
Probabilistic Neighborhood Selection
in Collaborative Filtering Systems

Panagiotis Adamopoulos and Alexander Tuzhilin
Department of Information, Operations and Management Sciences

Leonard N. Stern School of Business, New York University

{padamopo,atuzhili}@stern.nyu.edu

ABSTRACT

This paper presents a novel probabilistic method for recommending items in the neighborhood-

based collaborative filtering framework. For the probabilistic neighborhood selection phase, we

use an efficient method for weighted sampling of k neighbors without replacement that also takes

into consideration the similarity levels between the target user and the candidate neighbors. We

conduct an empirical study showing that the proposed method alleviates the over-specialization

and concentration biases in common recommender systems by generating recommendation lists

that are very different from the classical collaborative filtering approach and also increasing the

aggregate diversity and mobility of recommendations. We also demonstrate that the proposed

method outperforms both the previously proposed user-based k-nearest neighbors and k-furthest

neighbors collaborative filtering approaches in terms of item prediction accuracy and utility-based

ranking measures across various experimental settings. This accuracy performance improvement is

in accordance with the ensemble learning theory.

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Collaborative Filtering, Recommender Systems, k-NN algorithm, Probabilistic Neighborhood Se-

lection, k-PN, Sampling, Item Accuracy, Diversity and Mobility Measures

“I don’t need a friend who changes when I change and who nods when I nod; my shadow

does that much better.”

- Plutarch, 46 - 120 AD

1. INTRODUCTION

Although a wide variety of different types of recommender systems (RSs) has been developed and

used across several domains over the last 20 years [9], the classical user-based k-NN collaborative

filtering (CF) method still remains one of the most popular and prominent methods used in the

recommender systems community [31].

Even though the broad social and business acceptance of RSs has been achieved, one of the key

under-explored dimensions for further improvement is the usefulness of recommendations. Common

recommenders, such as CF algorithms, recommend products based on prior sales and ratings.

Hence, they tend not to recommend products with limited historical data, even if these items would

be rated favorably. Thus, these recommenders can create a rich-get-richer effect for popular items

while this concentration bias can prevent what may otherwise be better consumer-product matches

[19]. At the same time, common RSs usually recommend items very similar to what the users have

already purchased or liked in the past [1]. However, this over-specialization of recommendations is

often inconsistent with sales goals and consumers’ preferences.

Aiming at alleviating the important problems of over-specialization and concentration bias and

enhancing the usefulness of collaborative filtering RSs, we propose to generate recommendation

lists based on a probabilistic neighborhood selection approach. In particular, we aim at providing

personalized recommendations from a wide range of items in order to escape the obvious and

expected recommendations, while avoiding predictive accuracy loss.

In this paper, we present a certain variation of this classical k-NN method in which the estimation

of an unknown rating of the user for an item is based not on the weighted averages of the k most

similar (nearest) neighbors but on k probabilistically selected neighbors. The key intuition for

this probabilistic nearest neighbors (k-PN) collaborative filtering method, instead of the nearest

neighbors, is two-fold. First, using the neighborhood with the most similar users to estimate

unknown ratings and recommend candidate items, the generated recommendation lists usually

consist of known items with which the users are already familiar. Second, because of the multi-

dimensionality of users’ tastes, there are many items that the target user may like and are unknown

to the k most similar users to her/him. Thus, we propose the use of probabilistic neighborhood

selection in order to alleviate the aforementioned problems and move beyond the limited focus of

rating prediction accuracy.

To empirically evaluate the proposed approach, we conducted an experimental study and showed

that the proposed probabilistic neighborhood selection method outperforms both the standard

user-based CF and the k-furthest neighbor [48, 46] approaches by a wide margin in terms of item

prediction accuracy measures, such as precision, recall, and the F-measure, across various exper-

imental settings. This performance improvement is due to the reduction of covariance among

the selected neighbors and is in accordance with the ensemble learning theory that we employ

in the neighborhood-based collaborative filtering framework. Finally, we demonstrate that this

performance improvement is also combined with further enhancements in terms of other popular

performance measures, such as catalog coverage, aggregate diversity, and mobility.

In summary, the main contributions of this paper are:

• We proposed a new neighborhood-based method (k-PN) as an improvement of the standard

k-NN approach.

• We formulated the classical neighborhood-based collaborative filtering method as an ensemble

method, thus, allowing us to show the potential suboptimality of the k-NN approach in terms

of predictive accuracy.

• We empirically showed that the proposed method outperforms, by a wide margin, the classical

collaborative filtering algorithm and practically illustrated its suboptimality in addition to

providing a theoretical justification of this empirical observation.

• We showed that the proposed k-PN method alleviates the common problems of over-specialization

and concentration bias of recommendations in terms of various popular metrics and a new met-

ric that measures the mobility of recommendations.

• We identified a particular implementation of the k-PN method that performs consistently well

across various experimental settings.

2. RELATED WORK

Since the first collaborative filtering systems were introduced in the mid-90’s [24, 44, 36], there

have been many attempts to improve their performance focusing mainly on rating prediction ac-

curacy [16, 39]. Common approaches include rating normalization [16], similarity weighting of

neighbors [47], and neighborhood selection, using top-N filtering, threshold filtering, or negative

filtering [27, 16]. Besides, several of the methods that have been proposed use a probabilistic

approach. For instance, [35] partitioned the items into groups and made predictions for users con-

sidering the Gaussian distribution of user ratings and [55] used a data selection scheme based on

probabilistic active learning to actively query users and select subsets of user profiles in order to

improve the “cold start” problem.

Even though the rating prediction perspective is the prevailing paradigm in recommender systems,

there are other perspectives that have been gaining significant attention in this field [31] and try to

alleviate the problems pertaining to the narrow rating prediction focus [2]. This narrow focus has

been evident in laboratory studies and real-world online experiments, which indicated that higher

predictive accuracy does not always correspond to the higher levels of user-perceived quality or to

increased sales [41, 29, 30, 15]. Two of the most important problems related to this narrow focus

of many RSs that have been identified in the literature and hinder the user satisfaction are the

over-specialization and concentration bias of recommendations.

Pertaining to the problem of over-specialization, [22] provided empirical evidence that indeed con-

sumers prefer diversity in ranking results. This problem is often practically addressed by injecting

randomness in the recommendation procedure [10], filtering out items which are too similar to items

the user has rated in the past [11], or increasing the diversity of recommendations [56]. Interestingly,

[48, 46] presented an inverted neighborhood model, k-furthest neighbors, to identify less ordinary

neighborhoods for the purpose of creating more diverse recommendations by recommending items

disliked by the least similar users.

Studying the concentration bias of recommendations, [30] compared different RS algorithms with

respect to aggregate diversity and their tendency to focus on certain parts of the product spectrum

and showed that popular algorithms may lead to an undesired popularity boost of already popular

items. Finally, [19] showed that this concentration bias, in contrast to the potential goal of RSs

to promote long-tail items, can create a rich-get-richer effect for popular products leading to a

subsequent reduction in profits and sales diversity and suggested that better RS designs which

limit popularity effects and promote exploration are still needed.

3. MODEL

Collaborative filtering (CF) methods produce user specific recommendations of items based on

patterns of ratings or usage (e.g. purchases) without the need for exogenous information about

either items or users [43]. Hence, in order to estimate unknown ratings and recommend items to

users, CF systems need to relate two fundamentally different entities: items and users.

3.1 Neighborhood Models

User-based neighborhood recommendation methods predict the rating ru,i of user u for item i

using the ratings given to i by users most similar to u, called nearest neighbors and denoted by

Ni(u). Taking into account the fact that the neighbors can have different levels of similarity, wu,v,

and considering the k users v with the highest similarity to u (i.e. the standard user-based k-NN

collaborative filtering approach), the predicted rating is:

r̂u,i = r̄u +

∑
v∈Ni(u)

wu,v ∗ (rv,i − r̄v)∑
v∈Ni(u)

|wu,v|
, (1)

where r̄u is the average of the ratings given by user u.

However, the ratings given to item i by the nearest neighbors of user u can be combined into a

single estimation using various combining (or aggregating) functions [9]. Examples of combining

functions include majority voting, distance-moderated voting, weighted average, adjusted weighted

average, and percentiles [7].

In the same way, the neighborhood used in estimating the unknown ratings and recommending

items can be formed in different ways. Instead of using the k users with the highest similarity to

the target user, any approach or procedure that selects k of the candidate neighbors can be used,

in principle.

Algorithm 1 summarizes the user-based k-nearest neighbors (k-NN) collaborative filtering ap-

proach using a general combining function and neighborhood selection approach.

In this paper, we propose a novel k-NN method (k-PN) using probabilistic neighborhood selection

ALGORITHM 1: k-NN Recommendation Algorithm

Input: User-Item Rating matrix R

Output: Recommendation lists of size l

k: Number of users in the neighborhood of user u, Ni(u)
l: Number of items recommended to user u

for each user u do

for each item i do

Find the k users in the neighborhood of user u, Ni(u);
Combine ratings given to item i by neighbors Ni(u);

end

Recommend to user u the top-l items having the highest predicted rating r̂u,i;

end

that also takes into consideration the similarity levels between the target user and the n candidate

neighbors.

3.2 Probabilistic Neighborhood Selection

For the probabilistic neighborhood selection phase of the proposed algorithm, following [54] and

[18], we suggest an efficient method for weighted sampling of k neighbors without replacement that

also takes into consideration the similarity levels between the target user and the population of

n candidate neighbors. In particular, the set of candidate neighbors at any time is described by

values {w′1, w
′
2, . . . , w

′
n}. In general, w

′
i = wi if the i user/item is still a candidate for selection, and

w
′
i = 0 if it has been selected in the neighborhood and, hence, removed from the set of candidates.

Denote the sum of the probabilities of the remaining candidate neighbors by Sj =
∑j

i=1w
′
i, where

j = 1, . . . , n, and let Q = Sn be the sum of the {wi} of the remaining candidates.

In order to draw a neighbor, we choose x with uniform probability from [0, Q] and we find l such

that Sl−1 ≤ x ≤ Sl. Then, we add j to the neighborhood and remove it from the set of candidates

while we set w
′
j = 0. After a neighbor has been selected, this neighbor is in principle no longer

available for later selection.

This method can be easily implemented using a binary search tree having all n candidate neighbors

as leaves with values {w1, w2, . . . , wn}, while the value of each internal node of the tree is the sum of

the values of the corresponding immediate descendant nodes. This sampling method requires O(n)

initialization operations, O(k log n) additions and comparisons, and O(k) divisions and random

number generations [54].1 The suggested method can be used with any valid probability distribution

including the empirical distribution derived based on the user/item similarity.

Algorithm 2 summarizes the method used for efficient weighted sampling without replacement

[54].

3.3 Theoretical Foundation

In this section we discuss the theoretical framework under which the proposed method can gen-
1In the special case of equal probabilities for all the candidate neighbors or random sampling, an efficient method requires
O(k) operations.

ALGORITHM 2: Weighted Sampling Without Replacement

Input: Initial weights {w1, . . . , wn} of candidates for neighborhood Ni(u)
Output: Neighborhood of user u, Ni(u)

k: Number of users in the neighborhood of user u, Ni(u)
L(v): The left-descendent of node v

R(v): The right-descendent of node v

Gv : The sum of weights of the leaves in the left subtree from node v

Q: The sum of weights of the nodes in the binary tree

Build binary search tree with n leaves labeled 1, 2, . . . , n;

Assign to leaves corresponding values w1, w2, . . . , wn;

Associate values Gv with internal nodes;

Set Q =
∑n
v=1 wv ;

Set Ni(u) = ∅;
for j ← 1 to k do

Set C = 0;

Set v = the root node;

Set D = ∅;
Select x uniformly from [0, Q];

repeat

if x ≤ Gv + C then

Set D = D] {v};
Move to node/leaf L(v);

else

Set C = C +Gv ;

Move to node/leaf R(v);

end

until a leaf is reached ;

Set Ni(u) = Ni(u)] {v};
for each node d ∈ D do

Set Gd = Gd − wv ;
end

Set Q = Q− wv ;
Set wv = 0;

end

erate recommendations orthogonal to the standard k-NN approach without significantly reducing,

and even increasing, the predictive accuracy showing that similar but diverse neighbors should be

used. It should be obvious by now that selecting the neighborhoods using an underlying probability

distribution, instead of just selecting deterministically the k nearest neighbors, can result in very

different recommendations from those generated based on the standard k-NN approach. For the

sake of brevity, in the following paragraphs we focus on the effect of also selecting neighbors other

than the k nearest candidates on the predictive accuracy of the proposed approach.

For the predictive tasks of a recommender system, we should construct an estimator f(x;w)

that approximates an unknown target function g(x) given a set of N training samples zN =

{(x1, y1), (x2, y2), . . . , (xN , yN)}, where xi ∈ Rd, y ∈ R, and w a weight vector; zN is a real-

ization of a random sequence ZN = {Z1, . . . , ZN} whose i-th component consists of a random

vector Zi = (Xi, Yi) and, thus, each zi is an independent and identically distributed (i.i.d) sample

from an unknown joint distribution p(x, y). We assume that there is a functional relationship be-

tween the training pair zi = (xi, yi): yi = g(xi) + ε, where ε is the additive noise with zero mean

(E{ε} = 0) and finite variance (V ar{ε} = σ2 <∞).

Since the estimate ŵ depends on the given zN , we should write ŵ(zN) to clarify this dependency.

Hence, we should also write f(x; ŵ(zN)); however for simplicity we will write f(x; zN) as in [21].

Then, introducing a new random vector Z0 = (X0, Y0) ∈ Rd+1, which has a distribution identical

to that of Zi, but is independent of Zi for all i, the generalization error (GErr), defined as the

mean squared error averaged over all possible realizations of ZN and Z0,

GErr(f) = EZN
{
EZ0{[Y0 − f(X0;Z

N)]2}
}
,

can be expressed by the following “bias/variance” decomposition [21]:

GErr(f) = EX0{V ar{f |X0}+Bias{f |X0}2}+ σ2.

However, using ensemble estimators, instead of a single estimator f , we have a collection of them:

f1, f2, . . . , fk, where each fi has its own parameter vector wi and k is the total number of estimators.

The output of the ensemble estimator for some input x can be defined as the weighted average of

outputs of k estimators for x:

f (k)
ens(x) =

k∑
m=1

αmfm, (2)

where, without loss of generality, αm > 0 and
k∑

m=1

αm = 1.

Following [53], the generalization error of this ensemble estimator is:

GErr(f (k)
ens) = EX0

{
V ar{f (k)

ens|X0}+Bias{f (k)
ens|X0}2

}
+ σ2,

which can also be expressed as:

GErr(f (k)
ens) = EX0

{[k∑
m=1

a2m E
ZN
(m)

[(
fm − E

ZN
(m)

(fm)
)2]

+

∑
m

∑
i 6=m

amai E
ZN
(m)

,ZN
(i)

{[
fm − E

ZN
(m)

(fm)
][
fi − E

ZN
(i)

(fi)
]}]

+

[k∑
m=1

am E
ZN
(m)

(fm − g)

]2}
+ σ2,

where the term EZN
(m)

,ZN
(i)

{[
fm−EZN

(m)
(fm)

][
fi−EZN

(i)
(fi)
]}

corresponds to the pairwise covariance

of the estimators m and i, Cov{fm, fi|X0}.
The results can also be extended to the following equation:

GErr(f (k)
ens) = EX0

{
k∑

m=1

k∑
l=1

a∗ma
∗
lRml

}
,

where a∗i =
∑

j R
−1
ij /

∑
l

∑
j R
−1
lj and denotes the optimal weight that minimizes the generalization

error of the ensemble estimator given in (2), and R−1ij indicates the i, j component of the inverse

matrix of R. The i, j component of matrix R is given by:

Rij =

V ar{fi|X0}+Bias{fi|X0}2, if i = j

Cov{fi, fj|X0}+Bias{fi|X0}Bias{fj|X0}, otherwise.

Hence, in addition to the bias and variance of the individual estimators (and the noise variance),

the generalization error of an ensemble also depends on the the covariance between the individuals;

an ensemble is controlled by a three-way trade-off. Thus, if fi and fj are positively correlated, then

the correlation increases the generalization error, whereas if they are negatively correlated, then

the correlation contributes to a decrease in the generalization error.

In the context of neighborhood-based collaborative filtering methods in recommender systems, we

can think of the ith (most similar to the target user) neighbor as corresponding to a single estimator

fi that simply predicts the rating of this specific neighbor. Thus, reducing the aggregated pairwise

covariance of the neighbors (estimators) can decrease the generalization error of the model; on the

same time, it may increase the bias or variance of the estimators and the generalization error as

well. Hence, one way to reduce the covariance is not to restrict the k estimators only to the k

nearest (most similar) neighbors but to use also other candidate neighbors (estimators).2,3

4. EXPERIMENTAL SETTINGS

To empirically validate the k-PN method presented in Section 3.1 and evaluate the generated

recommendations, we conduct a large number of experiments on“real-world”data sets and compare

our results to different baselines. For an apples-to-apples comparison, the selected baselines include

the user-based k-nearest neighbors (k-NN) collaborative filtering approach which is the standard

neighborhood-based method that we promise to improve in this study and has been found to perform

well also in terms of other performance measures, besides the classical accuracy metrics [13, 15,

4, 5], and generates recommendations that suffer less from over-specialization and concentration

biases [16, 30].

4.1 Data Sets

The data sets that we used are the MovieLens [14] and the MovieTweetings [17] as well as a

snapshot from Amazon [40]. The RecSys HetRec 2011 MovieLens (ML) data set [14] is an extension

of a data set published by [25], which contains personal ratings and tags about movies, and consists

of 855,598 ratings (from 1-5) from 2,113 users on 10,197 movies. Moreover, the MovieTweetings

(MT) data set is described in [17] and consists of ratings on movies that were contained in well-

2Let ru,i and ru,j the correlation of target user u and candidate neighbors i and j respectively, then the correlation ri,j of

neighbors i and j is bounded by the following expression: ru,iru,j−
√

1− r2u,i
√

1− r2u,j ≤ ri,j ≤ ru,iru,j+
√

1− r2u,i
√

1− r2u,j .
3For a formal argument why the proposed probabilistic approach can result in very different recommendations from those

generated based on the standard k-NN approach and how the item predictive accuracy can be affected, a 0/1 loss can be

used in the context of classification ensemble learning with the (highly) rated items corresponding to the positive class. For

a rigorous derivation of the generalization error in ensemble learning using the bias-variance-covariance decomposition and a

0/1 loss function see [45, 52].

structured tweets on Twitter. Owing to the extreme sparsity of the data set, we decided to condense

the data set in order to obtain more meaningful results from collaborative filtering algorithms. In

particular, we removed items and users with fewer than 10 ratings. The resulting data set contains

12,332 ratings (from 0-10) from 839 users on 836 items. Finally, the Amazon (AMZ) data set is

described in [40] and consists of reviews of fine foods during a period of more than 10 years. After

removing items with fewer than 10 ratings and reviewers with fewer than 25 ratings each, the data

set consists of 15,235 ratings (from 1-5) from 407 users on 4,316 items.

4.2 Experimental Settings

Using the ML, MT, and AMZ data sets, we conducted a large number of experiments and com-

pared the results against the standard user-based k-NN approach. In order to test the proposed

approach of probabilistic neighborhood selection under various experimental settings, we use dif-

ferent sizes of neighborhoods (k ∈ {20, 30, . . . , 80}) and different probability distributions (P ∈
{normal, exponential, Weibull, folded normal, uniform}) with various specifications (i.e. location

and scale parameters) and the empirical distribution of user similarity, described in Table 1; the

uniform distribution is used in order to compare the proposed method against randomly selecting

neighbors. Also, we use two furthest neighbor models (k-FN) [48, 46]; the second furthest neighbor

model (k-FN2) employed in his study corresponds to recommending the least liked items of the

neighborhoods instead of the most liked ones (k-FN1). In addition, we generate recommendation

lists of different sizes (l ∈ {1, 3, 5, 10, 20, . . . , 100}). In summary, we used 3 data sets, 7 different

sizes of neighborhoods, 12 probability distributions, and 13 different lengths of recommendation

lists, resulting in 3, 276 experiments in total.

For the probabilistic neighborhood selection, we use an efficient method for weighted sampling [54]

of k neighbors without replacement that also takes into consideration the similarity levels between

the target user and all the candidate neighbors. In order to estimate the initial weights of the

procedure described in Section 3.2, we use the probability density functions illustrated in Table 1.4

Without loss of generality, in order to take into consideration the similarity weights of the neighbor,

the candidates can be ordered and re-labeled such that w1 ≥ w2 ≥ . . . ≥ wn. Then, the weight for

each candidate can been generated using its rank and a probability density function. For instance,

using the Weibull probability distribution (i.e. W1 or W2), the weight of the most similar candidate

is w1 = µ
λ

(
1
λ

)µ−1
e−(1/λ)

µ
, where n is the total number of all candidate neighbors.5 In contrast to the

deterministic k-NN and k-FN approaches, depending on the parameters of the employed probability

4The density function of the folded normal distribution shown in Table 1 can also be expressed as

f(x) =
1

σ
√

2π

[
e

(
− (−x−µ)2

2σ2

)
+ e

(
− (x−µ)2

2σ2

)]

where µ = θσ [34, 26].
5For continuous probability distributions, the cumulative distribution function can also be used such as wi = F (i + 0.5) −
F (i− 0.5) or wi = F (i)− F (i− 1).

Table 1: Probability Distributions and Density Functions for Neighborhood Selection.

Label
Probability Probability Density Location and Shape

Distribution Function (weights) Parameters

k-NN -

1/k, if x ≤ n− k

0, otherwise
-

E Empirical Similarity wx/
∑n
i=1 wi -

U Uniform 1/n -

N1
Normal 1√

2πσ2
e
− (x−µ)2

2σ2
µ = 0 σ = (0.25/15.0)n

N2 µ = (2.0/15.0)n σ = (0.5/15.0)n

Exp1
Exponential λe−λx

λ = 1/k

Exp2 λ = 2/k

W1
Weibull µ

λ

(
x
λ

)µ−1
e−(x/λ)µ µ = 0.25 λ = n/20

W2 µ = 0.50 λ = n/20

FN1
Folded normal

√
2

σ
√
π
e−

θ2

2 e
− x2

2σ2 cosh
(
θx
σ

) θ = 1 σ = k

FN2 θ = 1 σ = k/2

k-FN -

1/k, if x ≥ n− k

0, otherwise
-

density function, this candidate neighbor may or may not have the highest weight.6 Figure 1 shows

the likelihood of sampling each candidate neighbor using different probability distributions for the

MovieLens data set and k = 80 and Figure 2 shows the sampled neighborhoods for a randomly

selected target user using the different probability distributions; the candidate neighbors for each

target user and item in the x axis are ordered based on their similarity to the target user with 0

corresponding to the nearest (i.e. most similar) candidate.

In all the conducted experiments, in order to measure the similarity among the candidate neigh-

bors, we used the Pearson correlation.7 Also, we used significance weighting as in [27] in order to

penalize for similarity based on few common ratings and filtered any candidate neighbors with zero

weight [16]. For the similarity estimation of the candidates in the k-furthest neighbor algorithm,

we used the approach described in [48, 46]. Besides, we use the standard combining function as in

Eq. (1).8 In addition, we used a holdout validation scheme in all of our experiments with 80/20

splits of data to the training/test part in order to avoid overfitting. Finally, the evaluation of

the various approaches in each experimental setting is based on users with more than k candidate

neighbors where k is the corresponding neighborhood size; if a user has k or less available candidate

neighbors then the same neighbors are always selected and the results for the specific user are in

principal identical for all the examined approaches, apart from the inverse k-FN (k-FN2) method.

6For a probabilistic furthest neighbors model the candidates can be ordered in reverse similarity order such that w1 ≤ w2 ≤
. . . ≤ wn.
7Similar results were obtained using the cosine similarity.
8Similar results were also obtained using a combining function without a first-order bias approximation: r̂u,i =∑
v∈Ni(u) wu,vrv,i/

∑
v∈Ni(u) |wu,v|. Any differences are explicitly discussed in the following section.

0 50 100 150 200 250 300 350 400

Candidate Neighbor Order

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

S
a
m

p
li
n

g
 P

ro
b

a
b

il
it

y

N1

N2

Exp1

Exp2

W1

W2

FN1

FN2

Figure 1: Sampling probability for the nearest candidate neighbors using different probability distributions for the MovieLens

(ML) data set.

0 500 1000 1500 2000
Candidate Neighbor

FN2

FN1

W2

W1

Exp2

Exp1

N2

N1

U

E

k-NN

Figure 2: Sampled Neighborhoods using the different probability distributions for the MovieLens data set.

k
-N
N

E U N
1

N
2

E
x
p

1

E
x
p

2

W
1

W
2

F
N

1

F
N

2

k
-F
N

1

k
-F
N

2

k-NN

E

U

N1

N2

Exp1

Exp2

W1

W2

FN1

FN2

k-FN1

k-FN2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) MovieLens

k
-N
N

E U N
1

N
2

E
x
p

1

E
x
p

2

W
1

W
2

F
N

1

F
N

2

k
-F
N

1

k
-F
N

2

k-NN

E

U

N1

N2

Exp1

Exp2

W1

W2

FN1

FN2

k-FN1

k-FN2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) MovieTweetings

k
-N
N

E U N
1

N
2

E
x
p

1

E
x
p

2

W
1

W
2

F
N

1

F
N

2

k
-F
N

1

k
-F
N

2

k-NN

E

U

N1

N2

Exp1

Exp2

W1

W2

FN1

FN2

k-FN1

k-FN2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Amazon

Figure 3: Overlap of recommendation lists of size l = 10 for the different data sets.

Evaluating the different approaches based on all the users in the data set yields similar results

exhibiting the same patterns with reduced magnitude of differences.

5. RESULTS

The aim of this study is to demonstrate, by a comparative analysis of our method and both the

standard baseline and the k-furthest neighbor approaches in different experimental settings, that

the proposed method indeed effectively generates recommendations that are very different from the

classical collaborative filtering systems having the potential to alleviate the over-specialization and

concentration problems while it performs well in terms of the classical accuracy metrics.

Given the number and the diversity of experimental settings, the presentation of the results

constitutes a challenging problem. A reasonable way to compare the results across the different

experimental settings is by computing the relative performance differences and discussing only the

most interesting dimensions. Detailed results about all the conducted experiments are included in

[6].

5.1 Orthogonality of Recommendations

In this section, we examine whether the proposed approach finds and recommends different items

than those recommended by the standard recommenders and, thus, whether it can alleviate the over-

specialization problem [48]. In particular, we investigate the overlap of recommendations (i.e. the

percentage of items that belong to both recommendation lists) between the classical neighborhood-

based collaborative filtering method and the various specifications (i.e. E, N1, N2, Exp1, Exp2,

W1, W2, FN1, and FN2) of the proposed approach described in Table 1. Fig. 3 presents the

results obtained by applying our method to the MovieLens, MovieTweetings, and Amazon data

sets. The values reported are computed as the average overlap over seven neighborhood sizes,

k ∈ {20, 30, . . . , 80}, for recommendation lists of size l = 10.

As Fig. 3 demonstrates, the proposed method generates recommendations that are very different

from the recommendations provided by the classical k-NN approach. The more different recommen-

dations were achieved using the empirical distribution of user similarity and the inversed k-furthest

neighbors approach [46]. In particular, the average overlap across all the proposed probability

distributions, neighborhoods, and recommendation list sizes was 14.87%, 64.17%, and 64.64% for

the ML, MT, and AMZ data sets, respectively; the corresponding overlap using only the empir-

ical distribution was 2.79%, 44.82%, and 39.80% for the different data sets. Hence, it is worth

to note that not only the k-FN approach but also the proposed probabilistic method resulted in

orthogonal recommendations to the standard k-NN method. Besides, for the more sparse data sets

(i.e. MovieTweetings, Amazon), the recommendation lists exhibit greater overlap, since there are

proportionally less candidate neighbors available to sample from and, thus, the neighborhoods tend

to be more similar. This is also depicted on the experiments using one of the standard probabil-

ity distributions but the empirical distance of candidate neighbors, the uniform distribution, and

the deterministic k-FN approach. Similarly, recommendation lists of smaller size resulted in even

smaller overlap among the various methods. Moreover, the experiments conducted using the U and

k-FN1 approaches resulted in recommendations very different from the recommendations provided

by the classical k-NN approach only when the first-order bias approximation was not used in the

combining function of the ratings. In general, without the first-order bias approximation the aver-

age overlap was further reduced by 58.70%, 19.69%, and 52.18% for the ML, MT, and AMZ data

sets, respectively. As one would expect, the experiments conducted using the same probability dis-

tribution (e.g. Exp1 and Exp2) result in similar performance. To determine statistical significance,

we have tested the null hypothesis that the performance of each of the methods is the same using

the Friedman test. Based on the results, we reject the null hypothesis with p < 0.0001. Performing

post hoc analysis on Friedman’s Test results, all the specifications of the proposed approach (apart

from the cases of the N2, W2, Exp, and FN specifications for the AMZ data set) significantly out-

perform the k-FN1 method in all the data sets. The difference between the empirical distribution

and k-FN2 are not statistically significant for any data set.

Nevertheless, even a large overlap between two recommendation lists does not imply that these

lists are the same. For instance, two recommendation lists might contain the same items but in

reverse order. In order to further examine the orthogonality of the generated recommendations,

we measure the rank correlation of the generated lists using the Spearman’s rank correlation co-

efficient [51], which measures the Pearson correlation coefficient between the ranked variables. In

particular, we use the top 100 items recommended by method i and examine the correlation ρij in

the rankings generated by methods i and j for those items; ρij might be different from ρji. Fig.

4 shows the average ranking correlation over seven neighborhood sizes, k ∈ {20, 30, . . . , 80}, using

the the Spearman’s rank correlation coefficient ρij (i corresponds to the row index and j to the

column index) for the MovieTweetings data set (i.e. the data set that exhibits the largest overlap).

The correlation between the classical neighborhood-based collaborative filtering method and the

probabilistic approach with the empirical distribution using the top 100 items recommended by the

k
-N
N

E U N
1

N
2

E
x
p

1

E
x
p

2

W
1

W
2

F
N

1

F
N

2

k
-F
N

1

k
-F
N

2

k-NN

E

U

N1

N2

Exp1

Exp2

W1

W2

FN1

FN2

k-FN1

k-FN2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: Spearman’s rank correlation coefficient for the MovieTweetings data set.

(a) MovieLens (b) MovieTweetings (c) Amazon

Figure 5: Increase in aggregate diversity performance for the different data sets and recommendation list sizes.

k-NN method is 22.21%. As Figs. 3b and 4 illustrate, even though some specifications may result

in recommendation lists that exhibit significant overlap, the ranking of the recommended items is

not strongly correlated.

5.2 Comparison of Diversity

In this section we investigate the effect of the proposed method on coverage and aggregate diver-

sity, two important metrics [49] which in combination with the rest of the measures discussed in this

study show whether the proposed approach can alleviate the over-specialization and concentration

bias problems of CF systems. The results obtained using the catalog coverage metric [28, 20] are

equivalent to those using the diversity-in-top-N metric for aggregate diversity [8]; henceforth, only

one set of results is presented. Fig. 5 presents the results obtained by applying our method to the

ML, MT, and AMZ data sets. In particular, the Hinton diagram in Fig. 5 shows the percentage

increase/decrease of the average number of items in the catalog that are ever recommended to users

compared to the k-NN baseline for each probability distribution and recommendation lists of size

l ∈ {1, 3, 5, 10, 30, 40, 50, 60, 80, 100} over seven neighborhood sizes, k ∈ {20, 30, . . . , 80}. Positive

and negative values are represented by white and black squares, respectively, and the size of each

square represents the magnitude of each value; for each dataset the maximum size corresponds to

the maximum percentage difference observed in the conducted experiments.

Fig. 5 demonstrates that the proposed method in most cases performs better than both the stan-

dard user-based k-NN and the k-FN methods. The more diverse recommendations were achieved

using the empirical distribution of user similarity and the inverse k-furthest neighbors approach

(k-FN2). In particular, the average aggregate diversity across all the probability distributions,

neighborhoods, and recommendation list sizes was 22.10%, 46.09%, and 13.52% for the ML, MT,

and AMZ data sets, respectively; the corresponding aggregate diversity using only the empirical

distribution was 24.20%, 50.55%, and 17.04% for the different data sets. Furthermore, the perfor-

mance was increased both in the experiments where the k-NN method, because of the specifics of

the particular data sets, resulted in low aggregate diversity (e.g. Amazon) or high diversity perfor-

mance (e.g. MovieTweetings). In addition, the experiments conducted using the same probability

distribution exhibit very similar performance also for this metric. As one would expect, in most

cases the aggregate diversity increased whereas the magnitude of the difference in performance

decreased with increasing recommendation list size l. Without using the first-order bias approxi-

mation in the combining function, the standard k-NN method resulted in higher aggregate diversity

and catalog coverage but the proposed approach still outperformed the classical algorithm in most

of the cases by a narrower margin; using the inverse k-FN method (k-FN2) without the first-order

bias approximation resulted in decrease in performance for the Amazon data set.

In terms of statistical significance, using the Friedman test and performing post hoc analysis,

the differences among the employed baselines (i.e. k-NN, k-FN1, and k-FN2) and all the proposed

specifications are statistically significant (p < 0.001) for the ML data set. For the MT and AMZ

data sets, all the proposed specifications (i.e. E, N1, N2, Exp1, Exp2, W1, W2, FN1, and FN2)

significantly outperform the k-NN algorithm; the empirical distribution significantly outperforms

also the k-FN1 method. Besides, the k-FN2 method significantly outperforms the Exp1, Exp2, W1,

W2, FN1, and FN2 but not the E and N specifications for the MT and AMZ data sets.

5.3 Comparison of Dispersion and Mobility

In order to conclude whether the proposed approach alleviates the concentration biases, the

generated recommendation lists should also be evaluated for the inequality across items using the

Gini coefficient [23]. In particular, the Gini coefficient was on average improved by 6.81%, 3.67%,

and 1.67% for the ML, MT, and AMZ data sets, respectively; the corresponding figures using

only the empirical distribution were 7.48%, 6.73%, and 3.45% for the different data sets. The

more uniformly distributed recommendation lists were achieved using the empirical distribution

of user similarity and the inverse k-furthest neighbors approach. Moreover, the larger the size of

the recommendation lists, the larger the improvement in the Gini coefficient. Similarly, without

using the first-order bias approximation in the rating combining function the average dispersion was

further improved by 6.48%, 6.83%, and 20.22% for the ML, MT, and AMZ data sets, respectively.

As we can conclude, in the recommendation lists generated from the proposed method, the number

of times an item is recommended is more equally distributed compared to the classical k-NN method.

In terms of statistical significance, using the Friedman test and performing post hoc analysis, all

the proposed specifications (apart from the N1, Exp2, and FN2 for the MT data set and the N2,

Exp2 for the AMZ data set) significantly outperform the k-NN and k-FN1 methods (p < 0.001).

The empirical distribution also significantly outperforms the k-FN2 method for the ML data set;

the differences are not statistically significant for the other data sets.

However, simply evaluating the recommendation lists in terms of dispersion and inequality does

not provide any information about the mobility of the recommendations (i.e. whether popular or

“long tail” items are more likely to be recommended) since these metrics do not consider the prior

state of the system. Hence, in order to provide more evidence on whether the proposed approach

could solve the concentration bias problem, we employed a mobility measure [12, 50] M to assess

whether the proposed recommender system approach follows or changes the prior popularity of

items when recommendation lists are generated. Thus, we define M , which equals the proportion

of items that is mobile (e.g. changed from popular in terms of number of ratings to “long tail” in

terms of recommendation frequency), as follows:

M = 1−
K∑
i=1

πiρii

where the vector π denotes the initial distribution of each of the K (popularity) categories and

ρii the probability of staying in category i, given that i was the initial category.9 A score of zero

denotes no change (i.e. the number of times an item is recommended is proportional to the number

of ratings it has received) whereas a score of one denotes that the recommender system recommends

only the “long tail” items (i.e. the number of times an item is recommended is proportional to the

inverse of the number of ratings it has received).

In the conducted experiments, based on the 80-20 rule or Pareto principle [42], we use two

categories, labeled as “head” and “tail”, where the former category contains the top 20% of the

items (in terms of ratings or recommendations frequency) and the latter category the remaining

80% of the items. The experimental results demonstrate that the proposed method generates

recommendation lists that exhibit in most cases better mobility compared to the k-NN and k-FN

methods. In particular, the performance was increased by 0.91%, 0.95%, and 0.19% for the ML, MT,

and AMZ data sets, respectively; the corresponding overlap using only the empirical distribution

was 1.29%, 1.46%, and 0.45% for the different data sets. We also note that recommendation lists
9The proposed mobility score can be easily adapted in order to differentiate the direction of change and the magnitude.

Figure 6: Mobility of recommendations for the MT data set.

of larger size resulted in even larger improvements on average. Similarly, without the first-order

bias approximation the average mobility was further increased by 0.69%, 0.53%, and 3.28% for

the ML, MT, and AMZ data sets, respectively. Fig. 6 shows the transition probabilities of each

category for recommendation lists of size l = 100 using the empirical distribution of similarity and

the MovieTweetings data set. In terms of statistical significance, all the proposed specifications

significantly outperform the k-NN method (p < 0.005). Similarly, the proposed specifications (apart

from the cases of N1, Exp2, and FN2 for the ML data set) significantly outperform also the k-FN1

method for the ML and MT data sets. However, for the AMZ data set the proposed approach

significantly underperforms the k-FN2 method.

5.4 Comparison of Item Prediction

Apart from alleviating the concentration bias and over-specialization problems in CF systems,

the proposed approach should also perform well in terms of predictive accuracy. Thus, the goal

in this section is to compare the proposed method with the standard baseline methods in terms

of traditional metrics for item prediction, such as the F1 score. Figs. 7 and 8 present the results

obtained by applying the proposed method to the MovieLens (ML), MovieTweetings (MT), and

Amazon (AMZ) data sets. The values reported in Fig. 8 are computed as the average performance

over seven neighborhood sizes, k ∈ {20, 30, . . . , 80}, using the F1 score for recommendation lists of

size l = 10. The Hilton diagram show in Figure 7 presents the relative F1 score for recommendation

lists of size l ∈ {1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100}; the size of each white square represents the

magnitude of each value with the maximum size corresponding to the maximum value achieved in

the conducted experiments for each data set. Similar results were also obtained using as positive

instances only the highly rated items (i.e. items rated above the average rating or above the 80%

of the rating scale) in the test set.

Figs. 7 and 8 demonstrate that the proposed method outperforms the standard user-based k-NN

method and the k-FN approach in most of the cases. The most accurate recommendations were gen-

(a) MovieLens (b) MovieTweetings (c) Amazon

Figure 7: Item prediction performance for the different data sets.

(a) MovieLens (b) MovieTweetings (c) Amazon

Figure 8: Item prediction performance for the different data sets and recommendation lists of size l = 10.

erated using the empirical distribution of user similarity, the normal or the exponential distribution.

In particular, the average F1 score across all the proposed probability distributions, neighborhoods,

and recommendation list sizes was 0.0018, 0.0050, and 0.0010 for the ML, MT, and AMZ data

sets, respectively; the corresponding performance using only the empirical distribution was 0.0015,

0.0055, and 0.0022 for the different data sets resulting on average in a 4-fold increase. Besides,

without using the first-order bias approximation in the rating combining function, the proposed

approach outperformed in most of the cases the classical k-NN algorithm and the k-FN method by

a wider margin. Furthermore, we should note that the performance was increased across various

experimental specifications, including different sparsity levels, neighborhood sizes, and recommen-

dation list lengths. This performance improvement is due to the reduction of covariance among the

selected neighbors and is in accordance with the ensemble learning theory that we introduce in the

neighborhood-based collaborative filtering framework in Section 3.3.

To determine the statistical significance of the previous findings, we have tested using the Fried-

man test the null hypothesis that the performance of each of the methods is the same. Based on the

results, we reject the null hypothesis with p < 0.0001. Performing post hoc analysis on Friedman’s

Test results, in most of the cases (i.e. 86.42% of the experimental settings) the proposed approach

significantly outperforms the employed baselines and in the remaining cases the differences are not

statistically significantly. In particular, the differences between the traditional k-NN and each one

of the proposed variations (apart from the case of the FN1 specification for the MT data set) are

statistically significant for all the data sets; similar results were also obtained for the differences

among the proposed approach and the k-FN models.

5.5 Comparison of Utility-based Ranking

Further, in order to better assess the quality of the proposed approach, the recommendation

lists should also be evaluated for the ranking of the items that present to the users, taking into

account the rating scale of the selected data sets. In principal, since all items are not of equal

relevance/quality to the users, the relevant/better items should be identified and ranked higher

for presentation. Assuming that the utility of each recommendation is the rating of the recom-

mended item discounted by a factor that depends on its position in the list of recommendations, in

this section we evaluate the generated recommendation lists based on the normalized Cumulative

Discounted Gain (nDCG) [32], where positions are discounted logarithmically.

The highest performance was again achieved using the empirical distribution of user similarity, the

normal or the Weibull distribution. In particular, the average increase of the nDCG score across all

the examined probability distributions, neighborhoods, and recommendation list sizes was 100.06%,

20.05%, and 89.85% for the ML, MT, and AMZ data sets, respectively; the corresponding increase

using only the empirical distribution was 117.65%, 23.01%, and 383.99% for the different data sets

resulting on average in a 2-fold increase. As for the F1 metric, without using the first-order bias

approximation in the rating combining function, the proposed approach outperformed in most of

the cases the classical k-NN algorithm and the k-FN methods by an even wider margin.

In terms of statistical significance, using the Friedman test and performing post hoc analysis,

the differences among the employed baselines and all the proposed specifications (apart from the

FN1 for the MT data set and the N1, Exp2, W2, and FN2 for the AMZ data set) are statistically

significant (p < 0.001).

6. DISCUSSION AND CONCLUSIONS

In this paper, we present a novel method for recommending items based on probabilistic neigh-

borhood selection in collaborative filtering systems. We illustrate the practical implementation of

the proposed method in the context of memory-based collaborative filtering systems adapting and

improving the standard user-based k-nearest neighbors (k-NN) approach. In the proposed varia-

tion of the classical k-NN collaborative filtering method, the neighborhood selection is based on an

underlying probability distribution, instead of just the k neighbors with the highest similarity level

to the target user. For the probabilistic neighborhood selection (k-PN), we use an efficient method

for weighted sampling of k neighbors without replacement that also takes into consideration the

similarity levels between the target user and all the candidate neighbors. In addition, we conduct

an empirical study showing that the proposed method generates recommendations that are very

different from the classical collaborative filtering approach and alleviates the over-specialization and

concentration problems. We also demonstrate that using probability distributions which sample

mainly from the nearest neighbors and also some further neighbors, the proposed method outper-

forms, by a wide margin in most cases, both the standard user-based k-nearest neighbors and the

k-furthest neighbors approaches in terms of both item prediction accuracy and utility-based ranking

measures, such as the F-measure and the normalized discounted cumulative gain (nDCG), across

various experimental settings. These results are also in accordance with the ensemble learning the-

ory that we employ in the neighborhood-based collaborative filtering framework. Besides, we show

that the performance improvement is not achieved at the expense of other popular performance

measures, such as catalog coverage, aggregate diversity, and recommendation dispersion and the

proposed metric of mobility.

Following the proposed approach and providing personalized recommendations from a wide range

of items, we can further enhance the usefulness of collaborative filtering RSs. In particular, avoiding

obvious and expected recommendations [4, 5] while maintaining high predictive accuracy levels,

we can alleviate the common problems of over-specialization and concentration bias that often

characterize the CF algorithms. Besides, building such a recommender system, we also have the

potential to further increase user satisfaction and engagement and offer a superior experience to

the users by providing them with non-obvious and high quality recommendation lists that fairly

match their interests and they will remarkably like [2].

Furthermore, the generated recommendations should be useful not only for the users but for the

businesses as well. The proposed approach exhibits a potential positive economic impact based on

(i) the direct effect of increased sales and enhanced customer loyalty through offering more useful

for the users recommendations from a wider range of items, enabling them to find relevant items

that are harder to discover, and making the users familiar with the whole product catalog, and (ii)

the indirect effect of recommending items from the long tail and not focusing mostly on bestsellers

that usually exhibit higher marginal costs and lower profit margins because of acquisition costs

and licenses as well as increased competition. This potential economic impact, which should be

empirically verified and precisely quantified, is a topic of future research.

Moreover, the proposed method can be further extended and modified in order to sample k

neighbors from the x nearest candidates, instead of all the available users, and combined with

additional rating normalization and similarity weighting schemes [33] beyond those employed in

this study. Also, apart from the user-based and item-based k-NN collaborative filtering approaches,

other popular methods that can be easily extended with the use of probabilistic neighborhood

selection (k-PN), in order to allow us to generate both accurate and novel recommendations, include

Matrix Factorization approaches [37, 38]. Besides, this approach can be further extended to the

popular methods of k-NN classification and regression in information retrieval (IR).

As a part of the future work, we would like to propose a novel approach in collaborative filtering

recommender systems directly optimizing the generalization error rate derived in Section 3.3. Fi-

nally, we would also like to conduct live experiments with real users in a traditional on-line retail

setting as well as in a platform for massive open on-line courses [3].

7. REFERENCES

[1] Z. Abbassi, S. Amer-Yahia, L. V. Lakshmanan, S. Vassilvitskii, and C. Yu. Getting

recommender systems to think outside the box. In Proceedings of the third ACM conference

on Recommender systems, RecSys ’09, pages 285–288, New York, NY, USA, 2009. ACM.

[2] P. Adamopoulos. Beyond Rating Prediction Accuracy: On New Perspectives in

Recommender Systems. In Proceedings of the seventh ACM conference on Recommender

systems, RecSys ’13. ACM, 2013.

[3] P. Adamopoulos. What Makes a Great MOOC? An Interdisciplinary Analysis of Student

Retention in Online Courses. In Proceedings of the 34th International Conference on

Information Systems, ICIS 2013, 2013.

[4] P. Adamopoulos and A. Tuzhilin. On Unexpectedness in Recommender Systems: Or How to

Expect the Unexpected. In DiveRS 2011 - ACM RecSys 2011 Workshop on Novelty and

Diversity in Recommender Systems, RecSys 2011. ACM, Oct. 2011.

[5] P. Adamopoulos and A. Tuzhilin. On Unexpectedness in Recommender Systems: Or How to

Better Expect the Unexpected. Working Paper: CBA-13-03, New York University, 2013.

http://ssrn.com/abstract=2282999.

[6] P. Adamopoulos and A. Tuzhilin. Probabilistic Neighborhood Selection in Collaborative

Filtering Systems. Working Paper: CBA-13-04, New York University, 2013.

http://hdl.handle.net/2451/31988.

[7] P. Adamopoulos and A. Tuzhilin. Recommendation Opportunities: Improving Item

Prediction Using Weighted Percentile Methods in Collaborative Filtering Systems. In

Proceedings of the seventh ACM conference on Recommender systems, RecSys ’13. ACM,

2013.

[8] G. Adomavicius and Y. Kwon. Improving aggregate recommendation diversity using

ranking-based techniques. Knowledge and Data Engineering, IEEE Transactions on,

24(5):896 –911, may 2012.

[9] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data

Eng., 17(6):734–749, June 2005.

[10] M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommendation.

Communications of the ACM, 40(3):66–72, 1997.

[11] D. Billsus and M. J. Pazzani. User modeling for adaptive news access. User Modeling and

User-Adapted Interaction, 10(2-3):147–180, Feb. 2000.

[12] R. Boudon, R. Boudon, R. Boudon, and R. Boudon. Mathematical structures of social

mobility, volume 12. Elsevier Amsterdam, 1973.

[13] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and

User-Adapted Interaction, 12(4):331–370, Nov. 2002.

[14] I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information heterogeneity and

fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM conference on

Recommender systems, RecSys ’11. ACM, 2011.

[15] P. Cremonesi, F. Garzotto, S. Negro, A. V. Papadopoulos, and R. Turrin. Looking for ”good”

recommendations: A comparative evaluation of recommender systems. In Human-Computer

Interaction–INTERACT 2011, pages 152–168. Springer, 2011.

[16] C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based

recommendation methods. In Recommender systems handbook, pages 107–144. Springer, 2011.

[17] S. Dooms, T. De Pessemier, and L. Martens. MovieTweetings: a Movie Rating Dataset

Collected From Twitter. In Workshop on Crowdsourcing and Human Computation for

Recommender Systems, CrowdRec at RecSys ’13, 2013.

[18] R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent

reference model. SIAM Journal on Computing, 7(3):288–297, 1978.

[19] D. Fleder and K. Hosanagar. Blockbuster culture’s next rise or fall: The impact of

recommender systems on sales diversity. Manage. Sci., 55(5):697–712, May 2009.

[20] M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond accuracy: evaluating recommender

systems by coverage and serendipity. In Proceedings of the fourth ACM conference on

Recommender systems, RecSys ’10, pages 257–260. ACM, 2010.

[21] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.

Neural computation, 4(1):1–58, 1992.

[22] A. Ghose, P. Ipeirotis, and B. Li. Designing ranking systems for hotels on travel search

engines by mining user-generated and crowd-sourced content. Marketing Science, 2012.

[23] C. Gini. Concentration and dependency ratios (in Italian). English translation in Rivista di

Politica Economica, 87:769–789, 1909.

[24] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an

information tapestry. Communications of the ACM, 35(12):61–70, 1992.

[25] GroupLens research group, 2011. http://www.grouplens.org.

[26] W. Gui, P. Chen, and H. Wu. A folded normal slash distribution and its applications to

non-negative measurements. Journal of Data Science, 2012.

[27] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for

performing collaborative filtering. In Proceedings of the 22nd annual international ACM

SIGIR conference on Research and development in information retrieval, pages 230–237.

ACM, 1999.

[28] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative

filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53, Jan. 2004.

[29] D. Jannach and K. Hegelich. A case study on the effectiveness of recommendations in the

mobile internet. In Proceedings of the third ACM conference on Recommender systems,

RecSys ’09, pages 205–208. ACM, 2009.

[30] D. Jannach, L. Lerche, F. Gedikli, and G. Bonnin. What recommenders recommend–an

analysis of accuracy, popularity, and sales diversity effects. In User Modeling, Adaptation, and

Personalization, pages 25–37. Springer, 2013.

[31] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender systems: an

introduction. Cambridge University Press, 2010.

[32] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM

Trans. Inf. Syst., 20(4):422–446, Oct. 2002.

[33] R. Jin, J. Y. Chai, and L. Si. An automatic weighting scheme for collaborative filtering. In

Proceedings of the 27th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 337–344. ACM, 2004.

[34] N. Johnson. The folded normal distribution: Accuracy of estimation by maximum likelihood.

Technometrics, 4(2):249–256, 1962.

[35] B. M. Kim and Q. Li. Probabilistic model estimation for collaborative filtering based on

items attributes. In Proceedings of the 2004 IEEE/WIC/ACM International Conference on

Web Intelligence, pages 185–191. IEEE Computer Society, 2004.

[36] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl.

Grouplens: applying collaborative filtering to usenet news. Communications of the ACM,

40(3):77–87, 1997.

[37] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.

In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 426–434. ACM, 2008.

[38] Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans.

Knowl. Discov. Data, 4(1):1:1–1:24, Jan. 2010.

[39] Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender Systems

Handbook, pages 145–186. Springer, 2011.

[40] J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating

dimensions with review text. In Proceedings of the seventh ACM conference on Recommender

systems, RecSys ’13. ACM, 2013.

[41] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how accuracy

metrics have hurt recommender systems. In Proceedings of CHI ’06, pages 1097–1101, New

York, NY, USA, 2006. ACM.

[42] V. Pareto. Manual of political economy tr. by ann s. schwier. 1927.

[43] F. Ricci and B. Shapira. Recommender systems handbook. Springer, 2011.

[44] E. Rich. User modeling via stereotypes. Cognitive science, 3(4):329–354, 1979.

[45] F. Roli and G. Fumera. Analysis of linear and order statistics combiners for fusion of

imbalanced classifiers. In Proceedings of the Third International Workshop on Multiple

Classifier Systems, MCS ’02, pages 252–261, London, UK, UK, 2002. Springer-Verlag.

[46] A. Said, B. Fields, B. J. Jain, and S. Albayrak. User-centric evaluation of a k-furthest

neighbor collaborative filtering recommender algorithm. In Proceedings of the ACM 2013

conference on Computer Supported Cooperative Work. ACM, 2013.

[47] A. Said, B. J. Jain, and S. Albayrak. Analyzing weighting schemes in collaborative filtering:

cold start, post cold start and power users. In Proceedings of the 27th Annual ACM

Symposium on Applied Computing, SAC ’12, pages 2035–2040. ACM, 2012.

[48] A. Said, B. J. Jain, B. Kille, and S. Albayrak. Increasing diversity through furthest

neighbor-based recommendation. In Proceedings of the WSDM’12 Workshop on Diversity in

Document Retrieval (DDR’12), 2012.

[49] G. Shani and A. Gunawardana. Evaluating recommendation systems. Recommender Systems

Handbook, 12(19):1–41, 2011.

[50] A. Shorrocks. Income inequality and income mobility. Journal of Economic Theory,

19(2):376–393, 1978.

[51] C. Spearman. The proof and measurement of association between two things. The American

Journal of Psychology, 100(3/4):pp. 441–471, 1987.

[52] K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classifiers.

Connection science, 8(3-4):385–404, 1996.

[53] N. Ueda and R. Nakano. Generalization error of ensemble estimators. In Neural Networks,

1996., IEEE International Conference on, volume 1, pages 90–95. IEEE, 1996.

[54] C.-K. Wong and M. C. Easton. An efficient method for weighted sampling without

replacement. SIAM Journal on Computing, 9(1):111–113, 1980.

[55] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel. Probabilistic memory-based

collaborative filtering. Knowledge and Data Engineering, IEEE Transactions on, 16(1):56–69,

2004.

[56] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists

through topic diversification. In Proceedings of the 14th international conference on World

Wide Web, WWW ’05, pages 22–32. ACM, 2005.

APPENDIX
A. ORTHOGONALITY OF RECOMMENDATIONS

Table 2: Recommendation List Overlap for the MovieLens data set.

Setting
Recommendation List Size

3 5 10 30 50 100

E 0.023618 0.029383 0.030350 0.024373 0.025736 0.033923

U 1.000000 0.998648 0.987506 0.994037 0.993510 0.951956

N1 0.075384 0.083564 0.068461 0.062572 0.064530 0.068360

N2 0.030356 0.045839 0.047096 0.039522 0.038891 0.043741

Exp1 0.064183 0.080035 0.065296 0.056070 0.059030 0.062051

Exp2 0.070696 0.083943 0.067534 0.060206 0.062192 0.066197

W1 0.045929 0.057562 0.048671 0.041034 0.043609 0.049763

W2 0.047777 0.060807 0.053465 0.046168 0.048964 0.053364

FN1 0.058391 0.072422 0.061139 0.052958 0.055922 0.059822

FN2 0.071057 0.083510 0.067034 0.059678 0.061477 0.065411

k-FN1 0.932955 0.914042 0.940646 0.953672 0.957523 0.925060

k-FN2 0.007820 0.021202 0.022000 0.028049 0.019120 0.012307

Table 3: Recommendation List Overlap for the MovieTweetings data set.

Setting
Recommendation List Size

3 5 10 30 50 100

E 0.356235 0.393340 0.440539 0.484813 0.506766 0.507518

U 0.991939 0.992761 0.996261 0.997459 0.998091 0.996717

N1 0.586323 0.612999 0.648849 0.659846 0.664346 0.631611

N2 0.574418 0.587484 0.601078 0.592829 0.585793 0.528291

Exp1 0.594758 0.611744 0.641992 0.646005 0.646492 0.606485

Exp2 0.598922 0.626255 0.652424 0.655622 0.661077 0.622078

W1 0.589900 0.615959 0.643690 0.656167 0.655816 0.615431

W2 0.592088 0.616988 0.645584 0.657343 0.656685 0.617908

FN1 0.591875 0.599743 0.625584 0.631387 0.630335 0.581871

FN2 0.592729 0.616506 0.643608 0.653232 0.655255 0.618087

k-FN1 0.670937 0.709653 0.757535 0.808060 0.831620 0.864437

k-FN2 0.003096 0.004118 0.005992 0.012164 0.019039 0.032655

Table 4: Recommendation List Overlap for the Amazon data set.

Setting
Recommendation List Size

3 5 10 30 50 100

E 0.321458 0.387693 0.446873 0.426609 0.421664 0.383464

U 0.960376 0.984311 0.992510 0.995101 0.994642 0.992772

N1 0.632804 0.672832 0.666023 0.620295 0.578305 0.496725

N2 0.657378 0.708096 0.714015 0.639556 0.599205 0.510404

Exp1 0.663727 0.708240 0.704363 0.651985 0.603150 0.518858

Exp2 0.659965 0.709320 0.715483 0.647315 0.602282 0.515271

W1 0.650088 0.691760 0.698649 0.632451 0.592569 0.513235

W2 0.651969 0.692767 0.709575 0.652442 0.607232 0.516341

FN1 0.661611 0.703418 0.703514 0.652351 0.607106 0.523333

FN2 0.662904 0.700396 0.704556 0.641427 0.599885 0.511996

k-FN1 0.558260 0.615977 0.697104 0.785151 0.788080 0.805297

k-FN2 0.000000 0.000000 0.000000 0.000365 0.002334 0.004847

B. COMPARISON OF DIVERSITY

Table 5: Aggregate Diversity for the MovieLens data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.001464 0.002483 0.004536 0.013320 0.024888 0.057427

E 0.089219 0.116074 0.168449 0.278853 0.350088 0.449498

U 0.001464 0.002454 0.004536 0.012947 0.022635 0.053150

N1 0.084167 0.117423 0.176228 0.304086 0.373211 0.482252

N2 0.074220 0.102955 0.151182 0.259276 0.324396 0.422026

Exp1 0.081971 0.112959 0.166482 0.283289 0.351610 0.455125

Exp2 0.081167 0.114983 0.175884 0.303799 0.370800 0.475592

W1 0.087497 0.118701 0.173200 0.281810 0.353476 0.452757

W2 0.084755 0.115672 0.169324 0.275968 0.347261 0.449283

FN1 0.082301 0.113433 0.168765 0.285054 0.357495 0.454134

FN2 0.081296 0.114797 0.172583 0.293494 0.362604 0.468244

k-FN1 0.002483 0.003918 0.006904 0.018429 0.030228 0.060987

k-FN2 0.017052 0.023066 0.034749 0.064374 0.084540 0.115471

Table 6: Aggregate Diversity for the MovieTweetings data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.202324 0.265892 0.365003 0.509911 0.574163 0.669515

E 0.250684 0.302119 0.405844 0.588517 0.668831 0.816986

U 0.202666 0.265892 0.365003 0.509569 0.574163 0.669856

N1 0.213602 0.272727 0.365003 0.525120 0.606459 0.766063

N2 0.217191 0.279563 0.370984 0.544258 0.632946 0.778708

Exp1 0.211210 0.265721 0.370813 0.522215 0.609023 0.770335

Exp2 0.214798 0.266917 0.363807 0.519993 0.606630 0.755639

W1 0.210014 0.262987 0.360731 0.521189 0.606972 0.764525

W2 0.210697 0.270506 0.366200 0.516576 0.608510 0.766405

FN1 0.221975 0.269651 0.367396 0.530075 0.620984 0.768455

FN2 0.213431 0.265208 0.362611 0.523753 0.608681 0.768455

k-FN1 0.222830 0.285202 0.410287 0.557245 0.635167 0.716336

k-FN2 0.487355 0.582194 0.677204 0.768797 0.809125 0.871839

Table 7: Aggregate Diversity for the Amazon data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.055475 0.073282 0.091983 0.140275 0.158414 0.166656

E 0.073017 0.097081 0.128161 0.201046 0.229909 0.293393

U 0.055508 0.073315 0.091983 0.140342 0.158381 0.166656

N1 0.061234 0.078247 0.100159 0.154475 0.182014 0.252681

N2 0.058983 0.074904 0.096253 0.146597 0.170727 0.237819

Exp1 0.058818 0.075963 0.099000 0.152092 0.176652 0.238084

Exp2 0.058454 0.077122 0.097908 0.148881 0.171654 0.239739

W1 0.058056 0.077353 0.097776 0.149609 0.177678 0.237488

W2 0.058487 0.076592 0.097743 0.151331 0.174864 0.239474

FN1 0.059314 0.077155 0.098405 0.150801 0.175659 0.241791

FN2 0.058917 0.076791 0.099662 0.147789 0.172680 0.241229

k-FN1 0.064941 0.083675 0.109658 0.167218 0.182808 0.202337

k-FN2 0.091454 0.129121 0.174732 0.281113 0.326923 0.398550

C. COMPARISON OF DISPERSION AND MOBILITY

Table 8: Recommendation Dispersion for the MovieLens data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.999679 0.999450 0.998949 0.996881 0.994765 0.988882

E 0.967092 0.956073 0.934667 0.886077 0.854847 0.801690

U 0.999679 0.999451 0.998949 0.996883 0.994806 0.989327

N1 0.975081 0.965689 0.945760 0.904081 0.877641 0.830113

N2 0.975244 0.965997 0.948003 0.906370 0.879857 0.833867

Exp1 0.974450 0.965457 0.946198 0.905185 0.879987 0.833044

Exp2 0.975618 0.965858 0.945082 0.902877 0.876529 0.829812

W1 0.971111 0.960503 0.938843 0.894461 0.867748 0.819284

W2 0.972434 0.962484 0.942437 0.900043 0.872987 0.825401

FN1 0.974613 0.965388 0.946352 0.906139 0.879784 0.833630

FN2 0.975907 0.966667 0.946240 0.905342 0.878576 0.831412

k-FN1 0.999657 0.999403 0.998904 0.996801 0.994692 0.989252

k-FN2 0.998154 0.997797 0.997002 0.994832 0.992714 0.987585

Table 9: Recommendation Dispersion for the MovieTweetings data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.936491 0.921943 0.893003 0.835938 0.797022 0.740282

E 0.914480 0.893939 0.855011 0.775761 0.727419 0.630710

U 0.936539 0.921869 0.893044 0.835888 0.796956 0.740215

N1 0.926762 0.910941 0.880962 0.814093 0.772384 0.689430

N2 0.923981 0.901400 0.861974 0.778002 0.727768 0.625284

Exp1 0.926365 0.909449 0.875794 0.803821 0.761713 0.671532

Exp2 0.926511 0.910044 0.879680 0.810912 0.769215 0.684036

W1 0.928135 0.911360 0.879245 0.808777 0.765059 0.677172

W2 0.926040 0.909344 0.877952 0.809122 0.765394 0.677760

FN1 0.925456 0.906975 0.872679 0.796588 0.749795 0.654710

FN2 0.927283 0.911119 0.878965 0.809969 0.766119 0.679624

k-FN1 0.925930 0.910815 0.881207 0.821557 0.782738 0.728067

k-FN2 0.824085 0.788323 0.760065 0.708830 0.678347 0.602940

Table 10: Recommendation Dispersion for the Amazon data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.982802 0.978695 0.975836 0.964118 0.957721 0.949920

E 0.970337 0.962897 0.954176 0.925977 0.914727 0.881766

U 0.982791 0.978702 0.975842 0.964112 0.957729 0.949916

N1 0.978029 0.972209 0.965668 0.945471 0.932307 0.902952

N2 0.979921 0.975423 0.970189 0.951467 0.940828 0.911624

Exp1 0.979136 0.974036 0.967180 0.947252 0.934497 0.908355

Exp2 0.980009 0.974278 0.968784 0.948724 0.936771 0.910333

W1 0.979809 0.974026 0.967706 0.947657 0.934137 0.908228

W2 0.979119 0.973779 0.968358 0.947738 0.935747 0.907739

FN1 0.979014 0.973539 0.967682 0.948595 0.936134 0.907853

FN2 0.979636 0.974129 0.967699 0.948789 0.937418 0.908246

k-FN1 0.978394 0.974276 0.970528 0.956788 0.949965 0.942488

k-FN2 0.960722 0.939343 0.918239 0.899212 0.900390 0.883906

Table 11: Recommendation Mobility for the MovieLens data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.500213 0.500301 0.500550 0.501447 0.501610 0.500927

E 0.506426 0.507050 0.507755 0.508672 0.507900 0.506094

U 0.500213 0.500301 0.500550 0.501547 0.502418 0.502413

N1 0.502977 0.503113 0.503779 0.503666 0.503718 0.502865

N2 0.506540 0.507904 0.509946 0.510982 0.511352 0.510443

Exp1 0.504142 0.504782 0.505690 0.506239 0.506395 0.505970

Exp2 0.503897 0.504050 0.504620 0.504252 0.504187 0.503901

W1 0.505258 0.506087 0.506106 0.506913 0.507023 0.506032

W2 0.504853 0.505560 0.506578 0.507196 0.507748 0.507004

FN1 0.504855 0.505813 0.505852 0.506967 0.507178 0.506464

FN2 0.502581 0.503967 0.504776 0.504383 0.503989 0.504169

k-FN1 0.500358 0.500527 0.500922 0.502400 0.503749 0.505755

k-FN2 0.502398 0.503137 0.504629 0.508045 0.510106 0.512892

Table 12: Recommendation Mobility for the MovieTweetings data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.503138 0.500375 0.500047 0.496122 0.503089 0.510768

E 0.502513 0.499893 0.497389 0.508719 0.518313 0.530964

U 0.503007 0.500325 0.500149 0.496212 0.503398 0.510768

N1 0.500493 0.500703 0.499784 0.503324 0.515638 0.521355

N2 0.502418 0.500718 0.502725 0.504436 0.512921 0.523414

Exp1 0.503176 0.500469 0.501296 0.503626 0.514547 0.522153

Exp2 0.503116 0.500986 0.501483 0.502894 0.515638 0.521692

W1 0.501999 0.499628 0.499851 0.502857 0.515031 0.522515

W2 0.501866 0.498883 0.499977 0.502175 0.516448 0.522439

FN1 0.502651 0.499398 0.499918 0.503833 0.515208 0.523444

FN2 0.501792 0.499663 0.500852 0.503866 0.514776 0.521769

k-FN1 0.501854 0.497423 0.495348 0.499400 0.508471 0.515355

k-FN2 0.518735 0.521162 0.516566 0.509188 0.509101 0.505164

Table 13: Recommendation Mobility for the Amazon data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.499598 0.499158 0.498078 0.497871 0.496201 0.501670

E 0.499391 0.499462 0.500508 0.497607 0.497620 0.511461

U 0.499523 0.499213 0.498091 0.497861 0.496137 0.501717

N1 0.500288 0.500035 0.499025 0.499275 0.497201 0.502813

N2 0.499946 0.499846 0.499196 0.499269 0.498228 0.502098

Exp1 0.500072 0.499485 0.498665 0.498520 0.497631 0.502634

Exp2 0.500198 0.499759 0.498981 0.498874 0.497672 0.501325

W1 0.500066 0.499459 0.498653 0.499275 0.498053 0.501600

W2 0.499826 0.499219 0.499267 0.499747 0.497762 0.502966

FN1 0.500370 0.499923 0.499164 0.500039 0.497249 0.501974

FN2 0.499829 0.499597 0.498890 0.498975 0.497721 0.502392

k-FN1 0.499323 0.497506 0.496719 0.497643 0.499386 0.506676

k-FN2 0.501157 0.506011 0.506838 0.510855 0.513287 0.517692

D. COMPARISON OF ITEM PREDICTION

Table 14: F1 score for the MovieLens data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.000023 0.000032 0.000061 0.000132 0.000625 0.006718

E 0.000132 0.000274 0.000556 0.001533 0.002368 0.004036

U 0.000023 0.000032 0.000061 0.000118 0.000202 0.001001

N1 0.000341 0.000514 0.001012 0.002398 0.003662 0.006911

N2 0.000136 0.000252 0.000648 0.001512 0.002370 0.003912

Exp1 0.000237 0.000356 0.000758 0.002031 0.003241 0.005759

Exp2 0.000333 0.000487 0.000967 0.002425 0.003392 0.006390

W1 0.000226 0.000435 0.000802 0.001878 0.002978 0.005222

W2 0.000308 0.000509 0.000860 0.001906 0.002926 0.005086

FN1 0.000300 0.000490 0.000983 0.002324 0.003453 0.005949

FN2 0.000381 0.000601 0.001015 0.002260 0.003444 0.006292

k-FN1 0.000023 0.000032 0.000061 0.000118 0.000209 0.000346

k-FN2 0.000002 0.000025 0.000052 0.000159 0.000381 0.000808

Table 15: F1 score for the MovieTweetings data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.001042 0.002537 0.003388 0.003949 0.005483 0.007540

E 0.000950 0.001957 0.003627 0.005932 0.008705 0.011757

U 0.001042 0.002537 0.003415 0.004043 0.005446 0.007438

N1 0.002833 0.003272 0.004715 0.004948 0.006354 0.010392

N2 0.002386 0.002883 0.003609 0.005598 0.006909 0.010377

Exp1 0.002386 0.003534 0.004493 0.005237 0.006966 0.010285

Exp2 0.001938 0.002537 0.004493 0.005621 0.006547 0.010212

W1 0.002833 0.002537 0.004051 0.005439 0.006845 0.010255

W2 0.001042 0.002495 0.003388 0.005247 0.005998 0.009299

FN1 0.001042 0.001498 0.002282 0.004694 0.006390 0.010146

FN2 0.001938 0.002191 0.003609 0.005078 0.006774 0.009549

k-FN1 0.001544 0.002233 0.002788 0.004307 0.006027 0.008070

k-FN2 0.001382 0.001886 0.002214 0.002609 0.002897 0.004044

Table 16: F1 score for the Amazon data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.000152 0.000130 0.000095 0.000838 0.001171 0.001225

E 0.001030 0.001407 0.001127 0.002949 0.002975 0.003488

U 0.000152 0.000130 0.000095 0.000838 0.001221 0.001225

N1 0.000152 0.000657 0.000481 0.000277 0.001512 0.002276

N2 0.000152 0.000130 0.000481 0.001399 0.001866 0.001802

Exp1 0.000152 0.000130 0.000481 0.001047 0.001680 0.001900

Exp2 0.000152 0.000130 0.000095 0.001212 0.001527 0.001684

W1 0.000769 0.000657 0.000481 0.000838 0.001450 0.001959

W2 0.000152 0.000130 0.000095 0.001025 0.001527 0.001967

FN1 0.000152 0.000130 0.000481 0.001399 0.001912 0.002092

FN2 0.000152 0.000130 0.000481 0.000651 0.001527 0.001892

k-FN1 0.000226 0.000192 0.000187 0.000719 0.001460 0.001772

k-FN2 0.000074 0.000188 0.000478 0.000760 0.000749 0.000758

E. COMPARISON OF UTILITY-BASED RANKING

Table 17: normalized Discounted Cumulative Gain for the MovieLens data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.304075 0.296816 0.377174 0.331410 0.446068 0.782338

E 0.869749 0.801486 0.782000 0.787776 0.825025 0.937583

U 0.304075 0.296816 0.377809 0.327922 0.361710 0.712368

N1 0.831997 0.808763 0.807143 0.799080 0.843317 0.939936

N2 0.803426 0.823698 0.801642 0.788407 0.823351 0.937855

Exp1 0.653975 0.721381 0.740922 0.777835 0.815083 0.926142

Exp2 0.751713 0.764668 0.759618 0.766304 0.808081 0.928331

W1 0.766838 0.753325 0.742316 0.803725 0.825046 0.931653

W2 0.840853 0.837526 0.809513 0.810525 0.842339 0.944436

FN1 0.718876 0.758183 0.745903 0.785626 0.822951 0.931357

FN2 0.790887 0.798450 0.771482 0.807938 0.834869 0.940199

k-FN1 0.315889 0.313537 0.413037 0.367578 0.449218 0.708598

k-FN2 0.005941 0.095978 0.136643 0.178816 0.271173 0.574583

Table 18: normalized Discounted Cumulative Gain for the MovieTweetings data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.550549 0.455055 0.539540 0.604974 0.703573 0.867139

E 0.588233 0.683739 0.757816 0.743558 0.788773 0.914791

U 0.550549 0.455055 0.536109 0.617187 0.710376 0.869461

N1 0.629669 0.580871 0.658780 0.674039 0.735630 0.894556

N2 0.819458 0.702065 0.724943 0.736969 0.792015 0.921057

Exp1 0.749127 0.778405 0.769666 0.752475 0.768560 0.920481

Exp2 0.550224 0.667754 0.742592 0.741440 0.788129 0.915420

W1 0.876019 0.743846 0.805453 0.767668 0.804665 0.931699

W2 0.467869 0.578842 0.606639 0.689895 0.731227 0.889291

FN1 0.437036 0.556066 0.556860 0.619271 0.702454 0.871238

FN2 0.881449 0.763428 0.741233 0.764979 0.807412 0.928810

k-FN1 0.811184 0.796170 0.735325 0.692052 0.762447 0.914969

k-FN2 0.428829 0.447308 0.426425 0.447731 0.498487 0.772569

Table 19: normalized Discounted Cumulative Gain for the Amazon data set.

Setting
Recommendation List Size

3 5 10 30 50 100

k-NN 0.068518 0.050614 0.034307 0.138484 0.240079 0.433335

E 0.449127 0.415998 0.300097 0.322464 0.387439 0.682673

U 0.068518 0.050614 0.034307 0.143570 0.255439 0.438872

N1 0.068518 0.171536 0.116270 0.074153 0.220848 0.514214

N2 0.068518 0.050614 0.102098 0.189390 0.328765 0.516811

Exp1 0.068518 0.050614 0.102098 0.157188 0.293581 0.528331

Exp2 0.068518 0.050614 0.034307 0.126381 0.221085 0.458022

W1 0.448612 0.331386 0.224620 0.231668 0.331904 0.589357

W2 0.068518 0.050614 0.034307 0.132985 0.224928 0.496493

FN1 0.068518 0.050614 0.081544 0.176184 0.279528 0.521485

FN2 0.068518 0.050614 0.072370 0.096220 0.229657 0.481677

k-FN1 0.108598 0.080221 0.063438 0.117251 0.248285 0.477642

k-FN2 0.054299 0.067075 0.139260 0.227271 0.275825 0.372995

