Binding Theory in LTAG

Lucas Champollion University of Pennsylvania champoll@ling.upenn.edu

Overview

- Binding Theory (BT) and its local domains
- Previous work: Condition A
- This proposal: Conditions A, B, C
- Discussion

Binding theory: A reminder

- Condition A: reflexives must be locally bound
 John_j thinks [Bill_b likes himself_{*j/b/*[other]}]
- Condition B: pronouns must be locally free
 John_j thinks [Bill_b likes him_{j / *b / [other]}]
- Condition C: full noun phrases must be free
 - □ *[John_i likes John_i]
 - □ *John_j thinks [Mary likes John_j]

Binding theory in LTAG

- LTAG's local domain = the verbal elementary tree and its arguments
 - □ (but not its adjuncts)
- Insight from previous work:
 - LTAG and BT have similar local domains
- This presentation's central point:
 - Too many mismatches between local domains
 - □ We *can't* reuse LTAG's local domain for binding!

Ryant and Scheffler (2006)

- Only Condition A
- MCTAG set with a degenerate NP tree
- Tree-local MCTAG with flexible composition makes sure that antecedent and reflexive substitute into the same tree

Kallmeyer and Romero (2007)

Only Condition A MCTAG set with a degenerate <u>VP</u> tree Tree-local MCTAG with flexible composition makes sure that antecedent and reflexive substitute into the same tree

(some features omitted)

Kallmeyer and Romero's claim

"Tree-local MCTAG display exactly the extended domain of locality needed to account for the locality of anaphora binding in a natural way."

-- Kallmeyer and Romero (2007)

Cannot be handled by Kallmeyer and Romero (2007)
 except by flexible composition (which they try to avoid)

- Can be handled with an extra feature
- No lexical ambiguity needed (unlike R&S 2006)

Judgments tested experimentally (Keller and Asudeh '01; Runner '03)

How to encode the other conditions?

- Condition A roughly corresponds to treelocality
- Condition B = "enforced non-locality"?
- Condition C = ???
 - Need to propagate an unbounded number of potential antecedents

This account in a nutshell

- Every NP receives three items from its environment:
 - a list "A" of local potential antecedents
 - a list "B" of local potential antecedents
 - □ a list "C" of nonlocal potential antecedents
- Every NP supplies its own individual variable to its environment
- The rest of the grammar is responsible for providing the correct lists to the NP substitution slots

Technical innovation: List-valued features

Create a new list from one object Create a new list from two objects Append an object to the end of a list

Elementary tree for "himself" (Condition A, simplified)

• "A reflexive must be locally bound."

Elementary tree for "he" (Condition B)

"A pronoun must be locally free."

Elementary tree for "John" (Condition C)

"A full noun phrase must be free."

Condition C: the default case

Before...

Condition C: the default case

...and after unification of top/bottom features

Condition C across clauses

Condition C across clauses

Condition C across clauses

Improvements over previous accounts...

Just propagate everything!

Mismatches between domains easily encoded

- Non-complementary binding conditions easily handled with separate A and B list features
- No ad hoc trees needed for picture NPs (unlike K&R '07)

C-command violations easily encoded

• e.g. extraposition: *"Himself_i, he_i likes."*

- No need for separate lexical entry
- Just extrapose subject NP along with its feature structure

Improvements at a glance

- All conditions are implemented
- Higher empirical accuracy
- No lexical ambiguity
- No flexible composition (K&R 2007)
- No syntactically unmotivated degenerate trees (Kallmeyer and Romero, 2008)
- Better integration with anaphora resolution (Branco, 2002)
- No explicit representation of c-command

Issues / Future work

- Unknown complexity of list-valued features
 - Just a decoration on the trees though -- they do not rule out any sentences
- Lack of predictive power
 - How do we constrain possible feature values?
 - Metagrammar?
- Does TAG offer any insights into BT at all?

Thank you.

Lucas Champollion University of Pennsylvania champoll@ling.upenn.edu Previous accounts do not interface

- well with anaphora resolution modules
- Previous accounts: parser delivers a forest of indexed trees
 - □ John_i introduced $Bill_k$ to himself_i vs. John_i introduced $Bill_k$ to himself_k
 - Problem: Anaphora resolution modules are not prepared to compare entire trees (Branco, 2002)
- Our solution outputs a compact set of constraints
 - □ Following Branco (2002)

The grammar of picture NPs

