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Many document classification applications require humaterstanding of the reasons for data-driven clas-
sification decisions: by managers, client-facing empleye@d the technical team. Predictive models treat
documents as data to be classified, and document data aeeteh@ed by very high dimensionality, often
with tens of thousands to millions of variables (words). ariinately, due to the high dimensionality, under-
standing the decisions made by document classifiers is ¥ifigutt. This paper begins by extending the most
relevant prior theoretical model of explanations for iligeint systems to account for some missing elements.
The main theoretical contribution of the work is the defanitiof a new sort of explanation as a minimal set
of words (terms, more generally), such that removing alldsowithin this set from the document changes
the predicted class from the class of interest. We presealgamithm to find such explanations, as well as a
framework to assess such an algorithm’s performance. Wedstnate the value of the new approach with a
case study from a real-world document classification tdslssifying web pages as containing objectionable
content, with the goal of allowing advertisers to choosetadtave their ads appear there. A second empiri-
cal demonstration on news-story topic classification use®6 Newsgroups benchmark dataset. The results
show the explanations to be concise and document-specificpde capable of providing better understand-
ing of the exact reasons for the classification decisiontheo#vorkings of the classification models, and of the
business application itself. We also illustrate how explag documents’ classifications can help to improve

data quality and model performance.
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1. Introduction
Document classification systems classify text documentenaatically, based on the words,

phrases, and word combinations therein (hereafter, “vinr8sisiness applications of document
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classification are becoming increasingly widespread,@slbe with the introduction of low-cost
micro-outsourcing systems for annotating training coapdirevalent applications include senti-
ment analysis (Pang and Lee 2008), spam identificationjhéry et al. 2009), web page classifi-
cation (Qi and Davison 2009), legal document classificafl@eng et al. 2007), medical document
triage (Wallace et al. 2010), and document classificatiortdpical web search (Pant and Srini-
vasan 2005), just to name a few. Classification models arefbamh labeled data sets that encode
the frequencies of the words in the documents. Importaotiyhis paper, and different from many
data mining applications, the document classification dgieesentation has very high dimension-
ality, with the number of words and phrases typically raggnom tens of thousands to millions.

The main contribution of this paper is to examine in detailraportant aspect of the business
application of document classification that has receivitlke lattention in the research literature.
Specifically, organizations often need to understand tlaetesxeasons why classification models
make particular decisions. The need comes from varioupeetises, including those of managers,
customer-facing employees, and the technical team. Torstaohel these needs more deeply, in the
next section we extend an existing theoretical model fromitifiormation Systems (IS) literature
to include these various perspectives.

As a concrete illustration, consider an application cutyereceiving substantial interest in on-
line advertising: keeping ads off of objectionable web eah{eMarketer April 27, 2010). Having
invested substantially in their brands, firms cite the piééto appear adjacent to nasty content as
the primary reason they do not spend more on on-line adwegti$o help reduce the risk, docu-
ment classifiers are applied to web pages along various gioren of objectionability, including
adult content, hate speech, violence, drugs, bomb-ma&mymany others. However, because the
on-line advertising ecosystem supports the economicdasteof both advertiseesad content pub-
lishers, black-box models are insufficient. Managers capabmodels into production that might
block advertising from substantial numbers of non-ob@wble pages, without understanding the

risks of incorporating them into the product offering. Cusé&r-facing employees need to explain
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why particular pages were deemed objectionable by the modeld the technical team needs
to understand the exact reasons for the classifications,rsadéat they can address errors and
continuously improve the models.

Popular techniques to build document classification madelade naive Bayes, linear and non-
linear support vector machines (SVMs), classificatior-tbased methods (often used in ensem-
bles, such as with boosting (Schapire and Singer 2000) gatast neighbor (Han et al. 2001) and
many others (Hotho et al. 2005). Because of the massive dioralsy, even for linear and tree-
based models, it is very difficult to understand exactly hagwan model classifies documents. It
is essentially impossible for a non-linear SVM or an ensentdbltrees. Understanding the classi-
fications requiregonciseexplanations, which here we define as explanations that t@fenly a
very small fraction of the total vocabulary, in contrast xiséng explanation approaches which in
most cases include large fractions of the vocabulary.

Understanding particular classifications also providegoimportant benefits. Not only can we
get improved understanding of the classification modelgtt@anations also can provide a novel
lens into the complexity of the business domain. For exampl&xplanation 1 (shown below;
described fully in Section 3.3), the word ‘welcome’ as andgation of adult content initially seems
strange. Upon investigation/reflection we understand ithabme cases an adult website’s first
page contains a phrase similargelcome to ... By continuing you confirm you are an adult and
agree with our policy’ The explanation brings this complexity to light.

We introduce this problem, tying it in to the existing literee on explanations for decision
systems and extending the relevant theory to account foemodata-driven modeling. In line
with this theory, we then introduce the first (to our knowlegitgchnique that directly addresses the
explanation of the decisions made by document classifidrs.tdchnique focuses on explaining
why a document is classified as a specific class of interagt (ebjectionable content” or “hate
speech”). Finally, we present a case study based on datadneal application to the business

problem of safe advertising discussed above, and an emldvitow-up study on benchmark data



Martens and Provost: Explaining Data-Driven Document Classifications

4

sets (from news classification). These studies demongtratehe methods can be effective, and
also flush out additional important issues in explainingusoent classifications, such as the need
for hyper-explanations.

Explanation 1: An example explanation why a web page is clagigd as having adult content.

If words (welcome fiction erotic enter bdsm adudile removed then class changes from adult to non-gdult.

2. Explanations and Statistical Classification Models
Explaining the decisions made by intelligent decision elyst has received both practical and
research attention for decades, and a complete review isbegbnd the scope of this paper.
Nonetheless, there are important results from prior woak ltielp to frame, motivate, and explain
the specific gap in the current state of the art that this pagéresses.
2.1. Model-based decision systems and instance-specific explanations
Starting as early as the celebrated MYCIN project in the 1$I0dying intelligent systems for
infectious disease diagnosis (Buchanan and Shortliffe Y1384 ability for intelligent systems
to explain their decisions was understood to be necessamffiective use of such systems and
therefore was studied explicitly. The document classificasystems that are the subject of this
paper are an instance of decision systems (DSs): systetresttiex (i) support and improve human
decision making (as with the characterization of decisopport systems by Arnott (2006)), or (ii)
make decisions automatically. The focal application of fper’'s case study falls in the second
category: billions of attempts to place advertisementsnaaele each day, and each decision is
made in a couple dozen milliseconds. Model-based decigstersis have seen a steep increase in
development and use over the past two decades (Banker anfirtéa2004). We focus on models
produced by large-scale automated statistical prediatiodeling systems (Shmueli and Koppius
2011), for which generating explanations can be partibufaoblematic.

Different applications impose different requirements dioderstanding. Consider three differ-

ent application scenarios, both to add clarity in what fepand so that we can rule out one of
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them. First, in some applications it is important to undardtevery decision that the Dfay pos-
sibly make For example, for many applications of credit scoring (Mag et al. 2007) regulatory
requirements stipulate that every decision be justifiadnhel often this is required in advance of
the official “acceptance” and implementation of the syst8milarly, one could easily see that a
medical decision system may need to be completely transparéhis respect. The present paper,
about individual case-specific explanations, is not inéehid apply to systems such as thése.

In contrast, consider applications where one needs to iexjbla specific reasons for some sub-
set of the individual decisions (cf., the theoretical ressimr explanations summarized by Gregor
and Benbasat (1999), discussed below). Our case studyrdighis category. Often, this need
for individual case explanations arises because particdaisions need to be justified after the
fact, because (for example) a customer questions the deasia developer is examining model
performance on historical cases. Furthermore, to rgmeddlemswith the classification of docu-
ments it may be more efficient for an analyst to study concigdaeations than the documents
themselves. Alternatively, a developer may be exploringiien-making performance by giving
the system a set of theoretical test cases. In both scenidrgosecessary for the system to provide
explanations for specific individual case®ther examples in the second scenario include fraud
detection (Fawcett and Provost 1997), many cases of targedeketing, and all of the document
classification applications listed in the first paragrapthed paper.

In a third application scenario, every decision that thdesysactually makes must be under-
stood. This often is the case with a classical decision-sugystem, where the system is aiding a
human decision maker, for example for forecastingri@ et al. 2006) or auditing (Ye and Johnson

1995). For such systems, again, it is necessary to havdadodicase-specific explanations.

1The current prevailing interpretation of this requiremfemtcomplete transparency argues for a globally comprehen-
sible predictive model. Indeed, in credit scoring gengrtde only models that are accepted are linear models with a
small number of well-understood, intuitive variables. Bneodels are chosen even when non-linear alternatives are

shown to give better predictive performance (Martens G07).

2 Individual case-specific explanations may also be suffigiemany applications. For this paper it is only important

that they be necessary.
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2.2. Cognitive perspectives on model explanations

Gregor and Benbasat (1999) provide a survey of empirical warkxplanations from intelligent
systems. They find that explanations are important to uskenwhere is some specific reason and
anticipated benefit, when an anomaly is perceived, or wheretis an aim of learning.

Their theoretical analysis brings to the fore three ideas #éine critical for our context. First,
they introduce the reasons for explanations: to resolvegperd anomalies, a need to better grasp
the inner workings of the intelligent system, or the desorelbng-term learning. Second, they
describe the type of explanations that should be providesl; emphasize the need not just for
general explanations of the model, but for explanationsatecontext-specific. Third, Gregor and
Benbasat emphasize the need for “justification”-type exailans, which provide a justification
for moving from the grounds to the claims, in contrast to #néEe explanations. In statistical
predictive modeling, the “rule trace” often entails simfiig application of a mathematical function
to the case data, with the result being a score represefiiengkelinood of the case belonging
to the class of interest, with no justification of why. Thesdiitle existing work on methods for
explaining modern statistical models extracted from diasa $atisfy these latter two criteria, and
none (to our knowledge) that provide such explanationgtenery high-dimensional models that
are the focus of this paper.

An important subtlety that is not brought out explicitly byggor and Benbasat, but which
iS quite important in our contemporary context is the ddfese between (i) an explanation as
intended to help the user to understand hbe worldworks, and thereby help with acceptance
of the system, and (ii) an explanation of halae modelworks. The latter case can be further
subdivided into (a) how the model works in general, and (by tee model works on a particular
instance. The explanation thereby either can help with@eoee, or can focus attention on the

need for improving the model. When the model reflects realgif,khen this also will support (i).

2.3. Kayande et al.’s 3-gap framework
In order to examine more carefully why explanations are adeahd their impact on decision

model understanding, long-term learning, and improvedsitat making, we turn to the recent
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work by Kayande et al. (2009). This work focuses on the sam&gbdas we do in our case study,
specifically where data are voluminous, the link betweensitats and outcomes is probabilistic,
and the decisions are repetitive. They presume that it islyignlikely that decision makers can
consistently outperform model-based DSs in such contexts.

Prior work has suggested that when users do not understanddtkings of the DS model,
they will be skeptical and reluctant to use the model, evéimaefmodel is known to improve deci-
sion performance, see, e.g., Umanath and Vessey (1994aykim and De Sanctis (2000), Lilien
et al. (2004), Arnold et al. (2006), Kayande et al. (2009):tler, decision makers need impe-
tus to change their decision strategies (Todd and Benba88),1& well as guidance in making
decisions (Silver 1991). Kayande et al. introduce a “3-dgaghework (Figure 1) for understand-
ing the use of explanations to improve decision making byraig three different “models”: the
user’s model, the system’s model, and reality. Their resshiow that guidance toward improved
understanding of decisions combined with feedback on thenpial improvement achievable by
the model induce decision makers to align their mental nsodere closely with the decision
model, leading to deep learning. This alignment reducesdh@sponding gap (Gap 1), which in
turn improves user evaluations of the DS. It is intuitive tguee that this then improves acceptance
and increases use of the system. Under the authors’ assumtipéit the DS’s model is objectively
better than the decision maker’s (large Gap 3 compared t®@§ aps then would lead to improved
decision-making performance, cf., Todd and Benbasat (1¥2§)ectancy theory suggests that
this will lead to higher usage and acceptance of the DS madeisers will be more motivated to
actually use the DS if they believe that a greater usage ®@all lto better performance (De Sanctis
1983).

2.4. An extended gap framework
The framework of Kayande et al. is incomplete in two imporiaays, which we now will address
in turn. First, Kayande et al. do not address the use of eafilams (or other feedback) to improve

the DS model. Technically this incompleteness is not anmqeteness in their 3-gap framework,
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Figure 1  3-Gap framework by Kayande et al. (2009).

because improving the model fits as closing Gap 2. Indeedutiers note specifically that “to
provide high-quality decision support, the gap betweeniB& model and the true model must
be small (Gap 2).” However, in the paper, Kayande et al. fadbas attention on closing Gap 1
between the user’s mental model and the DS model. Theyyukis with the explicit assumption
“that the DSS model is of high objective quality (small Ga@2y that it is of better quality than
the user’s mental model (large Gap 3).” Even when the mogelformance generally is much
better than the user’s, in many applications there stillpdeaty of cases where the user is correct
when the model is wrong. True mistakes of the model, whertedtby a user, can jeopardize user
trust and acceptance.

More generally, we need research that focuses on a usetedeioretical understanding of the
production of explanations with a primary goal of improvohafa-driven models based on feedback
and iterative development. This is important because agmked systems increasingly are built
by mining models from large data, users may have much ledglence in the model’s reasoning
than with hand-crafted knowledge-based systems. Therékatg to be many cases where the
decisions are erroneous due either to biases in the prardeyverfitting the training data (Hastie
et al. 2001). As pointed out by Gregor and Benbasat (1999kawi$f want an explanation when

she perceives an anomaly. The resultant explanation mpyheuser to learn about how the world
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(@) Proposed 7-Gap model highlighting the gapgb) Proposed 7-Gap model highlighting the gaps
between the users’ models and reality. Understandinigetween the users’ models and the DS’s model. These
document classifications can close these gaps, helpiggps can be closed in either direction: improving users’
users to understand the world better, thereby improvingnderstanding of how the DS model works, or helping to
acceptance of the system. improve the DS model. Improving the DS model, in turn,
helps close the vertical gap between the DS model and

reality.

Figure 2  7-gap extension to Kayande et al.’s 3-gap framework, showing that (i) explanations can
close more than just the gap between the user’s mental model and the DS model, and (ii) the

extension of a single user to three relevant user roles: client, manager and developer.

works (Kayande et al. 2009), and thereby improve acceptdtmgever, it alternatively may lead

to the identification of a flaw in the model, and lead to a dgweldent effort focused on improving
the model. At a higher level, this ability for the users and tlevelopers to collaborate on fixing
problems with the system’s decision-making may also impnaser acceptance, because the user
sees herself as an active, integral part of the system dawelot, rather than a passive recipient
of explanations as to why she is wrong about the woFlterefore, our first extension to the 3-gap
framework is thaexplanationgan be used to improve the model—closing Gap 2 (and Gap 1) in

the other direction—as well as to improve user understanding
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This leads us to the second important incompleteness irrdneeivork of Kayande et al. The
3-gap framework considers a single, monolithic “user” @& tkecision system. We contend that to
better understand the uses of explanations in the contgxofices within contemporary organi-
zations, we need to differentiate between different rofgseople who interact with the decision
systen® In order to understand how explanations are or should be, tiseck are at least three
different roles that are important to distinguish: develsp managers, and customers.

Figures 2a and 2b present a 7-gap extension to Kayandesdtahiework. The extended frame-
work makes three novel contributions. First, it clarifies thdirectional nature of the gap closing
that can be achieved via explanations: explanations cahtteahanges in user mental models;
they also can lead to changes in the DS model. Second, thedextéramework divides out three
different user roles. Each different role has differentdseand uses for explanations, as will be
illustrated in the context of our case study. Third, the edtsl framework distinguishes between
two quite different sorts of user understanding, which bkerid important: understanding reality
better, and understanding the DS model better.

More specifically, Figure 2a illustrates how the extendedlehtreaks apart the closing of the
gap between the different user roles and reality. In eadh, explanations can give the user better
understanding of the domain. However, although customesisagers, and developers all need to
accept the DS model, “acceptance” means different thingedoh. In our case study application
of web page classification for safe advertising, explamatiof why ads are blocked on certain
pages can increasecastomes understanding of the sorts of pages on which her ads ang bei
shown (a difficult task in modern online display advertigingthese include hate speech pages
on user-generated content sites, this may substantiaihgase the user’'s acceptance of the need
in the first place for the DSVlanagersseeing explanations of blocked pages can better understand
the landscape of objectionable content, in order to betteket the serviceDevelopersan better

3We discuss different roles rather than different sorts afgte, because in some contexts the same person may play

more than one of the roles.
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understand the need for focused data collection, in ordensoire adequate training data for the
classification problems faced (Attenberg and Provost 28ft@nberg et al. 2011). In sum, assum-
ing (as do Kayande et al.) that the DS model is relativelyelmsreality, a better understanding
of the domain should improve: acceptance by customers amageas, marketing and sales by
managers, and efficiency and efficacy of developers.

Figure 2b highlights the gaps between the users’ mental lnaael the DS model. The arrows
moving from the mental models toward the DS model break ajiierent sorts of understanding
that underlie the gap closing that explanations may prowdeerent in the treatment by Kayande
et al. In the case of data-driven statistical models, alldifferent user roles may need to achieve
some level of understanding of the decision system, in daenprove acceptance (in line with
prior research). At the top of the figure, clients/custonneay need to have the specific decisions of
the system justified. As represented by the middle gap, nexsaged to understand the workings
of the DS model: customer-relationship managers need tovddacustomer queries regarding
how decisions are made. Even in applications for which blamk systems are deployed routinely,
such as fraud detection (Fawcett and Provost 199@yagersstill need to have confidence in the
operation of the system (middle gap) and may need to expdasngtomers reasons for particular
classifications when errors are made. Operations managedsto “sign off” on models being
placed into production, and prefer to understand how theeinma@kes its decisions, rather than
just to trust the technical/data science team. Developmamagers need to understand specific
decisions when they are called into question by customelsisiness-side employees. Finally,
(bottom gap) the data science developers themselves needéostand the reasons for decisions
in order to be able to debug/improve the models (discusski). éolistic views of a model and
aggregate statistics across a “test set” may not give siitiguidance as to what exactly is wrong
and how the model can and should be improved.

The dashed arrows (emanating from the DS model) represpstigaing in the other direction,
by improving the DS modelThe explanation methods introduced in this paper can hauha

stantial impact on improving document classification medieim the users’ perspectives. Despite
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the stated goals of early research on data mining and kngeldcovery (Fayyad et al. 1996),
very little work has addressed support for the process dilimgi acceptable models, especially
in business situations where various parties must be satigfith the results. Recently, there is
increasing research focus on using advanced statisticdeisidhat mimic a certain behavior in

the real world, without understanding the meaning of thasler (Norvig 2011). The design we

introduce provides support for such understanding. The B8eincan move closer to the mental
models of people playing each of the different user rolethéaextent that they were correct on the
specific flaws that were improved upon. Presumably theselgajmgs also would improve accep-

tance. Possibly equally important for acceptance wouldhkeericrease in the users’ perception
that the model can be improved when necessary.

Note that, when improved, the model is likely also to moveseldo reality (the vertical, dashed
arrow). We say “is likely to” because since there is a gap betweach user’s mental model and
reality, it may be that moving the model closer to the mentatlet of some user actually moves
it further away from reality. We will not examine that pogétlp in this paper* The extended
gap model also highlights the existence of the vertical dagisveen user roles. Closing these
gaps also is important to DS development (see, e.g., Sambamand Poole (1992), Barki and
Hartwick (2001)). For example, to avoid conflicts managerd developers should have similar
mental models. Producing good explanations may address gaps indirectly, as closing the gaps
between the user roles and reality and between the useraiodethe DS model may act naturally
to close these vertical gaps between user mental models.owetdaddress these vertical gaps
directly in this paper.

4We have omitted the possibility that reality can move cldseghe DS model in our treatment. However, this is not
necessarily out of the question. The “true” classificatiohdocuments are subjective in certain domains, and it may
be that a broadly used classification system changes th@tadcsubjective class definitions. Further, in dynamic
domains the production of documents may co-evolve withesgsievelopment and usage. Authors may write docu-
ments differently based on their knowledge of the algorghrsed to find or process them. Such issues are beyond the

scope of this paper.
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3. Explaining Documents’ Classifications
Prior research has examined two different sorts of “expglana procedures for understanding
predictive models: global explanation and instance-lexglanation (Craven and Shavlik 1996,
Martens et al. 2007, Robni8ikonja and Kononenko 2008trumbelj et al. 2009Strumbelj and
Kononenko 2010, Baehrens et al. 2010). Global explanatiomsde improved understanding of
the complete model, and its performance over the entireesplgnossible instances. Instance-level
explanations provide explanations for the model’s classifbn of an individual instance.

In the previous section we presented reasons for prefemstgnce-level explanations over
global explanations, drawing on prior IS research. We noW pvesent additional reasons why
existing methods are not ideal (or not suitable) for exphgjrclassifications of documents in par-

ticular, and then we will present a new approach that addsabe drawbacks.

3.1. Key Aspects of Document Classification

We focus on textual document classification, where a scqyeuced representing the predicted
likelihood (or strength of belief) of the document belorgyito some discrete class or category,
based on the values of a large number of independent vasiabfgesenting the wordsThere
are several ways in which document classification diffessnfitraditional data mining for com-
mon applications such as credit scoring, medical diagnérsisd detection, churn prediction and
response modeling. First, the data instances have lesgws&uTechnically, one can engineer a
feature-vector representation from the sequence or baguafsybut this leads us to our second
main difference. In a feature-vector representation ofaudeent data set, the number of variables
is often orders of magnitude larger than in the “standardssification problems presented above.
Thirdly, the values of the variables in a text mining data deote the presence, frequency of
occurrence, or some positively weighted frequency of aetwe of the corresponding word (see

below).

5 Technically, text document classification applicationsegally use “terms” that include not only individual words,
but phrases, metadata terms, n-grams, etc. For this paperalvall these “words.” Cases where the terms are not

comprehensible to a human present a limitation of our amgproa
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These three aspects of document classification all arearior the explanation of classifier
decisions. The first two combine to render existing explanaapproaches relatively useless (as
we discuss in detail next). The third, however, presentshtss for the design of the solution
we propose. Specifically, with all such document classibcatepresentations, removing words
always corresponds to reducing the value of the correspgnadiriable or setting it to zero.

A few technical details of document classification are intgat here. All non-textual symbols,
such as punctuation, are removed from each document, uhlegsre specifically included for
their semantic relationship to the classification task. &aet ofn documents and a vocabulary
of mwords, ann x m dataset is created with the valug tn rowi and columnj denoting the
frequency of wordj in document (“term frequency”). As such, each document is described by a
sparse numerical row vector. As most of the words availabtbe vocabulary will not be present
in any given document, most values will be zero, and a spa&sesentation typically is used.
Often a weighting scheme is applied to the frequencies, evinerweights reflect the importance of
the word for the specific application (Hotho et al. 2005). Awoonly used data-driven weighting
scheme igfidf: x; = tfjj x idfj where the weight of a word is the “inverse document frequg&ncy
which describes how uncommon the wordigf (wj) = log(n/n;) with nj the number of docu-
ments that contain worg;.

Classification models are built using a training set of “laéldocuments, meaning we know
the value of the “target” variable being predicted/estedafl he resultant classification model, or
classifier, maps any document to one of the predefined claasdsmore specifically generally
maps it to a score representing the likelihood of belongmghe class; this score is compared
to a threshold for classification. Based on an independensétsthe performance of the model
can be assessed by comparing the true labels with the prddatiels. Note that Latent Semantic
Analysis (LSA) (Deerwester et al. 1990) is sometimes usedhftexing and information retrieval
(e.g., Sidorova et al. (2008)). Its clustering over the tdiedl concepts can provide improved

understanding, but is different from making or explainimggiction models based on labeled data.
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3.2. Global explanations

The most common approach to understanding a predictive Inetieexamine the coefficients of
a linear model. Unfortunately such an approach is imprabtefor a model with 19to 1 vari-
ables. For such applications, the most common approachliioea model is to list the variables
(words in our case) with the highest weights. To understaacernomplex models such as neural
networks (Bishop 1996) and non-linear support-vector maesh{SVMs) (Vapnik 1995), the prin-
cipal approach is rule extraction: rules or trees are etachihiat mimic the black box as closely as
possible (Craven and Shavlik 1996, Martens et al. 2007). Tdigvation for using rule extraction
is to combine the desirable predictive behavior of nondmechniques with the comprehensibil-
ity of decision trees and rules. Previous benchmarkingistuldave revealed that when it comes
to predictive accuracy, non-linear methods often outperftraditional statistical methods such
as multiple regression, logistic regression, naive Bayearad linear discriminant analysis (see,
e.g. Baesens et al. (2003), Lessmann et al. (2008)). For spptieaions however, e.g., medical
diagnosis and credit scoring, a clear explanation of howdéhasion is reached by models is a
crucial business requirement and sometimes a regulatquyresnent.

These rule extraction approaches are not suitable for asept problem for several reasons.
Not all classifications are explained by these rule extoaciipproaches (as we will demonstrate
for the most common approach). For some instances that sekenexplained by the rules, more
refined (and therefore more accurate) explanations eristddlition, often one is only interested
in the explanation of the classification of a single dataainse. For example, because it has been
brought to a manager’s attention because it has been nsidsor simply because additional
information is required for this case (to address a perdeawemaly, or for other learning).

In addition, global explanations do not provide much insifgin document classification any-
way, because of the massive dimensionality. For a classificree to remain readable it can not
include thousands of variables (or nodes). Similarlyirigsall these thousands of words with their
corresponding weights for a linear model will not provideahunsight into individual decisions.
Considering our running example of web page classificatiosdte advertising, what we want to

know is‘Why did the model classify this particular web page as cantej objectionable content?’
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3.3. Instance-level explanations

Over the past few years, instance explanation methods hereibtroduced that explain the pre-
dictions for individual instances (Robnﬁkikonja and Kononenko ZOOStrumbte et al. 2009,
étrumbelj and Kononenko 2010, Baehrens et al. 2010). Gépetadse methods provide a real-
valued score to each of the variables that indicates to witaheit contributes to the instance’s
classification. This definition of an explanation as a vewtith a real-valued contribution for each
of the variables makes sense for many classification prahlemmch often have relatively few vari-
ables (e.g. the median number of variables for the populadgé@thmark datasets is 18.5 (Hettich
and Bay 1996)). For document classification, however, duleadigh-dimensionality of the data,
this sort of explanation is not ideal, and possibly not ulsatfall. Considering our safe-advertising
problem, an explanation for a web page’s classification aschov with thousands of non-zero
values can hardly be considered comprehensible. Althooglwbrds with the highest contribu-
tions will have the biggest impact on the classification, tiledon’'t know which (combination of)
words actually led to any given classification.

Aside from the unsuitable format of these previous explanat previous instance-based expla-
nation approaches are unable to handle high-dimensioteatdanputationally. The sample-based
approximation method dbtrumbelj and Kononenko (2010) is reported to be able to leamnulto
about 200 variables, even there requiring hours of comiputéitne. The authors acknowledge that
for such data sets other approaches should be introduced:

Arguably, providing a comprehensible explanation invadva hundred or more features is a

problem in its own right and even inherently transparent ni@decome less comprehensible

with such a large number of featur(aétrumbelj and Kononenko 2010).

Because of this inability to deal with the high-dimensiotyatif text mining data sets, as well as
the explanation format as a real-valued vector, these rdsthee not applicable for explaining
documents’ classifications.

In focusing on document classification, we take advantaglereé main observations to define

a slightly different problem from that addressed by priorrkydhat will address the motivating
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business needs and that we will be able to solve efficientig. first observation is that in many
document classification problems there really are two quifferent explanation problems. We
often are interested specifically in one of them: why docushesere classified as a particular focal
class (a “class of interest”). Considering our web page dieason setting, we will focus primarily
on explaining why a page has received (rightly or wronglypasitive” classification of containing
objectionable content. The asymmetry is due to the negalass being a default class: if there
is no evidence of the class of interest (or of any of the clasfenterest), then the document is
classified as the default class. In this paper we will not iredetail the other explanation problem.
The question of why a particular page hast received a positive classification can be important
as well, but reflection tells us that it is indeed a very ddfarproblem. Often the answer is “the
page did not exhibit any of the countless possible comhlonatbf evidence that would have led
the model to deem it objectionable.” The problem here gdiyasa‘how do | fix the model given
that | believe it has made an error on this document.” Thidumdamentally different problem and
thereby should require a very different solution—for exé&npn interactive solution where users
try to explain to the system why the page should be a posftivesxample using dual supervision
(Sindhwani and Melville 2008), or a relevance feedback/ad¢arning system where chosen cases
are labeled and then the system is retrained (Attenberg2041). These are important problems,
but are beyond the scope of this paper.

The second important observation is that in contrast tortiwidual variables in many predic-
tive modeling tasks, individual words can be quite compnsitde. Thus for us an explanation will
be a set of words present in the document such that removiagalrrences of these words results
in a different classification (defined precisely below). Tineate comprehensibility of the words
often will immediately give deep intuitive understandingloe explanation. As we will see, when
it does not it can indicate problems with the model.

The third observation is that in document classificatiomaeng all occurrences of a word
always sets the corresponding variable’s value to zera Whi allow us to formulate an optimiza-

tion problem for which we can find solutions fast.
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3.4. Explaining the Classification of Documents
As discussed above, the question we addre®Wiy is this document classified as a non-default
class?’To answer this question the technique(s) we introduce waliole an explanation as a set
of words present in the document such that removing thesdsamauses a change in the class.
Only when all the words in the explanation are removed doesltss change (the set is minimal).
To define the explanation formally (see Definition 1) we neecetall that a documem € D
is a bag (multiset) of words. L&p be the corresponding set of words. We presume that classi-
fications are based on a classifigy, which is a function from documents to classes. Later, our
heuristic algorithm will presume th&l, incorporates at least one scoring functiiy); classifica-
tions will be based on scores exceeding thresholds (in terpicase), or choosing the class with
the highest score (in the multiclass case). The majorityadsification algorithms operate in this
way, including all that we discuss in this paper.
DEFINITION 1. Given a documerd consisting ofmp unique words\p from the vocabulary
of mwords:Wp = {wi,i = 1,2,...,mp}, which is classified by classifi&@y : D — {1,2,...,k}
as clasx. We define arexplanation for document D’s classificatias a seE of words such that
removing all words irE from the document lead3y to produce a different classification. Further,
an explanatiork is minimal in the sense that removing any subseE does not yield a change in
class. Specifically:
E is an explanation fo€y (D) <
1. E CWp (the words are in the document),
2.Cuv(D\E) # c (the class changes), and
3.7E’ C E:Cu(D\E’) # c (E is minimal).

D\E denotes the result of removing the wordgifirom documenD.

Definition 1 is specifically tailored to document classifioat It provides intuitive explanations in

terms of words present in the document, and we will be ableddyce such explanations even
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in the massively dimensional input spaces typical of dominetassification. More specifically,
Definition 1 differs from those of prior approaches in that #xplanation is a set of words rather
than a vector. It also defines the size of the explanation eaindinality ofE. Our empirical
analysis will reveal that explanations typically are qusteall (often about a dozen words) as
compared to the size of the vocabulary, and as such the tpahis able to effectively transform
the high-dimensional input space to a low-dimensionalaxation. This is of crucial importance
in order to provide explanations that address the businedsgms at hand, such as a manager’s
or a customer’s need to understand a classifier's decislaajrong better understanding of the
domain, or improving the document classification modelidgrenance.

The goal of the present approach seems to align with thavefse classification (Mannino and
Koushik 2000). However, the explanation format, the speoifitimization problem, and the search
algorithms are quite different. First, for document clsation, we should only consider reducing
the values for the corresponding variables. Increasingahee of variables does not make sense.
Second, we don’t need to decide on step sizes for changes wathes, as removing the occur-
rences of a word corresponds to setting the value to zerddmptimization routine of inverse
classification, the search problem is exactly to find the matidistance for each dimension. The
optimization is completely different for explanations afadiments’ classification, as we will dis-
cuss next. Third, applying inverse classification apprea¢h document classification generally is
not feasible, due to the huge dimensionality of these dasa®eir approach takes advantage of the
sparseness of document representations, and only needsdinler those words actually present
in the document. Finally, we provide a general frameworkhtam explanations independent of
the classification technique.

The desire to be model-independent is important and wosttudsing further. Some firms use
different model types for different document classificatjgroblems. For document classifica-
tion, complicated non-linear models are often used, suctoadinear SVMs (Joachims 1998) or
boosted trees (Schapire and Singer 2000). These modeliscaraprehensible globally. Explain-

ing the individual decisions made by such models to a clieatyager, or subject-matter expertis a
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natural application of our approach. Whelireear model is being used, one could argue simply to
list the topk words that appear in the document with the highest positeights as an explanation
for the class (assuming we are explaining class 1 versus @)a3 he choice ok can be set to 10
for example. A more suitable choice fekmwould follow our definition and be the minimal number
of top words such that removing thekevords leads to a class change. This is exactly what our
approach would provide with a linear model. Finally, althbuhey are often cited as producing
comprehensible models, classification trees for documnassification do not provide the sort of
explanations we need (as in Definition 1): they do not expldiat words actually are responsible
for the classification. All words from the root to the speciéaf for this document may be impor-
tant for the classification, but some of these words areylikel present in the document (the path
branched on the absence of the word) and we do not know whichnf@l) set of words actually
is responsible for the given classification.

Finally, note the link withK- (different from thek above) Nearest Neighbor (KNN) approaches.
If such a technique is used as classification method, seeP&gva et al. (2011), Han et al.
(2001), showing thesié nearest neighbors and their classes “explains” why the hitadkchosen
that classification. This technical “explanation” notvethnding, the comprehensibility of such
classification models is disputable. What is it exactly alteeipresent document that makes it most
similar to a set of documents that yield the predicted clagg?KNN technique does not tell me: if
the document had been slightly different would it simply beser to a different set of documents
that yields the same predicted class? Below we discuss homirsipthe nearest neighbor(s) as an
explanation for the classification made &yytype of model can be used as secondary support for
an explanation, for example, showing training data that hease been mislabeled and led a model
to make erroneous classifications (see Hyperexplanatiofih® can help us to improve a model
if the explanation reveals an error.
4. Finding Document Classification Explanations
The discussion above allows us to understand the problera precisely from an optimization

perspective. Unlike the settings in prior work, here we aoking for the shortest paths in the space
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defined by worgresencebased on the effect on the surface defined by the documestfatation
model, which is in a space defined by more sophisticated wasgd features (e.g., frequency or
tfidf, as described above). Conceptually, given a documetdlwadary withm words, consider a
mask vecto to be a binary vector of lengttm, with each element of the vector corresponding to
one word in the vocabulary. An explanatiBrcan be represented by a mask vegtowith g (i) =
1 < w; € E (otherwise ug (i) = 0). Recall that the size of the explanation is the cardinality
E, which becomes the L1-norm pf:. ThenD\E is the Hadamard product of the feature vector of
documentD (which may comprise frequencies or tfidf values) with the’'®@egemplement ofug.
Thus, finding a minimal explanation corresponds to findingaakwvectoe such thaCy (D\E) #
Cwm (D) but if any bit of L is set to zero to fornk’, Cy(D\E') = Cu(D).

To our knowledge, this sort of explanation for documentsifasation has not previously been
formalized or examined carefully, so before presentingligms for producing document expla-

nations, we should discuss the possible objectives pitgcise

4.1. Objectives and Performance Metrics

Although Definition 1 is quite concise, the objectives foragorithm searching for such expla-
nations can vary greatly. A user may want to: (1) Find one orenminimum-sized explanation:
an explanation such that no other explanation of smallereszsts. (2) Find all minimal explana-
tions. (3) Find all explanations of size smaller than a gike(®) Findl explanations, as quickly
as possiblel(= 1 may be a common objective). (5) Find as many explanatiopessible within

a fixed time period. Combinations of such objectives may a¢sofbinterest. To allow the evalua-
tion of different explanation procedures for these obyesj we must define a set of performance
metrics®

Search effectiveness

6 Note that explanation accuracy is not a major concern: axplamation by definition should change the predicted
class, it is straightforward to ensure that explanationsipced always are correct. What is important with regards to
the usefulness of an explanation (or set of explanatiorisyus complex the explanation is, and how long it took for

the algorithm to find the explanation.
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1. PE: Percentage of test instances explained (%)
Explanation complexity

2. AWS: Average number of words in the smallest explanatiam(per)
Problem complexity

3. ANS: Average number of smallest explanations given (remnb

4. ANT: Average number of total explanations given (number)
Computational complexity

5. ADF: Average duration to find first explanation (seconds)

6. ADA: Average duration to find all explanations (seconds)

These performance metrics describe the behavior of a datuexplanation algorithm. In a
separate analysis, one can also employ a domain expertitp trer explanations. An interesting
guestion that is beyond the scope of this paper is: if theaggilons are counterintuitive, does that
reflect on the explanation-finding method? Or only on the dgotg classification model that is
being explained? We will show that some explanations reweabverfitting of the training data by
the modeling procedure, which often is not revealed by ti@ul machine learning evaluations

that examine summary statistics (error rate, area unddr@@ curve, etc.).

4.2. Complete Enumeration of Explanations of Increasing Size

A straightforward approach to producing explanations isdoduct a complete search through
the space of all candidate word combinations, starting wsith word, and increasing the number
of words until an explanation is found. The candidate wonthlsmations are all combinations of
words in the document (rather than in the vocabulary), foictvia subset of the words was not
already found to be an explanation. This approach starthbgking whether removing any one
word w from the document would cause a change in the class label, e add the explaining
rule ‘if word w is removedthen the class changes’. We check this for all of the words that are
present in the document. For a document withwords, this requiresp evaluations of the classi-

fier. If the class does not change based on one word only, Heeafaseveral words being removed
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simultaneously will be considered. First, the algorithmsiders all word combinations of size 2,
then 3 and so on. For combinations of 2 words, the algorithrkesian, x (mp — 1) evaluations,
for all combination of 3 wordsp x (mp — 1) x (mp — 2) evaluations, and more generally for com-
binations ofk words we neeanp! /(mp — k)! = O(m¥) evaluations. This complete search scales
exponentially with the number of words in the document. €fare, it is inpracticable for all but
the smallest documents. It could be used for small docum&mth as explaining the classifications
of search queries, sentiment predictions for Twitter pastslassifications based on non-standard
documents such as ad targeting classification based owrtiotie of visited URLs. Note that if the
goal of the search is to find axplanation, the complete search is almost certain not haws¢
tively search the space. If a short explanation exists, thecomplete search may be quite fast for
such short documents. However, as the search will be impsadde for most document settings,

including the domains of our experiments, we will not coesidomplete search further.

4.3. Explaining Documents’ Classifications: A Heuristic-search Apprach

As the number of potential explanations scales expongntiath the number of features, com-
plete search is impracticable for most real document dlaagbn problems. We now introduce a
heuristic search approach, formally described in Alganith It is designed specifically to find one
or more minimal solutions in reasonable time. However, ia$ guaranteed to find all minimal
solutions or the shortest solution. (We will see below thatdeed is optimal in a certain, important
setting.) The approach is based on two notions:

1. Heuristic search guided by local improvement:We assume that the underlying classifica-
tion model will always be able to provide a probability esttor scoréin addition to a categori-
cal class assignment. We will denote this score functiorl@ssifieiCy by fc, (-). The algorithm
starts by listing all potential explanations of one wordd @alculating the class and score change

”No explicit mapping to [0, 1] is necessary; a score that rdnkékelihood of class membership is sufficient. The
scores for different classes must be comparable in thectads case, so in practice scores often are scaled to [071]. F
example, support-vector machines’ output scores are sftaled to (0,1) by passing them through a simple logistic

regression (Platt 1999).
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Algorithm 1 SEDC: Search for Explanations for Document Classificatioa Best-first Search

with Pruning)
Inputs:
Wo = {w;,i=1,2,...,mp} % DocumenD to classify, withmp words
Cu:D — {1,2,...,k} % Trained classifie€yv with scoring functionfc,,
maxiteration= 30 % Maximum number of iterations
Output:
Explanatory list of rule R
1: ¢=Cy(D) % The class predicted by the trained classifier

2: p= fc, (D) % Corresponding probability or score
3: R={} % The explanatory list that is gradually constructed
4: combinationgo_expandon= {}
5: P_combinationso_expandon= {}
6: fori=1— mpdo
7:  Chew=Cu(D\ W) % The class predicted by the trained classifier if wardlid not appear in the document
8. Ppnew= fc (D \W) % The probability or score predicted by the trained clagsiffiword w; did not appear in
the document
9:  if Chew# Cthen
10: R=RuU ‘if wordw; is removedhenclass changes’
11: else
12: combinationgo_expandon = combinationgo_expandonuUw;
13: P_combinationgo_expandon = P_combinationgo_expandonuU prew
14:  endif
15: end for

16: for iteration= 1 — maxiterationdo
17:  combo= word combination ircombinationso_expandon for which
(p— p_combinationgo_expandon) is maximal% The best first
18: combaset= create all expansions acbmbowith one word
19: combase® = remove combinations containing already found explanatofR from combaset% The pruning

step

20:  for all combosC, in combase® do

21: chew= Cm(D \ Co) % The class predicted by the trained classifier if the wordSyidid not appear in the
document

22: Prew= T, (D \ Co) % The probability or score predicted by the trained clagsifitne words inC, did not
appear in the document

23: if Chew# Cthen

24: R=RuU ‘if wordsC, are removedhenclass changes’

25: else

26: combinationgo_expandon = combinationgo_expandonu C,

27: P_combinationgo_expandon = P_combinationgto_expandonuU ppew

28: end if

29: end for

30: end for

for each. The algorithm proceeds as a straightforward bgeithest-first search. Specifically, at
each step in the search, given the current set of word conntirsadenoting partial explanations,
the algorithm next will expand the partial explanation fdrigh the output score changes the most
in the direction of class change. Expanding the partial @axiion entails creating a set of new,

candidate explanations, comprising all combinations wita additional word from the document



Martens and Provost: Explaining Data-Driven Document Classifications

25

(that is not yet included in the partial explanation).

2. Search-space pruning:For each explanation withwords that is found, we do not need to
check combinations of size+ 1 with these same words, hence we can prune these branches of
the search tree. For example, if the words ‘hate’ and ‘fusiquiovide an explanation, we are not
interested in explanations of three words that includegltas words, such as ‘hate’, ‘furious’ and
‘never’. This search problem generally (including the céetg search solution) is an instance of
unordered-set search. Unordered-set search is descnilolediail by Webb (1995) (and references
therein), including optimizations that speed up the seanttstantially, while still allowing various
guarantees, including this sort of search-space prunihg.pfuning is somewhat different from
the search-space pruning in similar set-enumeration idhgas, such as the Apriori association
rule mining algorithm (Agrawal and Srikant 1994), in thatsitbased on set subsumption rather
than coverage statistics.

For the case of a linear classifier with a binary feature gr&ation, we might explain the clas-
sification by looking at the words with the highest weightstthppear in the document. However,
we would still want to know which words exactly are respofesitor the classification. SEDC
produces minimum-size explanations for linear modelsciviwe discuss further next. Assuming
again a class 1 versus class 0 prediction for docume3EDC ranks all words appearing in the
document according to the prodyt;, wherep; is the linear model coefficient. An explanation

of smallest size is the one with the top-ranked words, asethbg SEDC'’s heuristic search.

LEMMA 1. For document representations based on linear binary-dission models
fcw (D) = Bo+ 3 Bjxij with binary (presence/absence) features, the smallesaeapbn found by
SEDC will be a minimum-size explanation. More specificatly 5, E; explanations, if Eis the
smallest explanation found by SEDE; | = k = 3E, : |E,| < k. Furthermore, the first explanation

found by SEDC will be of size k.

Proof (by contradiction): If no explanation exists, then the theorem holds vacuoéslgume

there exists at least one explanation. In the linear moeethe (additive) contributiom;j to the
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output score for word of documenti be the linear model weighB; corresponding to binary
word-presence featuoé} for those words that are present in documeiaind zero otherwise).

Assume w.l.0.g. that the classification threshold is pleateft,, (D) = 0. SEDC will compose
the first candidate explanatidf® by first selecting the largest;; such that the word is present
in the documentxﬂ =1, and adding word to the explanation. SEDC will then add E the
word with the next-largest suakj, and so on untifc,, (E*) < 0. Thus, the first explanatidey, by
construction will consist of thi highest-weight words that are present in the document.

Now assume that there exists another explandfpauch thafE,| < k; being an explanation,
fc, (E2) < 0. Recall that explanations are minimal, A9C E; : fcy (S) < 0. ThusE; must have at
least one elemem¢ E;. Let S denote the sum of the weights corresponding to the words in an
explanatiorE. For a linear model based on the (binary) presence/abséneerds, fc,, (X\Y) =
fcw (X) — Yy. As noted aboveE; comprises by construction tHewords with the largestwj,

SO VWij € E1,VWe ¢ E1 : Wij > We. Therefore3SC: Ey, Y5> Sg,, which means thaiSC E; :
fc,, (D\S) < fg, (D\Ez). ButvSC Ej : fc,,(D\S) > 0 and thusfc,, (D\E2) > 0. ThereforeE; is
not an explanation, a contradiction.[]

This optimality applies as well to monotonic transformas@ver the output of the linear model,
as with the common logistic transform used to turn lineapatiscores into probability estimates.
The optimality also applies more generally for linear medehsed on numeric word-based fea-

tures, such as frequencies, tfidf scores, etc., as detailbe ifollowing theorem.

THEOREM 1. For document representations based on linear modg)$0) = Bo+ 5 Bjxij with
numeric word-based features, such as frequencies or tfidésctinat take on positive values when
the word is present and zero when the word is absent, the smakpkination found by SEDC
will be a minimum-size explanation. More specifically, fer explanations, if Eis the smallest
explanation found by SEDCE;| = k = JE; : |E;| < k. Furthermore, the first explanation found

by SEDC will be of size k.
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Proof: Decompose each non-negative word feakyrénto the produckﬂ dij of a binary word
presence/absence featlxﬁsand a document-specific non-negative weight The corresponding
term in the linear modeB;x;; then becomeﬁjdijxﬂ. The proof then follows the previous proof
directly, except with the additive contribution of each @deingw;; = B;d;jj. O

For non-linear models no such optimal solutions are guaeghtin the sense that smaller expla-
nations could exist. For multiclass classification proldeptimal solutions are also not guaranteed
if one decomposes the problem into several binary classditaroblems (as in a one-versus-rest
or one-versus-one approach), since the final classificafidata instances now depends on several
models with their own weights. This motivates our next ojation, applying local search on the

obtained explanations.

4.4, SEDC Augmented with Local Search
The SEDC algorithm has two potential issues when appliedbtelimear models, addressed by
two optimizations. Firstly (and most importantly), seethgt the prediction space is non-linear
in the words, the obtained explanations might not containramal subset of words, required by
Definition 1 (requirement & is minimal). It could be that removing a word from the explao
E still provides an explanatio’, hence: there exists an explanati&hc E : Cy(D\E') # c. To
address this concern, we extend the previously definedsteusearch procedure with a limited
local search post-processing phase applied to the obtax@dnations. This method will prune
the explanation if necessary, by verifying whether remgwarword (or word combination) from
an obtained explanatida also provides an explanatidt. If that is the cas& is replaced by the
smaller explanatioi’, containing a subset of the words Bf This guarantees minimality of the
explanations (though in the empirical studies we nevermsethe need for such pruning).

The second issue with SEDC for non-linear models is thatntiaiéy smaller explanations exist
(with different words, making it different from the abovetwopization) than those obtained. More
formally, there might exist an explanati@i, whereE’\ E # 0 (E’ has some word(s) th& does

not), |E’| < |E| (explanatiorE’ is smaller thark), Cy(D\E’) # ¢ (E also defines an explanation).
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To investigate the extent of this potential issue, we defise@nd local search approach that
is applied to the explanations found by the heuristic searethod (with optimizations). For each
explanation, we replace two words by another word of the dwmou, not yet in the explanation.
Next, we attempt replacing three words of the explanatiotwmywords of the document, not yet
in the explanation, and so on. This yields a very large nurobpotential combinations to check:
replacing a set ok words of an explanation for a document witly words yields(ka‘k) combi-
nations® To deal with this huge number of new word combinations to khee limit ourselves
in our experiments up tk =5 words, and a maximum of 5,000 combinations. If more exist, n
attempt to optimize is undertaken. Within our empiricalifess this local search addition provided
an improvement of one word for only very few explanationsgléhan 1%), while requiring much
more time (up to two hours per explanation, even with thetition on the number of combi-
nations). Seeing that the additional local search is so ataipnally expensive compared to the
heurstic search procedure (with negligible improvementsxplanation size), the results in the
next section are provided without the local search.

4.5. SEDC with Branch-and-bound

As described in Section 4.1, there are various objectiveswight have when finding explanations
for document classifications. In the important case wheeewants the shortest explanation, or
the set of shortest explanations, the SEDC search can bevethby keeping track of the current
shortest explanation found, and pruning from the searchesph longer explanations (a simple
branch-and-bound search), which can result in massiveopsibf the search space being discarded
en masse once a first explanation has been fund.

8 To indicate how large these values can be,Ker 3 andmp = 100 we have 147,440 combinations; fo= 5 and

mp = 500 we have 255,244,687,600 combinations.

9 Unfortunately, for the general problem one cannot give tiial upper and lower bounds on explanation size given
a partial explanation. For particular types of models, thesy be possible, yielding more sophisticated brand-and-

bound searches.
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5. Empirical Analysis
We now present an empirical case study (Hevner et al. 2008heproblem of classifying web
pages as containing adult content. A follow-up analysisres@nted in Appendix A based on a

suite of text classification problems (the 20 Newsgroupslelyi used in the research literature.

5.1. Explaining Web Pages’ Classifications for Safe Advertising

The case study is based on data obtained from a firm that fecusbelping advertisers to avoid
inappropriate adjacencies between on-line advertisesvaarit web content, similar to our motivat-
ing example above. Specifically, the analysis is based oteasgaof 25,706 web pages, labeled as
either having adult content or not. The web pages are desthi tfidf scores over a vocabulary
chosen by the firm, including a total of 73,730 unique words.dfemming was conducted. The
data set is balanced by class, with half of the pages contaimilult content and half non-adult
content. For this data set, the class labels were obtainetddrvariety of sources used in practice,
including Amazon’s Mechanical Turk. Given the variety obdding sources, the quality of the
labeling might be questioned (Sheng et al. 2008). Interglstithe explanations indeed reveal that
certain web pages are wrongly classified. No meta-datas,liokinformation on images is being
used for this study; the inclusion of such data could imprinemodel further, but the focus of
this paper is on textual document classification.

For this analysis, we built SVM document classification medeith linear and RBF kernel
functions!® The linear model is correct on 96.2% of the test instanceth, avsensitivity (percent-
age of non-adult web pages correctly classified) of 97.0%,aaspecificity (percentage of adult
web pages correctly classified) of 95.6%. The non-linear RBReétanodel has an accuracy of
93.3%, with a sensitivity of 89.0% and a specificity of 96.5%.
10Using the LIBLINEAR (Fan et al. 2008) and LIBSVM packages &b and Lin 2001), with 90% of the data used

as training data, the remaining 10% as test data. SEDC wasl¢odatlab and is available upon request. Experiments

were run on an Intel Core 2 Quad (3 GHz) PC with 8GB RAM.
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5.1.1. Global explanationsAs discussed above, rule extraction is the most researchéd a
applied model explanation methodology. Trying to comprehthe SVM model, a tree can be
extracted by applying the C4.5 tree induction techniquei@uni1993) on the aforementioned safe
advertising data set with class labels changed to SVM piedli@bels. Unfortunately, we could
not get C4.5 to generate a small tree that models either SVMeh{wdth linear or RBF kernel)
with high-fidelity. A tree with 327 nodes models the classifiih a fidelity of only 87%. Pruning
the tree further reduces the size, but further decreasdsyfide

As discussed above, an alternative method for comprehgiginfunction of a linear document
classifier is to examine the weights on the word featuresheset indicate the effect that each
word has on the final output score. As with the distinctiomlesetn Lemma 1 and Theorem 1, we
need to keep in mind that in a preprocessing step the data setcoded in tfidf format. Hence
for actual document explanations, the frequency is vitdigure 3 shows the weight sizes of all
the words in the vocabulary; the weights are ranked smétbelstrgest, left-to-right. Clearly many
words show a high indication of adult content, while manyeostshow a clear counter-indication
of adult content. Looking deeper, Table 1 shows the higlpesi(ive) weight words, as well as the
words that give the highest mutual information (with theipes class) and information gain. We
additionally list the top words when taking into accountiififenveights, viz., based on the weights
of the words multiplied with the corresponding idf valuebeTinal column shows the words most
frequently occurring in the explanations, which will bel®gated on below.

From Table 1 we see that most indicative words for adult aadnmsnked highly using the mutual
information criterion are very rare, unintuitive words.nffay be possible to engineer a better
information-based criterion, for example countering thsrfitting behavior by requiring a mini-
mal frequency of the top ranked words, but later results stibw why such efforts ultimately are
destined to fail to provide a comprehensive explanatioe.t®p words provided by the other rank-

ings on the other hand are quite intuitive. As stated befaren initially not-so-obvious words as

11 The inverse document frequency is constant across docan@emt could be incorporated in the model weights to

facilitate global explanation.
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Figure 3  The size of the weights for all 73,730 words, ranked left-to-right according to increasing

weights.

‘welcome’, ‘enter’ or ‘age’ make sense once we realize thahynpositive examples are entrance
pages of adult sites, which inform a visitor about the condéthe website and require verification
of age. Nevertheless, as we will see next, explanation av¥iohahl decisions simply requires too
many individual words. Consider that we would have to produtst of over 700 of the highest-
weight words just to include ‘porn’ and over 10,000 to inaugixx’.

Given the intuitiveness of the top-weighted words, we sti@ainsider how well a short list of
such words really explains the behavior of the model. Doeg#planation of a web page typically
consist of (some of) the top-100 or so words? It turns out thatcontent of web pages varies
tremendously, even within individual categories. For ‘ladontent”, even though some strongly
discriminative words exist, the model classifies most wefpegaas being adult content for other
reasons. This is demonstrated by Figure 4, which plots theep&age of the classifications of the
test instances that would be explained by considering v t@ords (horizontal axis) by weight
(with and without idf correction), mutual information andférmation gain. Specifically, if an
explanation in the sense of Definition 1 can be formed by abgetof the set of toj-words, then
the document is deemed explained. So for example, if an eaptan would be ‘if words (welcome

enter) are removed then class changes’, that explanatiafdwe counted whek > 2.

We see from Figure 4 that we would need thousands of these taisvbefore being able to explain a
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Figure 4  Percentage of 100 adult-classified test instances explained when considering only the top k

words, ranked according to the frequency of occurrence in the explanations, the weights (w), the

weights with idf correction, mutual information (MI) and information gain (IG).

Ranking based on
Mutual Information Information Gain Size of weight S'.Ze.Of welght_ _Frequency of V\_/ord oceurrin
with idf correction| in the explanations
primarykey privacy welcome permanently adult
sessionid policy enter fw age
youtubeid home adult welcome enter
webplayerrequiredgeos | us permanently | compuserve site
vnesfrsgphplitgrmxnlkrauseadvertise site copyrightc sex
videocategoryids about age prostitution years
usergeo adult usc acronym material
latestwebplayerversion | search searches tribenet are
isyoutubepermalink comments over amateurbasecom| sites
isyoutube contact erotic gorean hardcore
Table 1 Global explanation of the model by listing the top words providing evidence for the adult class. Five

rankings are considered: based on mutual information, information gain, weights of the words, weights with idf

correction (weight multiplied with word idf), and frequencies of the words occurring in the explanations.

large percentage of the individual documents, as showndbijrth with words ranked on the weight. More
precisely, more than two thousand top-weight words (3% efubicabulary) are needed before even half
of the documents are explained. Using the ranking based dmaiinformation requires even more words.
This suggests either (i) that many, many words are necessaiydividual explanations, or (ii) the words
in the individual explanations vary tremendously. The tattanclusion is also supported by the fact that the
document-term matrix is very sparse even when the docunbetsg to the same topic. This motivates
the use of an instance-level explanation algorithm not doyobtaining understanding of the individual

decisions, but also for understanding the model overall.
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When we rank the words according to how often they occur iragmgiions, we obtain the line with
the maximal area underneath. For the 100 classified instaadetal of 810 unique words are used in all
the explanations (where we consider maximum 10 minimalamations for a single data instance). This
already suggests a wide variety of words are present in thlamations. The instance-based explanations
can be aggregated to a global explanation by listing the svtrdt occur most frequently in the explana-
tions, as shown in the final column of Table 1, which providesarether benefit of the instance-level

explanations. We will not explore this further, as it is pheral to the main focus of this paper.

5.1.2. Instance-level explanationsNone of the previously published instance-level explamatheth-
ods are able to handle many thousands of variables, so theyotde applied to this domain. We’'ll show
now that SEDC is effective, and fast as well, where we initifdlyus on the linear classification model.

Explanation 2 shows several typical explanations for d@sdions of test documents. We show the first
three explanations of test instances with explanationsateappropriate for publication. These explana-
tions demonstrate several things. First, they directly esklsuggestion (i) just above: in fact, documents
generally do not need many, many words to be explained. Theypmbvide evidence supporting sugges-
tion (ii): the words in the individual explanations are gudifferent, including explanations in different
languages.

We can examine the size of explanations more systematimalgferring to the explanation performance
metrics introduced in Section 4.1. The top-left plot in Figurel®ws the percentage of the test cases
explained (PE) when an explanation is limited to a maximum remobwords (on the horizontal axis). We
see that almost all the documents have an explanation ceimgpfewer than three dozen words, and more
than half have an explanation with fewer than two dozen wdrdsther words, each explanation is very
concise, as it uses only about 0.01% of the words in the vdagbiNote that even explanations containing
dozens of words can easily give an understanding of why tesifler classified the document as the class of
interest, as is discussed and shown in Section 5.2, belowd-fgalso shows that, not too surprisingly, the
number of words in the smallest explanation (AWS plot) ard(#mallest and total) number of explanations

(ANS, ANT plots) both grow as we allow larger and larger explions??

121n the experiments, we limit ourselves to searching for Jflanations: if 10 or more explanations have been found,

no further word expansions/iterations are attempted.
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[ [ PE [AWS]ANS ANT[ADF ADA |

FP|90.3%| 9.2 | 120 352 23 31
TP|76.0%| 153|134 255 29 33

Table 2  Explanation performance metrics for the false positives (FP) versus true positives (TP) of the linear

model, allowing up to 30 words in an explanation. Shown are percentage explained (PE), average number of
explanations given (ANT), average number of words in the smallest explanation (AWS), average duration to find

the first explanation (ADF) and average duration to find all explanations (ADA).

Explanation 2;

Some explanations why a web page is classified as having adult content forbygages of the test set.
Explaining document 13 (class 1) with 61 features and class 1.

Iteration 7 (from score 0.228905 to -0.00155753): If worslsbfnissive pass hardcore check bondage adult
ag are removed then class changes from 1 to -1 (1 sec)
Iteration 7 (from score 0.228905 to -0.00329069): If worslsbfnissive pass hardcore check bondage adult
accespare removed then class changes from 1 to -1 (1 sec)
Iteration 7 (from score 0.228905 to -0.00182021): If worsisbfnissive pass hardcore check bondage all
adul) are removed then class changes from 1 to -1 (1 sec)

Explaining document 30 (class 1) with 89 features and class 1 .
Iteration 4 (from score 0.894514 to -0.0108126): If worslsafches nude domain aduwdte removed then
class changes from 1 to -1 (1 sec)

Iteration 6 (from score 0.894514 to -0.000234276): If waisksarches men lesbian domain and gdaré
removed then class changes from 1 to -1 (1 sec)

Iteration 6 (from score 0.894514 to -0.00225592): If worsksafches men lesbian domain appraisal adult
are removed then class changes from 1 to -1 (1 sec)

Explaining document 32 (class 1) with 51 features and class 1 .
Iteration 8 (from score 0.803053 to -0.0153803): If wordgejas sitios sexo mujeres maduras gratis
desnudas geare removed then class changes from 1 to -1 (1 sec)
Translation: old mature women sex sites free naked of
Iteration 9 (from score 0.803053 to -7.04005e-005): If vedudejas sitios mujeres maduras gratis desnudas
de contiene abuelpare removed then class changes from 1 to -1 (1 sec)
Translation: old mature women free sites containing nudagmothers
Iteration 9 (from score 0.803053 to -0.00304367): If wondsj@s sitios mujeres maduras gratis desnudas
de contiene adic)aare removed then class changes from 1 to -1 (1 sec)
Translation: old sites free naked mature women containscadd

Explaining document 35 (class 1) with 36 features and class 1 .

Iteration 6 (from score 1.04836 to -0.00848977): If wordslcome fiction erotic enter bdsm adudire
removed then class changes from 1 to -1 (0 sec)

Iteration 6 (from score 1.04836 to -0.10084): If wordse{come fiction erotica erotic bdsm aduére
removed then class changes from 1 to -1 (1 sec)

Iteration 6 (from score 1.04836 to -0.0649064): If wordslcome kinky fiction erotic bdsm adjlare
removed then class changes from 1 to -1 (1 sec)

Table 2, presents the differences between the false angasitves (for the default threshold of 0).
Interestingly, we find higher coverage, as well as more andlsnexplanations for the web pages wrongly
classified as adult (false positives, FP) versus those correlettsified as adult (true positives, TP). See-
ing that FPs are classifications we are particularly interestezkplaining (the perceived anomalies, as

described by Gregor and Benbasat (1999)), this suggestththaverall explanation metrics yield conser-
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vative estimates of practical performance for this casdystu

More interestingly, examining these performance metriesgja view into how the classification model
is functioning in this application domain. Specifically, tHetp show that document explanation sizes vary
guite smoothly and that there seem to be many different eagilans for documents. The former observation
suggests that the strength of the individual evidence savidely: some cases are classified by aggregating
many weak pieces of evidence, others by a few strong piecesidénce (and some, presumably by a
combination of strong and weak). The latter observation ssiggsubstantial redundancy in the evidence
available for classification.

Figure 5 also shows that for this particular problem, exgiana can be produced fairly quickly using
SEDC. This problem is of moderate size; real-world documemsssifiaation problems can be much larger,
in terms of documents for training, documents to be classifed the vocabulary. A brief word about
scaling up can be found in Appendix B.

To validate the applicability of the explanation method fan-linear models, an SVM model with a
radial basis function (RBF) kernel (a popular non-linear eipdias used as well.

Table 3 shows SEDC'’s performance on both linear SVM and nomdlinedial-basis function (RBF)
kernel SVM models, when allowing up to 30 words in an explamafi he percentage explained is about the
same for the linear and non-linear model, with interestinge non-linear model requiring slightly fewer
words per explanation (AWS). A large difference is observethe time needed to obtain an explanation:
whereas for the linear model it takes on average four sectnfisd an explanation, for the RBF model
it takes almost three minutes. A deeper investigation ineéoreasons for the speed differences shows that
processing the non-linear models takes longer not becdube dacktracking in the search. Rather, the
non-linear models simply run much slower, which has a ctuaffgct due to the repeated applications
of the scoring function. Therefore, faster implementatiohghe non-linear models could produce faster
explanation performance. Please note that explanatiors titmehe orders of minutes are not necessarily a
cause for concern, depending on the context of applicaltiomany of the application scenarios discussed
above, explanation methods would be reserved for perioefeldpment use or for tactical use when a

concern arises over a particular case.

13 Also, recall that these experiments were conducted mairiatlab on a desktop PC. Further speed improvements
could easily be obtained with faster software implemeatetior with the high-performance computing systems typ-

ically used by organizations that build text classifiersrfrmassive data. Importantly, once again, the complexity is

independent of the size of the vocabulary. Further, unediset search is highly parallelizable.
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y kernel] PE [AWS[ANS ANTADF ADA |
SEDC Linear SVM 84%| 15.1| 12 25 3 3
SEDC B&B Linear SVM| 84%| 15.1| 12 12 3 3
SEDC Non-linear RBF SVM82%| 11.1| 18 28 | 169 187
SEDC B&B Non-linear RBF SVM 82%| 11.1| 19 19 | 183 200
Table 3  Explanation performance for SEDC and SEDC with branch-and-bound (B&B), for SVMs with a linear

kernel and a radial basis function (RBF) kernel SVM. SEDC was allowed up to 30 words in an explanation.
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Figure 5  Explanation performance metrics in terms of maximal number of words allowed in an
explanation. Both the performance and the complexity increase with the number of words. Next to

the average metrics, the 10th and 90th percentiles are also shown (dotted lines).

5.2. Hyper-explanations

Conducting the case studies brought to the fore some additissues regarding explaining documents
classifications. Specifically, a procedure for producing exgtians of document classifications may pro-
vide no explanation at all. Why not? A document’s explamatiay be non-intuitive. Then what? There are
several classes of reasons for these behaviors, which we gnto hyper-explanationdVany of these are

specifically helpful for the task of improving the decisiors®m’s model (cf., Section 2).

5.2.1. Hyper-explanations for the lack of an explanation.We distinguish between cases where the
predicted class is the default class (hyper-explanatioarid those where the predicted class is the non-

default class (hyper-explanation 2).
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Hyper-explanation 1a: no evidence presentThe default class is predicted and no evidence for either
class is present. For example, this would be the case wharmedk in the document have zero weights in
the model or no words present are actually used in the model.

Technically, this case falls outside the scope of this papewvelopment, since we are specifically consid-
ering explaining why a document is classified as a non-dettags. Nevertheless, this may be a practically
important situation that cannot simply be ignored. For gxaithis case may have been brought to a man-
ager’s or developer’s attention as a “false negative eria’, it should have been classified as a positive
example. In this case the hyper-explanation explains Bxatiy the case was classified as being negative
(there was no model-relevant evidence) and can be a solithgt@oint for a management/technical dis-
cussion about what to do about it. For example, it may be dlegtrthe model’s vocabulary needs to be
extended.

Hyper-explanation 1b: no evidence of non-default class presenthe default class is predicted and
only evidence in support of the default class is present. iBhésminor variation to Hyper-explanation 1a,
and the discussion above applies regarding explaining fagatives and providing a starting point for
discussions of corrective actions.

Hyper-explanation 1c: evidence for default class outweighs evidencerfthe non-default class.A
more interesting and complex situation is when, in weighgniglence, the model’s decision simply comes
out on the side of the default class. In this case an immedgatetion may be to apply the explanation
procedure to generate explanations of why the case wasfiddsss being default (i.e., if these words were
removed, the class would change to positive). However, whemase truly is of the “uninteresting” class,
the explanations returned would likely be fairly meanimsglee.qg., “if you remove all the content words on
the page except the 'offending words’ (e.g., the words wikitive weights), the classifier would classify
the page as an offensive page.” However, applying the proeatiay be very helpful for explaining false
negatives, because it would show the words that the modisl! tieenp the positive-class-indicative words
on the page (e.qg., if you remove thedicalterminology on the page, the classifier wothénrate the page

as being adult). This again could provide a solid foundatwritie process of improving the classifiers.
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Explanation 3:

Explanations of web pages misclassified as non-adult (false negativeshich indicate which words
the model feels trump the positive-class-indicative words.

Explaining document 10 (class 1) with 31 features and clag¢scdre -0.126867)...

Iteration 4 (from score -0.126867 to 0.00460739): If wonnislicy gear found blopare removed then class
changes from -1 to 1 (0 sec)

Explaining document 13 (class 1) with 50 features and clagscdre -0.123585)...
Iteration 4 (from score -0.123585 to 0.000689515): If wdmsisry miscellaneous found abdare removed
then class changes from -1 to 1 (0 sec)

Explaining document 11 (class 1) with 198 features and clhéscore -0.142504)...
Iteration 2 (from score -0.142504 to 0.00313354): If wondatCh bikin) are removed then class changes
from-1to 1 (1 sec)

Explaining document 31 (class 1) with 22 features and clagscdre -0.0507037)...
Iteration 4 (from score -0.0507037 to 0.00396628): If wdisksarch handjobs bonus bigre removed then
class changes from -1 to 1 (0 sec)

Within our safe advertizing application, an explanation &l 46 false negatives is found, indicating
that indeed adult words are present but these are outwelghéte non-adult, negative words. Example
explanations of such false negatives are given in Explam&tiéor some words like ‘blog’ it seems logical
to have received a large non-adult/negative weight. The Wakihi’ seemingly ought to receive a non-
adult weight as well, as swimsuit sites are generally nosictered to be adult content by raters. However,
some pages mix nudes with celebrities in bikinis (for exapdf not enough of these are in the training
set, it potentially would cause ‘bikini’ to lead to a falsega#ive. Many other words however can be found
in the explanations that do seem to be adult-related (suchaasljobs’), and as such should receive a
positive weight. All the words are great candidates for harfeedback to indicate which of these words
actually are adult related and potentially update the ni®dadights (a mechanism known as active feature
labeling (Sindhwani and Melville 2008)) or review the laibgliquality of the web pages with the word. The
words occurring most in these explanations of false negg{when considering only the first explanation)
are ‘found’, ‘blog’ and ‘policy’. The seemingly-adult reked words are not found when examining the words
with most negative weights, again supporting the need tk &explanations separately, on an instance
level.

Hyper-explanation 2: too much evidence of non-default class presento explanation is provided
because, although a non-default class is predicted, tiheianany words in support of this class that one
needs to remove almost all of them before the class will ckambe situations when this will occur fall

along a spectrum between two fundamentally different nestso
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Figure 6 Score evolution when removing words from the three selected documents: the one with
highest starting score, the one with the most words in an explanation and a document with average
number of words in an explanation. The class changes to non-adult when the score falls below zero.

1. There are very many words each providimgakevidence in support of the class. Thus, the expla-
nation exceeds the bound given to the algorithm, or the ilgordoes not return a result in a timely
fashion. Figure 6 shows the words of the explanations fortdiecuments and how the scores change as
the words are removed. The middle line, for the explanatidh thie most words, shows that if the number
of allowed words is below 40, no explanation is found. Thiklatexplanation can be explained by this
hyper-explanation, as too many adult-related words arggptsfor a short explanation to be found.

2. There are very many words each providsigpngevidence. In this case, the procedure may not be
able to get the score below the threshold with a small exgilamabecause there is just so much evidence
for the class. The full upper line with the highest startingredn Figure 6 shows such an example: when
allowing fewer than 15 words in an explanation, the scoreaiamabove the threshold and no explanation
can be given.

This lack of base-level explanation can be mitigated (pl&yjiby presenting “the best” partial explana-

tion as the search advances.
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5.2.2. Hyper-explanations for non-intuitive explanations.Explanations are always correct in the
technical sense: removing the words by definition changesl#ss. However, it is possible that the expla-
nation clashes with the user’s intuition, creating a pemstianomaly that should be explained. Several
reasons exist for this:

The data instance is misclassifiedThe explanations of some of the web pages that are misclassified
by the SVM model are listed in Explanation 4 (only the first explion is shown). For these pages the
predicted class is adult, while the human-provided claksllegs non-adult (false positives). These three
explanations indicate strongly that the web pages actealhfain adult content and the human-provided
label seems wrong. On the other hand, in other cases, efiplagédicate that their web pages seem to
be non-adult and hence are probably misclassified. Exampegivan in Explanation %' Such explana-
tions provide very useful support for interactive model@epment, as the technical/business team can fix
training data or incorporate background knowledge to caruie misclassification.

The data instance is correctly classified, but the explanation just does natake sense to the business
users/developersThis case is particularly problematic for any automated axgtion procedure, since
providing explanations that “make sense” requires sometaifying in an operationally useful way the
background knowledge of the domain, as well as common serseh to our knowledge is (far) beyond
current capabilities (and certainly beyond the scope sffitaper). Nevertheless, we still can provide a quite
useful hyper-explanation in the specific and common settingrevthe document classification model had
been built from a training set of labeled instances (as ircase study). Specifically:

Hyper-explanation 3: Show similar training instance For a case with a counter-intuitive explanation,
we can show “similar'training instances with the same class. The similarity metric in @oiecshould
roughly match that used by the induction technique thatyced the classifier. Such a nearest-neighbor
approach can aid understanding in two ways. (1) If the tngjirmglassifications of the similar examples do
make sense, then the user can understand why the focal exaragplclassified as it was. (2) If the train-
ing classifications do not make sense (e.g., they are wramg), this hyper-explanation provides precise
140ur models are limited by the data set obtained for the casiy.sBy our understanding, models built for this

application from orders-of-magnitude larger data setscareiderably more accurate; nonetheless, they still make

both false-positive and false-negative errors, and themgéprinciples illustrated here apply.
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guidance to the data science team for improving the trajifiagd thereby the model.

Consider document 8. Explanation 5 suggests strongly tlwainitains non-adult content, even though

the model classifies it as adult. The web page most similar tardeat 8 is also classified as adult and

has 44 (out of 57) words which are the same, which are listdekjplanation 6. This is a web page with

a variety of topics, and probably a listing of links to otheghsites. This sort of web page needs further,

expert investigation for use in training (and evaluatingdels for safe advertising. It could be that labelers

have not properly examined the entire web site; it may bettiee indeed is adult content in images that

our text-based analysis does not consider; it may be thaetbiges simply are misclassified, or it may be

that in order to classify such pages correctly, the datanseiéeam needs to construct specifically tailored

feature to deal with the ambiguity.

Explanation 4:

Explanations of web pages misclassified as adult (false positives)hieh indicate that the model is
right and the class should have been adult (class 1).
Explaining document 1 (class -1) with 180 features and clgssdre 1.50123)...

explicit exit enter contains comic club are age adults adu# removed then class changes from 1 to -1]
sec)

Explaining document 2 (class -1) with 106 features and clgssdre 0.811327)...

over offended nude nature material links illegal if heret exiter blonde are age adults ajlalte removed
then class changes from 1 to -1 (15 sec)

Explaining document 3 (class -1) with 281 features and clgssdre 0.644614)...

hundreds here girls click breasts pare removed then class changes from 1 to -1 (29 sec)
Explanation 5:

Explanations of truly misclassified web pages (false positives).
Explaining document 8 (class -1) with 57 features and classdr¢ 0.467374)...

domair) are removed then class changes from 1 to -1 (3 sec)

Explaining document 16 (class -1) with 101 features and ddssore 0.409314)...

airline) are removed then class changes from 1 to -1 (5 sec)

Explaining document 32 (class -1) with 66 features and clgssdre 0.124456)...

from 1to -1 (0 sec)

Iteration 35 (from score 1.50123 to -0.00308141): If wordsu years web warning usc these sites site
sexual sex section porn over offended nudity nude modelsnabinale links if hosting hardcore gay free

(53

Iteration 24 (from score 0.811327 to -0.00127533): If wafytsu web warning under und these site pprn

Iteration 15 (from score 0.644614 to -0.00131314): If wofgsu sex prostitution over massage inside

Iteration 7 (from score 0.467374 to -0.0021664): If wordglcome searches jpg investments index fund

Iteration 8 (from score 0.409314 to -0.000867436): If wofdelcome und sites searches domain de b

Iteration 2 (from score 0.124456 to -0.00837441): If woksafches airlifeare removed then class changes

15pata cleaning is a very important aspect of the data miningess that has received relatively little treatment in

the research literature. One of the main data cleaningitiesiin classifier induction is “fixing” labels on mislabéle

training data.
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Explanation 6:

Hyper-explanation 3 showing the words of the web page most similar to daenent 8. This most similar
web page is classified as adult, providing a hyper-explanation of why docuent 8 is also classified
(incorrectly) as adult.
and, articles, at, buy, capital, check, china, commitmeat, file, files, for, free, fund, funds, high, hot, |n,
index, instructionalwwwehowcom, international, intefrievesting, investment, investments, jpg, listings,
mutual, out, performance, project, related, results,rngtsearches, social, sponsored, temporary, tiff, to,
trading, vietham, web, welcome.

6. Discussion and Limitations

In this paper, we followed the guidelines set forth by Heveeal. (2004) for designing, executing and
evaluating research within design science to explain decushclassifications. We presented a search algo-
rithm (SEDC) for finding such explanations and empirically eegétd the algorithm two different document
classification domains.

An unexpected result of the case study was the need for wasorts of hyper-explanations. Several
of these are the result of the document classification modsiglstatistical models learned from data,
and thus are subject to the main challenges of machine fearaverfitting, underfitting, and errors in the
data. When classification errors are introduced due to thafmlogies, even instance-level explanations
may be inadequate (e.g., missing) or unintuitive. Hypedamattions are needed for deep understanding, for
example, showing training cases that likely led to the aurmneodel behavior.

As discussed in the introduction, we believe that instdaeel explanation methods such as SEDC can
have a substantial impact in improving the process of ujjdlocument classification models. The field
needs more research addressing support for the processidifipacceptable models, especially in busi-
ness situations where various parties must be satisfied wéthesults. Indeed, recent developments in
machine learning and data mining arguably have moved usduaway from the needed transparency, with
the strong research emphasis on and seeming success dfjtehresulting in complex models, such as
boosting, non-linear SVMs, feature hashing, etc. Managedsdevelopers need to be able to interact to
agree that a classification system is behaving appropriately

More specifically, systems like SEDC may become a critical carepb of the iterative process for
improving document classification models. As the case stadytlze newsgroup study showed, SEDC can
identify data quality issues and model deficiencies. Theseidefies can be resolved via various mech-
anisms, leading to improved models directly or, altermyivto improved data quality, which ultimately

should lead to better model performance and decision making
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This paper has not provided a rigorous study of the insightigeal by the explanations. The case studies
show that the method is capable of providing improved unideding of the inner workings of the classifier,
and better understanding of the domain of application. llddpe fascinating future work to examine the
changes in the decision makers’ judgment after having bessepted with such explanations.

In this paper we have focused specifically on document claagdit We conjecture that these techniques
also will be quite useful in other high-dimensional classificn problems, which are becoming increasingly
important to modern business. For example, it may not beooisyibut classifying web users based on the
web pages they visit (Provost et al. 2009) could be cast indheedramework as document classification.
Each user can be represented by a set of webpage URLs from amektriarge set (billions). Users are
classified by models over this vocabulary. Understanding thassifications is directly analogous to the
problem addressed in this paper. Similarly, the problemaxfsifying bank customers for targeted marketing
based on the parties with which they transact (Martens anebBr@011) also can be formulated similary.
The “documents” are the customers and the “words” are the paymceivers. In both of these additional
domains, being able to understand the individual classificatwould have the same benefits shown in
the extended gap model. However, the technique would nassecily apply to every high-dimensional
classification problem. It is necessary that the individuailahsions (and small subsets thereof) can be
interpretable. So, in the aforementioned web-user classific@xample, if the URLs were irreversibly
hashed for privacy reasons, prior to forming the classificatnodel, then the techniques introduced in this

paper would not provide useful explanations.

7. Conclusion

The business problem this paper addresses is to enhancedeestamding of a document classification
model such that (1) the manager using it understands howgidasiare being made, (2) the customers
affected by the decisions can be advised why a certain actigarding them is taken, and (3) the data
science/development team can improve the model itergtiFekther, (4) document classification explana-
tions can provide better understanding of the business worfbe 7-gap extension to Kayande’s 3-gap
framework formalizes these different roles, and shows hxplemations can reduce the corresponding gaps
between the users’ mental model(s) and the decision systéwotih directions, and also can reduce the gap

between the decision system and reality, as the developertha explanations to help improve the model.
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We found that global explanations in the form of a decisi@e tor a list of the most indicative words
do not provide a satisfactory solution. Moreover, previpygwoposed explanation methods on the data-
instance level are not able to deal the huge dimensiondiithlooument classification problems. With the
technical constraints of high-dimensional data in mind,addressed this business problem by creating an
explanation as a “necessary” set of words: a minimal set suathafter removal the current classification
would no longer be made. The presented search algorithm (SEDE@Nding such explanations is optimal
for linear binary-classification models, and heuristic fondinear models.

In terms of effectiveness, the results show that the exfilamaare quite concise and comprehensible,
comprising a few to a few dozen words (a very small portiorhef @verall vocabulary). The words in the
explanations vary greatly across the explanations, evidnwards in different languages, which supports
the claim that existing global explanations are inadegfmtsuch document classification domains.

We hope that this new sort of instance-level explanationdimument classification will provide an
immediately useful method across a wide variety of busifasd scientific, medical, and legal) applica-
tions where document classifications are critical. We algmehie have made the case that thinking about
explanations in this way opens up a large number of new rels@aoblems and opportunities for improving

the state of the art in building and using data-driven docurokassification systems.
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Appendix A:  News Item Categorization
A.1l. 20 Newsgroups data set

To demonstrate generality and to illustrate some additipnaperties of the method we now apply the
explanation method to a second domain: classifying newgestorhe 20 Newsgroups data set is a bench-
mark data set used in document classification research. taiosnabout 20,000 news items partitioned
evenly over 20 newsgroups of different topics, and has aludasy of 26,214 different words (after stem-
ming) (Lang 1995). The 20 topics can be categorized into seMetelel usenet categories with related
news items: alternative (alt), computers (comp), misoelas (misc), recreation (rec), science (sci), soci-
ety (soc) and talk (talk). One typical problem addressed tits data set is to build classifiers to identify
stories from these seven high-level news categories, whbicbur purposes gives a wide variety of differ-
ent topics across which to provide document classificatigilagmations. Looking at the seven high-level
categories also provides realistic richness to the taskiany real document classification tasks, the class
of interest is actually a collection (disjunction) of reddtconcepts (consider, for example, “hate speech” in
the safe-advertising domain).

We build a classifier system to distinguish the seven topHeategories using all words in the vocabu-
lary. This permits us to examine a wide variety of explanatiohdifferent combinations of true class and
predicted class, in a complicated domain, but one where weeditdeast a high-level intuitive understanding
of the classes. The examination shows that even for news gemaped within the same top-level category,
the explanations for their classifications can vary greaity are intuitively related to their true lower-level

newsgroup.
A.2. Results

The classifier system for distinguishing the seven top-legelsgroups (alt, comp, misc, rec, sci, soc, talk)
operates in a one-versus-others setup, i.e., seven clessifee built, each distinguishing one newsgroup
from the rest. For training (on 60% of the data) and for préalic(remaining 40% as test data), if a news
item is (predicted to be) from the given newsgroup, the classible is set to one; if not the class variable
is set to zero. To demonstrate the method with differentdygferodel, here we build both linear and
non-linear SVM classifiers.

In Table 4, each cell shows at least one explanation (whessilgle) of an example from one of the

20 low-level categories (specified in the row header) beiagsified into one of the top-level categories
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(specified in the column header). If no explanation is givea aell, either no misclassified instances exist,
which occurs most, or no explanation was found with maxim@wiards. The shaded cells on the diagonal
are the explanations for correct classifications; the raseaplanations for errors. For example, the first
explanation in the upper-left cell (excluding the headersjoshows that this correct classification of a news
story in the alt.atheism category is explained by the inolusf the terms ‘ico’, ‘bibl’, ‘moral’, ‘god’ and
‘believ’: if these words alone are removed, the classifier i@ longer place this story correctly into the
alt category.

Several cells below we see explanations for why a sci.meg stas misclassified as belonging to alt:
because of the occurrence of the word ‘atheist’ (first exglang or the words ‘god’ and ‘believe’ (second
explanation). Further investigation of this news story edvat concerns organ donation. More generally,
the explanations shown in Table 4—the correctly classifistlitstances (grayed cells on the diagonal)—
usually are indeed intuitively related to the topic.

The categories themselves often occur as words in the exgasasuch as ‘hardwar’, ‘microsoft’, ‘mac’
and ‘space’. Importantly, the different subcategorieshefiewsgroups show different explanations, which
motivates using instance- rather than global-level exatians. For example, for the computer newsgroup
(shown in the second column), the terms used to explainifigns from the different subgroups are
quite different and intuitively related to the specific sulgps.

The misclassified explanations (outside of the shaded céiés) show the ambiguity of certain words as
reason for the misclassification. For example ‘window’ is aduvithat can be related to computer, but also
can be seen as words related to automobiles. The explan&iidhe misc.forsale news items indicate they
are most often misclassified because the item that is beidgeates from or is related to the category it is
misclassified in. With this individual-instance approadimikar ambiguities as well as intuitive explanations
for each of the subgroups also can be found for the other adésg The results also demonstrate how the
explanations can hone in on possible overfitting, such as‘witin’ and ‘umd’ in the cells adjacent to the
upper-left cell we discussed above.

The test accuracy (in terms of percentage correctly classifsdnces, PCC) and explainability metrics
when allowing a maximum of 10 words in an explanation are shiwTable 5, for the positive classifi-
cations. Although a high percentage of the test instancespkined (PE around 90-95% for all models)

still some instances remain unexplained. If we allow up toar@ds in an explanation, all instances are
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explained for each of the models. Of particular note is tbatlis widely used benchmark with a vocabu-
lary of 26,214 words, on average only a small fraction of @sdqADF of 0.02-0.08 seconds for the linear
models) is needed to find a first explanation. As previously foead, this is because our SEDC explana-
tion algorithm is independent of the vocabulary size. Expiaj the non-linear model requires more time,
since backtracking occurs and the model evaluation takegelothan for a linear model. Nevertheless, on
average still less than a second is needed to find an explanatio

These results in a second domain, with a wide range of docuimgins, provide support that our general
notion of instance-level document classification is capableroviding better understanding of the func-
tioning of text classifiers, and that the SEDC method is geneeffiéctive and pretty fast as well. Further,
this second study provides a further demonstration of ttiityuof global explanations in domains such as
this: there are so many different reasons for differentsili@sitions. At best they would be muddled in any

global explanation, and likely they would simply be incomipensible.



Classification models in one-versus-others setup: ‘newsgroup’ versus not ‘newsgroup’

Explanations why news items are classified as ‘newsgroup’

alt vs not alt

comp vs not comp

misC VS not misc

rec vs not rec

alt.atheism ico bibl moral god believ unm wustl distribut com
ico bibl moral god read carina screen wustl 5 univers
ico bibl moral accept god carina join wustl origin distribut
comp.graphics umd quicktim 3do centris resolut card prograrmigwpi wpi distribut nb canada ca
wam quicktim 3do centris resolut ac card bigwpi wpi pleas nb luck canada
mistak cant quicktim 3do centris resolut fax card bigwpi wpi email nb archiv canada
comp.os.ms-windows.misq mous microsoft cant distribut 6
mous microsoft solution look tom
mous microsoft switch pleas archiv com
comp.sys.ibm.pc.hardware hardwar thank distribut cornel buffalo
hardwar appreci repli buffalo cc wonder
adam hardwar call ubvmsb buffalo cc

comp.sys.mac.hardware

kmr4po read
kmr4po follow
kmr4po note

vga monitor mac advenc card am
vga monitor mac advenc card repli
vga monitor mac advenc card thank

offer sale distribut
offer sale card
jame offer sale

univers
recent
price

comp.windows.x enterpoop Ics fax pleas street final list
enterpoop lcs mit includ 2154 street final com
enterpoop xpertexpo Ics inc send 2154 street final pleas
misc.forsale driver program sale insur
driver card 2190 gasket massachusett ser
pc driver pc mention gasket jacket massachusett
rec.autos window call distribut geico insur distribut
window email 3 geico insur ca
window 4 compani geico insur usa
rec.motorcycles greyscal color mile dod
greyscal pictur pad ottawa ca
greyscal directori rosevil deal ottawa canada
rec.sport.baseball offer miller brave gatech nl seri team technologi gq
game 3 miller brave gatech nl seri team institut game
game 5 miller brave gatech nl seri team plai game
rec.sport.hockey michel comput susan buffalo ny team
michel 4 game call bruin buffalo team
co michel buffalo game sabr buffalo team
sci.crypt mathew 42 print messag ohio usa
rusnew mantis umd consult couldnt age print seen cincinnati list
rusnew mantis umd consult couldnt sto§2 print net victor free
sci.electronics softwar sell price email pleas univers
prefer sell price game email distribut
appl ncsu sell price email ca
sci.med atheist Ics mit address thank nyx canada cc bad pleas univers
god believ Ics laboratori mit address denver du canada cc bad pleas thank
god start Ics mit address email am denver dept distribut canada cc bad i'v pleas
sci.space michel help internet riversid due
site help servic riversid ucr
help thank am institut riversid prbaccess com
soc.religion.christian atheist wrote call chanc
technologi person dave
9 includ princeton
talk.politics.guns richard drive holonet norton internet sfasu
richard fax holonet norton modem arlen thank
bryan richard holonet norton pete arlen pleas
talk.politics.mideast wrote ai repli hous cc
evid ai mit amherst columbia
religion aicant 3 pl7 lion
talk.politics.misc religi god cwru ohio car
religi religion jone jone watch
islam religi cleveland western hela ins cleveland reserv western usgrg
talk.religion.misc bill site institut refer
explain ca system gold mike
cration usa system polytechn univ

Zs

suoneslIsse|d Wawnood usAld-ered bulurejdx3 :1SOA0Id pue susuey



Classification models in one-versus-others setup: ‘newsgroup’ versus not ‘newsgraup’
Explanations why news items are classified as ‘newsgroup’

SCi Vs not sci S0C Vs not soc talk vs not talk
alt.atheism latech translat ha atom 2000 moral object evid

scisur familiar ha overwhelm atom 2000 moral object

rayengr help translat god microscop ha atom 2000 moral objegt
comp.graphics map scott pleas david

pub inc scott read happen

pub ftp scott answer list
comp.os.ms-windows.misd public book speak

date pa limit

std steven stand
comp.sys.ibm.pc.hardware nz mark address

nz1l.1 student

nz network utexa
comp.sys.mac.hardware | bounc suppli purdu

bounc circuit cc center

sync bounc happen pure cc
comp.windows.x nz scienc re

aukuni time sorc time

aukuni scienc upenn name
misc.forsale tube pa usa

catalog sex accept 21

umb etc sex hell gun
rec.autos max low fone chuck utexa call

max cycl fone discuss pleas utexa center

max pl9 effect fone discuss read utexa care
rec.motorcycles ibm righteous racist stupid mean

week fone righteous racist stupid own

rochest fone 10 righteous racist stupid opinion
rec.sport.baseball list 10 dt buffalo love cc

list scienc nswc buffalo stand cc

std list carderock buffalo stori cc
rec.sport.hockey ericsson inc oppos john

ericsson commun csd boulder center

ericsson user chuck boulder depart
sci.crypt inform congress law john

commun preced congress john

offic nagl congress john
sci.electronics adcom god re

preamp chip sound accept david

preamp network chip recent citi
sci.med handed rsilverworld sight domin eye commupsex perot

handed rsilverworld sight domin eye indic | grade fysic 16 happen

handed rsilverworld sight domin guest eye lgdisic speak reason edward happen
sci.space space book terror moral govern

nasa follow discuss terror moral law

nasa scienc fysic terror moral major
soc.religion.christian greet marie angel religion pleas homosexu

gabriel greet mari 12 religion question abus behavior love

gabriel greet mari various religion follow abus sexual love peopl
talk.politics.guns chip marri christ life batf waco clinton question

explode marri christ view batf waco clinton law

medic understand marri christ religion batf waco clinton evid
talk.politics.mideast ai ab4zvirginia beyer holocaust arab militari plan evid kill

amend lab ab4zvirginia beyer andi holocaust arab militari attack evid kill

amend messag 10 blanket ab4zvirginia beyer an| holocaust arab militari reach evid kill
talk.politics.misc acid scienc serbian homosexu moral law

acid commun bomb york 2 homosexu moral stop

acid sorc bomb york position homosexu moral pass
talk.religion.misc messag pa christian malcolm weapon jew christian

institut mormon faith christian 2 malcolm weapon jew Kill

apr mormon faith hous christian | malcolm weapon jew hous

Table 4 Explanations are shown why documents from the newsgroup shown at the beginning of the row are classified in the newsgroup shown at the top of the column.

suoneslIsse|d Wawnaod usAld-ered bulurejdx3 :1S0A0Id pue susuen

€9



Martens and Provost: Explaining Data-Driven Document Classifications

54

\ Linear SVM Non-linear RBF SVM
PCC| PE |AWS[ANS ANT|ADF AD | PCC| PE AWS[[ANS ANT |ADF ADA

alt |/ 81.5%|96.1%| 2.7 | 6.1 18.5| 0.05 0.16| 76.8%|95.7% 25| 7.2 30.1|0.62 1.35
comp || 93.7%| 89.1%| 3.1 | 6.1 13.3/ 0.05 0.12|94.9%|81.7% 3.3| 54 12.4/0.54 0.88
misc || 92.8%|98.1%| 1.9 | 49 12.9|0.02 0.12|90.5%|96.6% 1.8| 6.0 17.0|0.14 0.38
rec |94.2%|94.8%| 2.4 | 5.7 13.7/ 0.04 0.11) 93.6%|92.9% 24| 7.0 16.7]0.40 0.79
sci | 85.4%|93.5%| 2.7 | 8.0 19.6/ 0.06 0.15|83.1%|90.4% 2.7| 9.7 23.2/1.01 1.62
soc || 94.2%|94.4%| 1.8 | 6.5 16.9| 0.03 0.15|90.2%|91.5% 2.4| 10.0 29.5/ 0.39 0.79
talk || 88.5%]92.1%| 2.5 | 7.8 23.8/ 0.08 0.21 86.8%|90.0% 2.0|| 10.5 28.5/ 1.30 2.90

Table 5 Explanation performance metrics on the test set of the 20 newsgroups data set for a linear (left) and

Model

non-linear (right) SVM model and explanations of maximum 10 words.

Appendix B: A word on scaling up

Let us first consider a linear model. For a document witrunique words, SEDC evaluates sequentiatly
“documents” (the original document with 1 word removedgrtliteratively works on the best of these lead-
ing to the evaluation afny, — 1 documents (the original with 2 words removed); next— 2 documents are
evaluated, and so on. When an explanation of sigdound a total oO(sx mp) evaluations have occurred.
The computational complexity depends therefore on (1) the tieeded for a model evaluation (sometimes
very fast, sometimes not so), (2) the number of words neeteahf explanatioms, which in our case study
went to about 50, and (3) the number of unique words in the meaiimy, which is generally very small
as compared to the overall vocabulary. Most importantly,dsbmputational complexity is independent of
the overall size of the vocabulary, unlike previous inselavel explanation approaches. This complexity
could be lowered further for linear models@gs) by incrementally evaluating the word combinations with
the next-most-highly-ranked word removed (recall Lemmad Hmeorem 1). Our implementation does not
include this speed-up mechanism as we wish to present aiggehapplicable to all models and not just to
linear ones.

For a non-linear model, the heuristic search will likely kiaack, when a better local improvement is
found elsewhere. The extent to which this occurs dependseoshtaipe of the model’s decision boundary.
In the worst case scenario, backtracking over all words isgéeading tan, + mi® evaluations. Thus, for

non-linear models the worst case complexity grows expaaigntvith the depth of the search tree.



