algorithm next will expand the partial explanation for which the output score changes the most

in the direction of class change. Expanding the partial explanation entails creating a set of new,

candidate explanations, comprising all combinations withone additional word from the document
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(that is not yet included in the partial explanation).

2. Search-space pruning:For each explanation withl words that is found, we do not need to

check combinations of sizel + 1 with these same words, hence we can prune these branches of

the search tree. For example, if the words ‘hate’ and ‘furious’ provide an explanation, we are not

interested in explanations of three words that include these two words, such as ‘hate’, ‘furious’ and

‘never’. This search problem generally (including the complete search solution) is an instance of

unordered-set search. Unordered-set search is described in detail by Webb (1995) (and references

therein), including optimizations that speed up the searchsubstantially, while still allowing various

guarantees, including this sort of search-space pruning. The pruning is somewhat different from

the search-space pruning in similar set-enumeration algorithms, such as the Apriori association

rule mining algorithm (Agrawal and Srikant 1994), in that itis based on set subsumption rather

than coverage statistics.

For the case of a linear classifier with a binary feature representation, we might explain the clas-

sification by looking at the words with the highest weights that appear in the document. However,

we would still want to know which words exactly are responsible for the classification. SEDC

produces minimum-size explanations for linear models, which we discuss further next. Assuming

again a class 1 versus class 0 prediction for documenti, SEDC ranks all words appearing in the

document according to the productβ jxi j , whereβ j is the linear model coefficient. An explanation

of smallest size is the one with the top-ranked words, as chosen by SEDC’s heuristic search.

LEMMA 1. For document representations based on linear binary-classification models

fCM(D) = β0+∑β jxi j with binary (presence/absence) features, the smallest explanation found by

SEDC will be a minimum-size explanation. More specifically, for E1,E2 explanations, if E1 is the

smallest explanation found by SEDC,|E1|= k⇒ ∄E2 : |E2|< k. Furthermore, the first explanation

found by SEDC will be of size k.

Proof (by contradiction): If no explanation exists, then the theorem holds vacuously.Assume

there exists at least one explanation. In the linear model, let the (additive) contributionwi j to the
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output score for wordj of documenti be the linear model weightβ j corresponding to binary

word-presence featurexb
i j for those words that are present in documenti (and zero otherwise).

Assume w.l.o.g. that the classification threshold is placedat fCM(D) = 0. SEDC will compose

the first candidate explanationE∗ by first selecting the largestwi j such that the word is present

in the document,xb
i j = 1, and adding wordj to the explanation. SEDC will then add toE∗ the

word with the next-largest suchwi j , and so on untilfCM(E
∗)≤ 0. Thus, the first explanationE1 by

construction will consist of thek highest-weight words that are present in the document.

Now assume that there exists another explanationE2 such that|E2| < k; being an explanation,

fCM(E2)≤ 0. Recall that explanations are minimal, so∄S( E1 : fCM(S)≤ 0. ThusE2 must have at

least one elemente 6∈ E1. Let ∑E denote the sum of the weights corresponding to the words in an

explanationE. For a linear model based on the (binary) presence/absence of words, fCM(X\Y) =

fCM(X)−∑Y. As noted above,E1 comprises by construction thek words with the largestwi j ,

so ∀wi j ∈ E1,∀we /∈ E1 : wi j ≥ we. Therefore,∃S(: E1,∑S > ∑E2
, which means that∃S( E1 :

fCM(D\S) ≤ fCM(D\E2). But ∀S( E1 : fCM(D\S) > 0 and thusfCM(D\E2) > 0. Therefore,E2 is

not an explanation, a contradiction.�

This optimality applies as well to monotonic transformations over the output of the linear model,

as with the common logistic transform used to turn linear output scores into probability estimates.

The optimality also applies more generally for linear models based on numeric word-based fea-

tures, such as frequencies, tfidf scores, etc., as detailed in the following theorem.

THEOREM 1. For document representations based on linear models fCM(D) = β0+∑β jxi j with

numeric word-based features, such as frequencies or tfidf scores, that take on positive values when

the word is present and zero when the word is absent, the smallestexplanation found by SEDC

will be a minimum-size explanation. More specifically, for E1,E2 explanations, if E1 is the smallest

explanation found by SEDC,|E1| = k ⇒ ∄E2 : |E2| < k. Furthermore, the first explanation found

by SEDC will be of size k.
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Proof: Decompose each non-negative word featurexi j into the productxb
i j di j of a binary word

presence/absence featurexb
i j and a document-specific non-negative weightdi j . The corresponding

term in the linear modelβ jxi j then becomesβ jdi j xb
i j . The proof then follows the previous proof

directly, except with the additive contribution of each word beingwi j = β jdi j . �

For non-linear models no such optimal solutions are guaranteed, in the sense that smaller expla-

nations could exist. For multiclass classification problems optimal solutions are also not guaranteed

if one decomposes the problem into several binary classification problems (as in a one-versus-rest

or one-versus-one approach), since the final classificationof data instances now depends on several

models with their own weights. This motivates our next optimization, applying local search on the

obtained explanations.

4.4. SEDC Augmented with Local Search

The SEDC algorithm has two potential issues when applied to non-linear models, addressed by

two optimizations. Firstly (and most importantly), seeingthat the prediction space is non-linear

in the words, the obtained explanations might not contain a minimal subset of words, required by

Definition 1 (requirement 3;E is minimal). It could be that removing a word from the explanation

E still provides an explanationE′, hence: there exists an explanationE′ ⊂ E : CM(D\E′) 6= c. To

address this concern, we extend the previously defined heuristic search procedure with a limited

local search post-processing phase applied to the obtainedexplanations. This method will prune

the explanation if necessary, by verifying whether removing a word (or word combination) from

an obtained explanationE also provides an explanationE′. If that is the caseE is replaced by the

smaller explanationE′, containing a subset of the words ofE. This guarantees minimality of the

explanations (though in the empirical studies we never observed the need for such pruning).

The second issue with SEDC for non-linear models is that potentially smaller explanations exist

(with different words, making it different from the above optimization) than those obtained. More

formally, there might exist an explanationE′, whereE′ \E 6= /0 (E′ has some word(s) thatE does

not), |E′|< |E| (explanationE′ is smaller thanE), CM(D\E′) 6= c (E′ also defines an explanation).
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To investigate the extent of this potential issue, we define asecond local search approach that

is applied to the explanations found by the heuristic searchmethod (with optimizations). For each

explanation, we replace two words by another word of the document, not yet in the explanation.

Next, we attempt replacing three words of the explanation bytwo words of the document, not yet

in the explanation, and so on. This yields a very large numberof potential combinations to check:

replacing a set ofk words of an explanation for a document withmD words yields
(mD−k

k

)

combi-

nations.8 To deal with this huge number of new word combinations to check, we limit ourselves

in our experiments up tok = 5 words, and a maximum of 5,000 combinations. If more exist, no

attempt to optimize is undertaken. Within our empirical results, this local search addition provided

an improvement of one word for only very few explanations (less than 1%), while requiring much

more time (up to two hours per explanation, even with the limitation on the number of combi-

nations). Seeing that the additional local search is so computationally expensive compared to the

heurstic search procedure (with negligible improvements in explanation size), the results in the

next section are provided without the local search.

4.5. SEDC with Branch-and-bound

As described in Section 4.1, there are various objectives one might have when finding explanations

for document classifications. In the important case where one wants the shortest explanation, or

the set of shortest explanations, the SEDC search can be improved by keeping track of the current

shortest explanation found, and pruning from the search space all longer explanations (a simple

branch-and-bound search), which can result in massive portions of the search space being discarded

en masse once a first explanation has been found.9

8 To indicate how large these values can be, fork = 3 andmD = 100 we have 147,440 combinations; fork = 5 and

mD = 500 we have 255,244,687,600 combinations.

9 Unfortunately, for the general problem one cannot give non-trivial upper and lower bounds on explanation size given

a partial explanation. For particular types of models, thismay be possible, yielding more sophisticated brand-and-

bound searches.
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5. Empirical Analysis

We now present an empirical case study (Hevner et al. 2004) onthe problem of classifying web

pages as containing adult content. A follow-up analysis is presented in Appendix A based on a

suite of text classification problems (the 20 Newsgroups) widely used in the research literature.

5.1. Explaining Web Pages’ Classifications for Safe Advertising

The case study is based on data obtained from a firm that focuses on helping advertisers to avoid

inappropriate adjacencies between on-line advertisements and web content, similar to our motivat-

ing example above. Specifically, the analysis is based on a data set of 25,706 web pages, labeled as

either having adult content or not. The web pages are described by tfidf scores over a vocabulary

chosen by the firm, including a total of 73,730 unique words. No stemming was conducted. The

data set is balanced by class, with half of the pages containing adult content and half non-adult

content. For this data set, the class labels were obtained from a variety of sources used in practice,

including Amazon’s Mechanical Turk. Given the variety of labeling sources, the quality of the

labeling might be questioned (Sheng et al. 2008). Interestingly, the explanations indeed reveal that

certain web pages are wrongly classified. No meta-data, links, or information on images is being

used for this study; the inclusion of such data could improvethe model further, but the focus of

this paper is on textual document classification.

For this analysis, we built SVM document classification models with linear and RBF kernel

functions.10 The linear model is correct on 96.2% of the test instances, with a sensitivity (percent-

age of non-adult web pages correctly classified) of 97.0%, and a specificity (percentage of adult

web pages correctly classified) of 95.6%. The non-linear RBF kernel model has an accuracy of

93.3%, with a sensitivity of 89.0% and a specificity of 96.5%.

10 Using the LIBLINEAR (Fan et al. 2008) and LIBSVM packages (Chang and Lin 2001), with 90% of the data used

as training data, the remaining 10% as test data. SEDC was coded in Matlab and is available upon request. Experiments

were run on an Intel Core 2 Quad (3 GHz) PC with 8GB RAM.
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5.1.1. Global explanationsAs discussed above, rule extraction is the most researched and

applied model explanation methodology. Trying to comprehend the SVM model, a tree can be

extracted by applying the C4.5 tree induction technique (Quinlan 1993) on the aforementioned safe

advertising data set with class labels changed to SVM predicted labels. Unfortunately, we could

not get C4.5 to generate a small tree that models either SVM model (with linear or RBF kernel)

with high-fidelity. A tree with 327 nodes models the classifier with a fidelity of only 87%. Pruning

the tree further reduces the size, but further decreases fidelity.

As discussed above, an alternative method for comprehending the function of a linear document

classifier is to examine the weights on the word features, as these indicate the effect that each

word has on the final output score. As with the distinction between Lemma 1 and Theorem 1, we

need to keep in mind that in a preprocessing step the data set is encoded in tfidf format. Hence

for actual document explanations, the frequency is vital.11 Figure 3 shows the weight sizes of all

the words in the vocabulary; the weights are ranked smallest-to-largest, left-to-right. Clearly many

words show a high indication of adult content, while many others show a clear counter-indication

of adult content. Looking deeper, Table 1 shows the highest (positive) weight words, as well as the

words that give the highest mutual information (with the positive class) and information gain. We

additionally list the top words when taking into account theidf weights, viz., based on the weights

of the words multiplied with the corresponding idf values. The final column shows the words most

frequently occurring in the explanations, which will be elaborated on below.

From Table 1 we see that most indicative words for adult content ranked highly using the mutual

information criterion are very rare, unintuitive words. Itmay be possible to engineer a better

information-based criterion, for example countering thisoverfitting behavior by requiring a mini-

mal frequency of the top ranked words, but later results willshow why such efforts ultimately are

destined to fail to provide a comprehensive explanation. The top words provided by the other rank-

ings on the other hand are quite intuitive. As stated before,even initially not-so-obvious words as

11 The inverse document frequency is constant across documents, and could be incorporated in the model weights to

facilitate global explanation.



Martens and Provost: Explaining Data-Driven Document Classifications
31

Figure 3 The size of the weights for all 73,730 words, ranked left-to-right according to increasing

weights.

‘welcome’, ‘enter’ or ‘age’ make sense once we realize that many positive examples are entrance

pages of adult sites, which inform a visitor about the content of the website and require verification

of age. Nevertheless, as we will see next, explanation of individual decisions simply requires too

many individual words. Consider that we would have to producea list of over 700 of the highest-

weight words just to include ‘porn’ and over 10,000 to include ‘xxx’.

Given the intuitiveness of the top-weighted words, we should consider how well a short list of

such words really explains the behavior of the model. Does the explanation of a web page typically

consist of (some of) the top-100 or so words? It turns out thatthe content of web pages varies

tremendously, even within individual categories. For “adult content”, even though some strongly

discriminative words exist, the model classifies most web pages as being adult content for other

reasons. This is demonstrated by Figure 4, which plots the percentage of the classifications of the

test instances that would be explained by considering the top-k words (horizontal axis) by weight

(with and without idf correction), mutual information and information gain. Specifically, if an

explanation in the sense of Definition 1 can be formed by any subset of the set of top-k words, then

the document is deemed explained. So for example, if an explanation would be ‘if words (welcome

enter) are removed then class changes’, that explanation would be counted whenk≥ 2.

We see from Figure 4 that we would need thousands of these top words before being able to explain a
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Figure 4 Percentage of 100 adult-classified test instances explained when considering only the top k

words, ranked according to the frequency of occurrence in the explanations, the weights (w), the

weights with idf correction, mutual information (MI) and information gain (IG).

Ranking based on

Mutual Information Information Gain Size of weight
Size of weight Frequency of word occurring
with idf correction in the explanations

primarykey privacy welcome permanently adult
sessionid policy enter fw age
youtubeid home adult welcome enter
webplayerrequiredgeos us permanently compuserve site
vnesfrsgphplitgrmxnlkrauseadvertise site copyrightc sex
videocategoryids about age prostitution years
usergeo adult usc acronym material
latestwebplayerversion search searches tribenet are
isyoutubepermalink comments over amateurbasecom sites
isyoutube contact erotic gorean hardcore

Table 1 Global explanation of the model by listing the top words providing evidence for the adult class. Five

rankings are considered: based on mutual information, information gain, weights of the words, weights with idf

correction (weight multiplied with word idf), and frequencies of the words occurring in the explanations.

large percentage of the individual documents, as shown by the line with words ranked on the weight. More

precisely, more than two thousand top-weight words (3% of the vocabulary) are needed before even half

of the documents are explained. Using the ranking based on mutual information requires even more words.

This suggests either (i) that many, many words are necessary for individual explanations, or (ii) the words

in the individual explanations vary tremendously. The latter conclusion is also supported by the fact that the

document-term matrix is very sparse even when the documentsbelong to the same topic. This motivates

the use of an instance-level explanation algorithm not onlyfor obtaining understanding of the individual

decisions, but also for understanding the model overall.
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When we rank the words according to how often they occur in explanations, we obtain the line with

the maximal area underneath. For the 100 classified instances, a total of 810 unique words are used in all

the explanations (where we consider maximum 10 minimal explanations for a single data instance). This

already suggests a wide variety of words are present in the explanations. The instance-based explanations

can be aggregated to a global explanation by listing the words that occur most frequently in the explana-

tions, as shown in the final column of Table 1, which provides yet another benefit of the instance-level

explanations. We will not explore this further, as it is peripheral to the main focus of this paper.

5.1.2. Instance-level explanationsNone of the previously published instance-level explanation meth-

ods are able to handle many thousands of variables, so they can not be applied to this domain. We’ll show

now that SEDC is effective, and fast as well, where we initiallyfocus on the linear classification model.

Explanation 2 shows several typical explanations for classifications of test documents. We show the first

three explanations of test instances with explanations that are appropriate for publication. These explana-

tions demonstrate several things. First, they directly address suggestion (i) just above: in fact, documents

generally do not need many, many words to be explained. They also provide evidence supporting sugges-

tion (ii): the words in the individual explanations are quite different, including explanations in different

languages.

We can examine the size of explanations more systematicallyby referring to the explanation performance

metrics introduced in Section 4.1. The top-left plot in Figure 5shows the percentage of the test cases

explained (PE) when an explanation is limited to a maximum number of words (on the horizontal axis). We

see that almost all the documents have an explanation comprising fewer than three dozen words, and more

than half have an explanation with fewer than two dozen words. In other words, each explanation is very

concise, as it uses only about 0.01% of the words in the vocabulary. Note that even explanations containing

dozens of words can easily give an understanding of why the classifier classified the document as the class of

interest, as is discussed and shown in Section 5.2, below. Figure 5 also shows that, not too surprisingly, the

number of words in the smallest explanation (AWS plot) and the (smallest and total) number of explanations

(ANS, ANT plots) both grow as we allow larger and larger explanations.12

12 In the experiments, we limit ourselves to searching for 10 explanations: if 10 or more explanations have been found,

no further word expansions/iterations are attempted.
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PE AWS ANS ANT ADF ADA

FP 90.3% 9.2 12.0 35.2 2.3 3.1
TP 76.0% 15.3 13.4 25.5 2.9 3.3

Table 2 Explanation performance metrics for the false positives (FP) versus true positives (TP) of the linear

model, allowing up to 30 words in an explanation. Shown are percentage explained (PE), average number of

explanations given (ANT), average number of words in the smallest explanation (AWS), average duration to find

the first explanation (ADF) and average duration to find all explanations (ADA).

Explanation 2:

Some explanations why a web page is classified as having adult content for web pages of the test set.
Explaining document 13 (class 1) with 61 features and class 1 ...
Iteration 7 (from score 0.228905 to -0.00155753): If words (submissive pass hardcore check bondage adult
ac) are removed then class changes from 1 to -1 (1 sec)
Iteration 7 (from score 0.228905 to -0.00329069): If words (submissive pass hardcore check bondage adult
access) are removed then class changes from 1 to -1 (1 sec)
Iteration 7 (from score 0.228905 to -0.00182021): If words (submissive pass hardcore check bondage all
adult) are removed then class changes from 1 to -1 (1 sec)

Explaining document 30 (class 1) with 89 features and class 1 ...
Iteration 4 (from score 0.894514 to -0.0108126): If words (searches nude domain adult) are removed then
class changes from 1 to -1 (1 sec)
Iteration 6 (from score 0.894514 to -0.000234276): If words(searches men lesbian domain and adult) are
removed then class changes from 1 to -1 (1 sec)
Iteration 6 (from score 0.894514 to -0.00225592): If words (searches men lesbian domain appraisal adult)
are removed then class changes from 1 to -1 (1 sec)

Explaining document 32 (class 1) with 51 features and class 1 ...
Iteration 8 (from score 0.803053 to -0.0153803): If words (viejas sitios sexo mujeres maduras gratis
desnudas de) are removed then class changes from 1 to -1 (1 sec)
Translation: old mature women sex sites free naked of

Iteration 9 (from score 0.803053 to -7.04005e-005): If words (viejas sitios mujeres maduras gratis desnudas
de contiene abuelas) are removed then class changes from 1 to -1 (1 sec)
Translation: old mature women free sites containing nude grandmothers

Iteration 9 (from score 0.803053 to -0.00304367): If words (viejas sitios mujeres maduras gratis desnudas
de contiene adicto) are removed then class changes from 1 to -1 (1 sec)
Translation: old sites free naked mature women contains addict

Explaining document 35 (class 1) with 36 features and class 1 ...
Iteration 6 (from score 1.04836 to -0.00848977): If words (welcome fiction erotic enter bdsm adult) are
removed then class changes from 1 to -1 (0 sec)
Iteration 6 (from score 1.04836 to -0.10084): If words (welcome fiction erotica erotic bdsm adult) are
removed then class changes from 1 to -1 (1 sec)
Iteration 6 (from score 1.04836 to -0.0649064): If words (welcome kinky fiction erotic bdsm adult) are
removed then class changes from 1 to -1 (1 sec)

Table 2, presents the differences between the false and truepositives (for the default threshold of 0).

Interestingly, we find higher coverage, as well as more and smaller explanations for the web pages wrongly

classified as adult (false positives, FP) versus those correctly classified as adult (true positives, TP). See-

ing that FPs are classifications we are particularly interestedin explaining (the perceived anomalies, as

described by Gregor and Benbasat (1999)), this suggests that the overall explanation metrics yield conser-
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vative estimates of practical performance for this case study.

More interestingly, examining these performance metrics gives a view into how the classification model

is functioning in this application domain. Specifically, the plots show that document explanation sizes vary

quite smoothly and that there seem to be many different explanations for documents. The former observation

suggests that the strength of the individual evidence varies widely: some cases are classified by aggregating

many weak pieces of evidence, others by a few strong pieces ofevidence (and some, presumably by a

combination of strong and weak). The latter observation suggests substantial redundancy in the evidence

available for classification.

Figure 5 also shows that for this particular problem, explanations can be produced fairly quickly using

SEDC. This problem is of moderate size; real-world document classification problems can be much larger,

in terms of documents for training, documents to be classified, and the vocabulary. A brief word about

scaling up can be found in Appendix B.

To validate the applicability of the explanation method fornon-linear models, an SVM model with a

radial basis function (RBF) kernel (a popular non-linear model) was used as well.

Table 3 shows SEDC’s performance on both linear SVM and non-linear radial-basis function (RBF)

kernel SVM models, when allowing up to 30 words in an explanation. The percentage explained is about the

same for the linear and non-linear model, with interestingly the non-linear model requiring slightly fewer

words per explanation (AWS). A large difference is observed in the time needed to obtain an explanation:

whereas for the linear model it takes on average four secondsto find an explanation, for the RBF model

it takes almost three minutes. A deeper investigation into the reasons for the speed differences shows that

processing the non-linear models takes longer not because of the backtracking in the search. Rather, the

non-linear models simply run much slower, which has a crucial affect due to the repeated applications

of the scoring function. Therefore, faster implementationsof the non-linear models could produce faster

explanation performance. Please note that explanation times on the orders of minutes are not necessarily a

cause for concern, depending on the context of application.In many of the application scenarios discussed

above, explanation methods would be reserved for periodic development use or for tactical use when a

concern arises over a particular case.13

13 Also, recall that these experiments were conducted mainly in Matlab on a desktop PC. Further speed improvements

could easily be obtained with faster software implementations or with the high-performance computing systems typ-

ically used by organizations that build text classifiers from massive data. Importantly, once again, the complexity is

independent of the size of the vocabulary. Further, unordered-set search is highly parallelizable.
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kernel PE AWS ANS ANT ADF ADA

SEDC Linear SVM 84% 15.1 12 25 3 3
SEDC B&B Linear SVM 84% 15.1 12 12 3 3

SEDC Non-linear RBF SVM 82% 11.1 18 28 169 187
SEDC B&B Non-linear RBF SVM 82% 11.1 19 19 183 200

Table 3 Explanation performance for SEDC and SEDC with branch-and-bound (B&B), for SVMs with a linear

kernel and a radial basis function (RBF) kernel SVM. SEDC was allowed up to 30 words in an explanation.
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Figure 5 Explanation performance metrics in terms of maximal number of words allowed in an

explanation. Both the performance and the complexity increase with the number of words. Next to

the average metrics, the 10th and 90th percentiles are also shown (dotted lines).

5.2. Hyper-explanations

Conducting the case studies brought to the fore some additional issues regarding explaining documents

classifications. Specifically, a procedure for producing explanations of document classifications may pro-

vide no explanation at all. Why not? A document’s explanation may be non-intuitive. Then what? There are

several classes of reasons for these behaviors, which we group intohyper-explanations. Many of these are

specifically helpful for the task of improving the decision system’s model (cf., Section 2).

5.2.1. Hyper-explanations for the lack of an explanation.We distinguish between cases where the

predicted class is the default class (hyper-explanation 1), and those where the predicted class is the non-

default class (hyper-explanation 2).
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Hyper-explanation 1a: no evidence present.The default class is predicted and no evidence for either

class is present. For example, this would be the case when allwords in the document have zero weights in

the model or no words present are actually used in the model.

Technically, this case falls outside the scope of this paper’s development, since we are specifically consid-

ering explaining why a document is classified as a non-defaultclass. Nevertheless, this may be a practically

important situation that cannot simply be ignored. For example, this case may have been brought to a man-

ager’s or developer’s attention as a “false negative error”, i.e., it should have been classified as a positive

example. In this case the hyper-explanation explains exactly why the case was classified as being negative

(there was no model-relevant evidence) and can be a solid starting point for a management/technical dis-

cussion about what to do about it. For example, it may be clearthat the model’s vocabulary needs to be

extended.

Hyper-explanation 1b: no evidence of non-default class present.The default class is predicted and

only evidence in support of the default class is present. Thisis a minor variation to Hyper-explanation 1a,

and the discussion above applies regarding explaining false negatives and providing a starting point for

discussions of corrective actions.

Hyper-explanation 1c: evidence for default class outweighs evidence for the non-default class.A

more interesting and complex situation is when, in weighingevidence, the model’s decision simply comes

out on the side of the default class. In this case an immediatereaction may be to apply the explanation

procedure to generate explanations of why the case was classified as being default (i.e., if these words were

removed, the class would change to positive). However, whenthe case truly is of the “uninteresting” class,

the explanations returned would likely be fairly meaningless, e.g., “if you remove all the content words on

the page except the ’offending words’ (e.g., the words with positive weights), the classifier would classify

the page as an offensive page.” However, applying the procedure may be very helpful for explaining false

negatives, because it would show the words that the model feels trump the positive-class-indicative words

on the page (e.g., if you remove themedicalterminology on the page, the classifier wouldthenrate the page

as being adult). This again could provide a solid foundation for the process of improving the classifiers.
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Explanation 3:

Explanations of web pages misclassified as non-adult (false negatives), which indicate which words
the model feels trump the positive-class-indicative words.
Explaining document 10 (class 1) with 31 features and class -1(score -0.126867)...
Iteration 4 (from score -0.126867 to 0.00460739): If words (policy gear found blog) are removed then class
changes from -1 to 1 (0 sec)

Explaining document 13 (class 1) with 50 features and class -1(score -0.123585)...
Iteration 4 (from score -0.123585 to 0.000689515): If words(sorry miscellaneous found about) are removed
then class changes from -1 to 1 (0 sec)

Explaining document 11 (class 1) with 198 features and class -1 (score -0.142504)...
Iteration 2 (from score -0.142504 to 0.00313354): If words (watch bikini) are removed then class changes
from -1 to 1 (1 sec)

Explaining document 31 (class 1) with 22 features and class -1(score -0.0507037)...
Iteration 4 (from score -0.0507037 to 0.00396628): If words(search handjobs bonus big) are removed then
class changes from -1 to 1 (0 sec)

Within our safe advertizing application, an explanation for all 46 false negatives is found, indicating

that indeed adult words are present but these are outweighedby the non-adult, negative words. Example

explanations of such false negatives are given in Explanation 3. For some words like ‘blog’ it seems logical

to have received a large non-adult/negative weight. The word‘bikini’ seemingly ought to receive a non-

adult weight as well, as swimsuit sites are generally not considered to be adult content by raters. However,

some pages mix nudes with celebrities in bikinis (for example). If not enough of these are in the training

set, it potentially would cause ‘bikini’ to lead to a false negative. Many other words however can be found

in the explanations that do seem to be adult-related (such as‘handjobs’), and as such should receive a

positive weight. All the words are great candidates for human feedback to indicate which of these words

actually are adult related and potentially update the model’s weights (a mechanism known as active feature

labeling (Sindhwani and Melville 2008)) or review the labeling quality of the web pages with the word. The

words occurring most in these explanations of false negatives (when considering only the first explanation)

are ‘found’, ‘blog’ and ‘policy’. The seemingly-adult related words are not found when examining the words

with most negative weights, again supporting the need to look at explanations separately, on an instance

level.

Hyper-explanation 2: too much evidence of non-default class present.No explanation is provided

because, although a non-default class is predicted, there are so many words in support of this class that one

needs to remove almost all of them before the class will change. The situations when this will occur fall

along a spectrum between two fundamentally different reasons:
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Figure 6 Score evolution when removing words from the three selected documents: the one with

highest starting score, the one with the most words in an explanation and a document with average

number of words in an explanation. The class changes to non-adult when the score falls below zero.

1. There are very many words each providingweakevidence in support of the class. Thus, the expla-

nation exceeds the bound given to the algorithm, or the algorithm does not return a result in a timely

fashion. Figure 6 shows the words of the explanations for three documents and how the scores change as

the words are removed. The middle line, for the explanation with the most words, shows that if the number

of allowed words is below 40, no explanation is found. This lack of explanation can be explained by this

hyper-explanation, as too many adult-related words are present for a short explanation to be found.

2. There are very many words each providingstrongevidence. In this case, the procedure may not be

able to get the score below the threshold with a small explanation, because there is just so much evidence

for the class. The full upper line with the highest starting score in Figure 6 shows such an example: when

allowing fewer than 15 words in an explanation, the score remains above the threshold and no explanation

can be given.

This lack of base-level explanation can be mitigated (partially) by presenting “the best” partial explana-

tion as the search advances.
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5.2.2. Hyper-explanations for non-intuitive explanations.Explanations are always correct in the

technical sense: removing the words by definition changes theclass. However, it is possible that the expla-

nation clashes with the user’s intuition, creating a perceived anomaly that should be explained. Several

reasons exist for this:

The data instance is misclassified.The explanations of some of the web pages that are misclassified

by the SVM model are listed in Explanation 4 (only the first explanation is shown). For these pages the

predicted class is adult, while the human-provided class label is non-adult (false positives). These three

explanations indicate strongly that the web pages actuallycontain adult content and the human-provided

label seems wrong. On the other hand, in other cases, explanations indicate that their web pages seem to

be non-adult and hence are probably misclassified. Examples are given in Explanation 5.14 Such explana-

tions provide very useful support for interactive model development, as the technical/business team can fix

training data or incorporate background knowledge to counter the misclassification.

The data instance is correctly classified, but the explanation just does notmake sense to the business

users/developers.This case is particularly problematic for any automated explanation procedure, since

providing explanations that “make sense” requires somehowcodifying in an operationally useful way the

background knowledge of the domain, as well as common sense,which to our knowledge is (far) beyond

current capabilities (and certainly beyond the scope of this paper). Nevertheless, we still can provide a quite

useful hyper-explanation in the specific and common setting where the document classification model had

been built from a training set of labeled instances (as in ourcase study). Specifically:

Hyper-explanation 3: Show similar training instance. For a case with a counter-intuitive explanation,

we can show “similar”training instances with the same class. The similarity metric in principle should

roughly match that used by the induction technique that produced the classifier. Such a nearest-neighbor

approach can aid understanding in two ways. (1) If the training classifications of the similar examples do

make sense, then the user can understand why the focal example was classified as it was. (2) If the train-

ing classifications do not make sense (e.g., they are wrong), then this hyper-explanation provides precise

14 Our models are limited by the data set obtained for the case study. By our understanding, models built for this

application from orders-of-magnitude larger data sets areconsiderably more accurate; nonetheless, they still make

both false-positive and false-negative errors, and the general principles illustrated here apply.
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guidance to the data science team for improving the training,15 and thereby the model.

Consider document 8. Explanation 5 suggests strongly that itcontains non-adult content, even though

the model classifies it as adult. The web page most similar to document 8 is also classified as adult and

has 44 (out of 57) words which are the same, which are listed inExplanation 6. This is a web page with

a variety of topics, and probably a listing of links to other websites. This sort of web page needs further,

expert investigation for use in training (and evaluating) models for safe advertising. It could be that labelers

have not properly examined the entire web site; it may be thatthere indeed is adult content in images that

our text-based analysis does not consider; it may be that these sites simply are misclassified, or it may be

that in order to classify such pages correctly, the data science team needs to construct specifically tailored

feature to deal with the ambiguity.

Explanation 4:

Explanations of web pages misclassified as adult (false positives), which indicate that the model is
right and the class should have been adult (class 1).
Explaining document 1 (class -1) with 180 features and class 1(score 1.50123)...
Iteration 35 (from score 1.50123 to -0.00308141): If words (you years web warning usc these sites site
sexual sex section porn over offended nudity nude models material male links if hosting hardcore gay free
explicit exit enter contains comic club are age adults adult) are removed then class changes from 1 to -1 (53
sec)

Explaining document 2 (class -1) with 106 features and class 1(score 0.811327)...
Iteration 24 (from score 0.811327 to -0.00127533): If words(you web warning under und these site porn
over offended nude nature material links illegal if here exit enter blonde are age adults adult) are removed
then class changes from 1 to -1 (15 sec)

Explaining document 3 (class -1) with 281 features and class 1(score 0.644614)...
Iteration 15 (from score 0.644614 to -0.00131314): If words(you sex prostitution over massage inside
hundreds here girls click breasts bar) are removed then class changes from 1 to -1 (29 sec)
Explanation 5:

Explanations of truly misclassified web pages (false positives).
Explaining document 8 (class -1) with 57 features and class 1 (score 0.467374)...
Iteration 7 (from score 0.467374 to -0.0021664): If words (welcome searches jpg investments index fund
domain) are removed then class changes from 1 to -1 (3 sec)

Explaining document 16 (class -1) with 101 features and class1 (score 0.409314)...
Iteration 8 (from score 0.409314 to -0.000867436): If words(welcome und sites searches domain de b
airline) are removed then class changes from 1 to -1 (5 sec)

Explaining document 32 (class -1) with 66 features and class 1(score 0.124456)...
Iteration 2 (from score 0.124456 to -0.00837441): If words (searches airline) are removed then class changes
from 1 to -1 (0 sec)

15 Data cleaning is a very important aspect of the data mining process that has received relatively little treatment in

the research literature. One of the main data cleaning activities in classifier induction is “fixing” labels on mislabeled

training data.
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Explanation 6:

Hyper-explanation 3 showing the words of the web page most similar to document 8. This most similar
web page is classified as adult, providing a hyper-explanation of why document 8 is also classified
(incorrectly) as adult.
and, articles, at, buy, capital, check, china, commitment,dat, file, files, for, free, fund, funds, high, hot, in,
index, instructionalwwwehowcom, international, internet, investing, investment, investments, jpg, listings,
mutual, out, performance, project, related, results, return, searches, social, sponsored, temporary, tiff, to,
trading, vietnam, web, welcome.

6. Discussion and Limitations

In this paper, we followed the guidelines set forth by Hevneret al. (2004) for designing, executing and

evaluating research within design science to explain documents’ classifications. We presented a search algo-

rithm (SEDC) for finding such explanations and empirically evaluated the algorithm two different document

classification domains.

An unexpected result of the case study was the need for various sorts of hyper-explanations. Several

of these are the result of the document classification models being statistical models learned from data,

and thus are subject to the main challenges of machine learning: overfitting, underfitting, and errors in the

data. When classification errors are introduced due to these pathologies, even instance-level explanations

may be inadequate (e.g., missing) or unintuitive. Hyperexplanations are needed for deep understanding, for

example, showing training cases that likely led to the current model behavior.

As discussed in the introduction, we believe that instance-level explanation methods such as SEDC can

have a substantial impact in improving the process of building document classification models. The field

needs more research addressing support for the process of building acceptable models, especially in busi-

ness situations where various parties must be satisfied with the results. Indeed, recent developments in

machine learning and data mining arguably have moved us further away from the needed transparency, with

the strong research emphasis on and seeming success of techniques resulting in complex models, such as

boosting, non-linear SVMs, feature hashing, etc. Managers and developers need to be able to interact to

agree that a classification system is behaving appropriately.

More specifically, systems like SEDC may become a critical component of the iterative process for

improving document classification models. As the case study and the newsgroup study showed, SEDC can

identify data quality issues and model deficiencies. These deficiencies can be resolved via various mech-

anisms, leading to improved models directly or, alternatively, to improved data quality, which ultimately

should lead to better model performance and decision making.
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This paper has not provided a rigorous study of the insight provided by the explanations. The case studies

show that the method is capable of providing improved understanding of the inner workings of the classifier,

and better understanding of the domain of application. It would be fascinating future work to examine the

changes in the decision makers’ judgment after having been presented with such explanations.

In this paper we have focused specifically on document classification. We conjecture that these techniques

also will be quite useful in other high-dimensional classification problems, which are becoming increasingly

important to modern business. For example, it may not be obvious, but classifying web users based on the

web pages they visit (Provost et al. 2009) could be cast in the same framework as document classification.

Each user can be represented by a set of webpage URLs from an extremely large set (billions). Users are

classified by models over this vocabulary. Understanding their classifications is directly analogous to the

problem addressed in this paper. Similarly, the problem of classifying bank customers for targeted marketing

based on the parties with which they transact (Martens and Provost 2011) also can be formulated similary.

The “documents” are the customers and the “words” are the payment receivers. In both of these additional

domains, being able to understand the individual classifications would have the same benefits shown in

the extended gap model. However, the technique would not necessarily apply to every high-dimensional

classification problem. It is necessary that the individual dimensions (and small subsets thereof) can be

interpretable. So, in the aforementioned web-user classification example, if the URLs were irreversibly

hashed for privacy reasons, prior to forming the classification model, then the techniques introduced in this

paper would not provide useful explanations.

7. Conclusion

The business problem this paper addresses is to enhance the understanding of a document classification

model such that (1) the manager using it understands how decisions are being made, (2) the customers

affected by the decisions can be advised why a certain actionregarding them is taken, and (3) the data

science/development team can improve the model iteratively. Further, (4) document classification explana-

tions can provide better understanding of the business domain. The 7-gap extension to Kayande’s 3-gap

framework formalizes these different roles, and shows how explanations can reduce the corresponding gaps

between the users’ mental model(s) and the decision system in both directions, and also can reduce the gap

between the decision system and reality, as the developers use the explanations to help improve the model.
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We found that global explanations in the form of a decision tree or a list of the most indicative words

do not provide a satisfactory solution. Moreover, previously proposed explanation methods on the data-

instance level are not able to deal the huge dimensionality of document classification problems. With the

technical constraints of high-dimensional data in mind, weaddressed this business problem by creating an

explanation as a “necessary” set of words: a minimal set suchthat after removal the current classification

would no longer be made. The presented search algorithm (SEDC) for finding such explanations is optimal

for linear binary-classification models, and heuristic for non-linear models.

In terms of effectiveness, the results show that the explanations are quite concise and comprehensible,

comprising a few to a few dozen words (a very small portion of the overall vocabulary). The words in the

explanations vary greatly across the explanations, even with words in different languages, which supports

the claim that existing global explanations are inadequatefor such document classification domains.

We hope that this new sort of instance-level explanation fordocument classification will provide an

immediately useful method across a wide variety of business(and scientific, medical, and legal) applica-

tions where document classifications are critical. We also hope we have made the case that thinking about

explanations in this way opens up a large number of new research problems and opportunities for improving

the state of the art in building and using data-driven document classification systems.

Acknowledgments

Thanks to the anonymous reviewers and editors for very constructive comments, which substantially

improved the paper. We extend our gratitude to AdSafe Media and Josh Attenberg for many discussions

into the problem of safe advertising. This particular data set was not necessarily used in the development of

any production model used for safe advertising. Foster Provost also thanks NEC for a Faculty Fellowship.

References

Agrawal, R., R. Srikant. 1994. Fast algorithms for mining association rules.Proc. 20th Int. Conf. Very Large Data

Bases, VLDB, vol. 1215. 487–499.

Arnold, V., N. Clark, P.A. Collier, S.A. Leech, S.G. Sutton.2006. The differential use and effect of knowledge-based

system explanations in novice and expert judgement decisions. MIS Quarterly30(1) 79–97.

Arnott, David. 2006. Cognitive biases and decision supportsystems development: a design science approach.Infor-

mation Systems Journal16(1) 55–78.



Martens and Provost: Explaining Data-Driven Document Classifications
45

Attenberg, J., P. Ipeirotis, F. Provost. 2011. Beat the machine: Challenging workers to find the unknown unknowns.

Proceedings of the 3rd Human Computation Workshop (HCOMP 2011). 1–6.

Attenberg, J., F. Provost. 2010. Why label when you can search? Alternatives to active learning for applying human

resources to build classification models under extreme class imbalance. Proceedings of the Sixteenth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

Attenberg, J., K. Q. Weinberger, A. Smola, A. Dasgupta, M. Zinkevich. 2009. Collaborative email-spam filtering with

the hashing-trick.Sixth Conference on Email and Anti-Spam (CEAS).

Baehrens, D., T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, K.-R. M̈uller. 2010. How to explain individual

classification decisions.Journal of Machine Learning Research111803–1831.

Baesens, B., T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, J. Vanthienen. 2003. Benchmarking state-of-the-art

classification algorithms for credit scoring.Journal of the Operational Research Society54(6) 627–635.

Banker, R., R. Kauffman. 2004. The Evolution of Research on Information Systems: A Fiftieth-Year Survey of the

Literature in ”Management Science”.Management Science50(3) 281–298.

Barki, H., J. Hartwick. 2001. Interpersonal conflict and itsmanagement in information system development.MIS

Quarterly25(2) 195–228.

Bishop, C.M. 1996.Neural networks for pattern recognition. Oxford University Press, Oxford, UK.

Buchanan, B.G., E. H. Shortliffe. 1984.Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic

Programming Project (The Addison-Wesley series in artificial intelligence). Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA.

Chang, Chih-Chung, Chih-Jen Lin. 2001.LIBSVM: a library for support vector machines.

Craven, M.W., J.W. Shavlik. 1996. Extracting tree-structured representations of trained networks.Advances in Neural

Information Processing Systems, vol. 8. The MIT Press, 24–30.

De Sanctis, G. 1983. Expectancy theory as explanation of voluntary use of a decision support system.Psychological

Reports52247–260.

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman. 1990. Indexing by

latent semantic analysis.Journal of the American society for Information Sciences41(6) 391–407.

D’Silva, S., N. Joshi, S. Rao, S. Venkatraman, S. Shrawne. 2011. Improved algorithms for document classification

and query-based multi-document summarization.Journal of Engineering and Technology3(4).



Martens and Provost: Explaining Data-Driven Document Classifications
46

eMarketer. April 27, 2010. Brand safety concerns hurt display ad growth.

Http://www1.emarketer.com/Article.aspx?R=1007661.

Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin. 2008. LIBLINEAR: A library for

large linear classification.Journal of Machine Learning Research9 1871–1874.

Fawcett, T., F. Provost. 1997. Adaptive fraud detection.Data Mining and Knowledge Discovery1(3) 291–316.

Fayyad, U.M., G. Piatetsky-Shapiro, P. Smyth. 1996. From data mining to knowledge discovery: An overview.

Advances in knowledge discovery and data mining. American Ass. for Artificial Intelligence, 1–34.
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Appendix A: News Item Categorization

A.1. 20 Newsgroups data set

To demonstrate generality and to illustrate some additional properties of the method we now apply the

explanation method to a second domain: classifying news stories. The 20 Newsgroups data set is a bench-

mark data set used in document classification research. It contains about 20,000 news items partitioned

evenly over 20 newsgroups of different topics, and has a vocabulary of 26,214 different words (after stem-

ming) (Lang 1995). The 20 topics can be categorized into seven top-level usenet categories with related

news items: alternative (alt), computers (comp), miscellaneous (misc), recreation (rec), science (sci), soci-

ety (soc) and talk (talk). One typical problem addressed with this data set is to build classifiers to identify

stories from these seven high-level news categories, whichfor our purposes gives a wide variety of differ-

ent topics across which to provide document classification explanations. Looking at the seven high-level

categories also provides realistic richness to the task: inmany real document classification tasks, the class

of interest is actually a collection (disjunction) of related concepts (consider, for example, “hate speech” in

the safe-advertising domain).

We build a classifier system to distinguish the seven top-level categories using all words in the vocabu-

lary. This permits us to examine a wide variety of explanations of different combinations of true class and

predicted class, in a complicated domain, but one where we have at least a high-level intuitive understanding

of the classes. The examination shows that even for news itemsgrouped within the same top-level category,

the explanations for their classifications can vary greatly and are intuitively related to their true lower-level

newsgroup.

A.2. Results

The classifier system for distinguishing the seven top-level newsgroups (alt, comp, misc, rec, sci, soc, talk)

operates in a one-versus-others setup, i.e., seven classifiers are built, each distinguishing one newsgroup

from the rest. For training (on 60% of the data) and for prediction (remaining 40% as test data), if a news

item is (predicted to be) from the given newsgroup, the classvariable is set to one; if not the class variable

is set to zero. To demonstrate the method with different types of model, here we build both linear and

non-linear SVM classifiers.

In Table 4, each cell shows at least one explanation (where possible) of an example from one of the

20 low-level categories (specified in the row header) being classified into one of the top-level categories
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(specified in the column header). If no explanation is given ina cell, either no misclassified instances exist,

which occurs most, or no explanation was found with maximum 10 words. The shaded cells on the diagonal

are the explanations for correct classifications; the rest are explanations for errors. For example, the first

explanation in the upper-left cell (excluding the header rows) shows that this correct classification of a news

story in the alt.atheism category is explained by the inclusion of the terms ‘ico’, ‘bibl’, ‘moral’, ‘god’ and

‘believ’: if these words alone are removed, the classifier would no longer place this story correctly into the

alt category.

Several cells below we see explanations for why a sci.med story was misclassified as belonging to alt:

because of the occurrence of the word ‘atheist’ (first explanation), or the words ‘god’ and ‘believe’ (second

explanation). Further investigation of this news story reveals it concerns organ donation. More generally,

the explanations shown in Table 4—the correctly classified test instances (grayed cells on the diagonal)—

usually are indeed intuitively related to the topic.

The categories themselves often occur as words in the explanations, such as ‘hardwar’, ‘microsoft’, ‘mac’

and ‘space’. Importantly, the different subcategories of the newsgroups show different explanations, which

motivates using instance- rather than global-level explanations. For example, for the computer newsgroup

(shown in the second column), the terms used to explain classifications from the different subgroups are

quite different and intuitively related to the specific subgroups.

The misclassified explanations (outside of the shaded cells) often show the ambiguity of certain words as

reason for the misclassification. For example ‘window’ is a word that can be related to computer, but also

can be seen as words related to automobiles. The explanationsfor the misc.forsale news items indicate they

are most often misclassified because the item that is being sold comes from or is related to the category it is

misclassified in. With this individual-instance approach, similar ambiguities as well as intuitive explanations

for each of the subgroups also can be found for the other categories. The results also demonstrate how the

explanations can hone in on possible overfitting, such as with‘unm’ and ‘umd’ in the cells adjacent to the

upper-left cell we discussed above.

The test accuracy (in terms of percentage correctly classifiedinstances, PCC) and explainability metrics

when allowing a maximum of 10 words in an explanation are shown in Table 5, for the positive classifi-

cations. Although a high percentage of the test instances isexplained (PE around 90-95% for all models)

still some instances remain unexplained. If we allow up to 30words in an explanation, all instances are
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explained for each of the models. Of particular note is that for this widely used benchmark with a vocabu-

lary of 26,214 words, on average only a small fraction of a second (ADF of 0.02-0.08 seconds for the linear

models) is needed to find a first explanation. As previously mentioned, this is because our SEDC explana-

tion algorithm is independent of the vocabulary size. Explaining the non-linear model requires more time,

since backtracking occurs and the model evaluation takes longer than for a linear model. Nevertheless, on

average still less than a second is needed to find an explanation.

These results in a second domain, with a wide range of documenttopics, provide support that our general

notion of instance-level document classification is capableof providing better understanding of the func-

tioning of text classifiers, and that the SEDC method is generally effective and pretty fast as well. Further,

this second study provides a further demonstration of the futility of global explanations in domains such as

this: there are so many different reasons for different classifications. At best they would be muddled in any

global explanation, and likely they would simply be incomprehensible.
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Classification models in one-versus-others setup: ‘newsgroup’ versus not ‘newsgroup’

Explanations why news items are classified as ‘newsgroup’

alt vs not alt comp vs not comp misc vs not misc rec vs not rec
alt.atheism ico bibl moral god believ unm wustl distribut com

ico bibl moral god read carina screen wustl 5 univers
ico bibl moral accept god carina join wustl origin distribut

comp.graphics umd quicktim 3do centris resolut card programbigwpi wpi distribut nb canada ca
wam quicktim 3do centris resolut ac card bigwpi wpi pleas nb luck canada
mistak cant quicktim 3do centris resolut fax card bigwpi wpi email nb archiv canada

comp.os.ms-windows.misc mous microsoft cant distribut 6
mous microsoft solution look tom
mous microsoft switch pleas archiv com

comp.sys.ibm.pc.hardware hardwar thank distribut cornel buffalo
hardwar appreci repli buffalo cc wonder
adam hardwar call ubvmsb buffalo cc

comp.sys.mac.hardware kmr4po read vga monitor mac advenc card am offer sale distribut univers
kmr4po follow vga monitor mac advenc card repli offer sale card recent
kmr4po note vga monitor mac advenc card thank jame offer sale price

comp.windows.x enterpoop lcs fax pleas street final list
enterpoop lcs mit includ 2154 street final com
enterpoop xpertexpo lcs inc send 2154 street final pleas

misc.forsale driver program sale insur
driver card 2190 gasket massachusett ser
pc driver pc mention gasket jacket massachusett

rec.autos window call distribut geico insur distribut
window email 3 geico insur ca
window 4 compani geico insur usa

rec.motorcycles greyscal color mile dod
greyscal pictur pad ottawa ca
greyscal directori rosevil deal ottawa canada

rec.sport.baseball offer miller brave gatech nl seri team technologi game
game 3 miller brave gatech nl seri team institut game
game 5 miller brave gatech nl seri team plai game

rec.sport.hockey michel comput susan buffalo ny team
michel 4 game call bruin buffalo team
co michel buffalo game sabr buffalo team

sci.crypt mathew 42 print messag ohio usa
rusnew mantis umd consult couldnt agre42 print seen cincinnati list
rusnew mantis umd consult couldnt stop42 print net victor free

sci.electronics softwar sell price email pleas univers
prefer sell price game email distribut
appl ncsu sell price email ca

sci.med atheist lcs mit address thank nyx canada cc bad pleas univers
god believ lcs laboratori mit address denver du canada cc bad pleas thank
god start lcs mit address email am denver dept distribut canada cc bad i’v pleas

sci.space michel help internet riversid due
site help servic riversid ucr
help thank am institut riversid prbaccess com

soc.religion.christian atheist wrote call chanc
technologi person dave
9 includ princeton

talk.politics.guns richard drive holonet norton internet sfasu
richard fax holonet norton modem arlen thank
bryan richard holonet norton pete arlen pleas

talk.politics.mideast wrote ai repli hous cc
evid ai mit amherst columbia
religion ai cant 3 pl7 lion

talk.politics.misc religi god cwru ohio car
religi religion jone jone watch
islam religi cleveland western hela ins cleveland reserv western usa 2jm

talk.religion.misc bill site institut refer
explain ca system gold mike
cration usa system polytechn univ
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Classification models in one-versus-others setup: ‘newsgroup’ versus not ‘newsgroup’

Explanations why news items are classified as ‘newsgroup’

sci vs not sci soc vs not soc talk vs not talk
alt.atheism latech translat ha atom 2000 moral object evid

scisur familiar ha overwhelm atom 2000 moral object
rayengr help translat god microscop ha atom 2000 moral object

comp.graphics map scott pleas david
pub inc scott read happen
pub ftp scott answer list

comp.os.ms-windows.misc public book speak
date pa limit
std steven stand

comp.sys.ibm.pc.hardware nz mark address
nz 1.1 student
nz network utexa

comp.sys.mac.hardware bounc suppli purdu
bounc circuit cc center
sync bounc happen pure cc

comp.windows.x nz scienc re
aukuni time sorc time
aukuni scienc upenn name

misc.forsale tube pa usa
catalog sex accept 21
umb etc sex hell gun

rec.autos max low fone chuck utexa call
max cycl fone discuss pleas utexa center
max pl9 effect fone discuss read utexa care

rec.motorcycles ibm righteous racist stupid mean
week fone righteous racist stupid own
rochest fone 10 righteous racist stupid opinion

rec.sport.baseball list 10 dt buffalo love cc
list scienc nswc buffalo stand cc
std list carderock buffalo stori cc

rec.sport.hockey ericsson inc oppos john
ericsson commun csd boulder center
ericsson user chuck boulder depart

sci.crypt inform congress law john
commun preced congress john
offic nagl congress john

sci.electronics adcom god re
preamp chip sound accept david
preamp network chip recent citi

sci.med handed rsilverworld sight domin eye communsex perot
handed rsilverworld sight domin eye indic grade fysic 16 happen
handed rsilverworld sight domin guest eye lookfysic speak reason edward happen

sci.space space book terror moral govern
nasa follow discuss terror moral law
nasa scienc fysic terror moral major

soc.religion.christian greet marie angel religion pleas homosexu
gabriel greet mari 12 religion question abus behavior love
gabriel greet mari various religion follow abus sexual love peopl

talk.politics.guns chip marri christ life batf waco clinton question
explode marri christ view batf waco clinton law
medic understand marri christ religion batf waco clinton evid

talk.politics.mideast ai ab4zvirginia beyer holocaust arab militari plan evid kill
amend lab ab4zvirginia beyer andi holocaust arab militari attack evid kill
amend messag 10 blanket ab4zvirginia beyer andiholocaust arab militari reach evid kill

talk.politics.misc acid scienc serbian homosexu moral law
acid commun bomb york 2 homosexu moral stop
acid sorc bomb york position homosexu moral pass

talk.religion.misc messag pa christian malcolm weapon jew christian
institut mormon faith christian 2 malcolm weapon jew kill
apr mormon faith hous christian malcolm weapon jew hous

Table 4 Explanations are shown why documents from the newsgroup shown at the beginning of the row are classified in the newsgroup shown at the top of the column.
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Model
Linear SVM Non-linear RBF SVM

PCC PE AWS ANS ANT ADF AD PCC PE AWS ANS ANT ADF ADA

alt 81.5% 96.1% 2.7 6.1 18.5 0.05 0.16 76.8% 95.7% 2.5 7.2 30.1 0.62 1.35
comp 93.7% 89.1% 3.1 6.1 13.3 0.05 0.12 94.9% 81.7% 3.3 5.4 12.4 0.54 0.88
misc 92.8% 98.1% 1.9 4.9 12.9 0.02 0.12 90.5% 96.6% 1.8 6.0 17.0 0.14 0.38
rec 94.2% 94.8% 2.4 5.7 13.7 0.04 0.11 93.6% 92.9% 2.4 7.0 16.7 0.40 0.79
sci 85.4% 93.5% 2.7 8.0 19.6 0.06 0.15 83.1% 90.4% 2.7 9.7 23.2 1.01 1.62
soc 94.2% 94.4% 1.8 6.5 16.9 0.03 0.15 90.2% 91.5% 2.4 10.0 29.5 0.39 0.79
talk 88.5% 92.1% 2.5 7.8 23.8 0.08 0.21 86.8% 90.0% 2.0 10.5 28.5 1.30 2.90

Table 5 Explanation performance metrics on the test set of the 20 newsgroups data set for a linear (left) and

non-linear (right) SVM model and explanations of maximum 10 words.

Appendix B: A word on scaling up

Let us first consider a linear model. For a document withmD unique words, SEDC evaluates sequentiallymD

“documents” (the original document with 1 word removed), then iteratively works on the best of these lead-

ing to the evaluation ofmD −1 documents (the original with 2 words removed); nextmD −2 documents are

evaluated, and so on. When an explanation of sizes is found a total ofO(s×mD) evaluations have occurred.

The computational complexity depends therefore on (1) the time needed for a model evaluation (sometimes

very fast, sometimes not so), (2) the number of words needed for an explanations, which in our case study

went to about 50, and (3) the number of unique words in the documentmD, which is generally very small

as compared to the overall vocabulary. Most importantly, the computational complexity is independent of

the overall size of the vocabulary, unlike previous instance-level explanation approaches. This complexity

could be lowered further for linear models toO(s) by incrementally evaluating the word combinations with

the next-most-highly-ranked word removed (recall Lemma 1 and Theorem 1). Our implementation does not

include this speed-up mechanism as we wish to present a technique applicable to all models and not just to

linear ones.

For a non-linear model, the heuristic search will likely backtrack, when a better local improvement is

found elsewhere. The extent to which this occurs depends on the shape of the model’s decision boundary.

In the worst case scenario, backtracking over all words occurs, leading tomD +mmD
D evaluations. Thus, for

non-linear models the worst case complexity grows exponentially with the depth of the search tree.


