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TEMPERATURE-RELATED PERFORMANCE FACTORS FOR 

CHEMICAL DEMOLITION AGENTS  

 

Abstract  

Soundless chemical demotion agents (SCDAs) are percussion-free alternatives to 

blasting for rock, concrete, and masonry. They hold great potential for selective 

demolition of and around historic masonry. Although known to be temperature sensitive, 

to date their performance has not been quantified in ambient environments below 20˚C. 

This paper examines 6 large-scale (0.77-1.0 m3) specimens in moderate, ambient 

temperatures (16.1-19.3˚C). Substantially slower response than that reported by 

manufacturers was documented. Initial cracking required 25+ hours and continued for 

4-8 days. Cracks opened rapidly after Minimum Demolition Time [(MDT) – cumulative 

cracking around the perimeter reaching ~25 mm (1 in.)], which was at 42 hr and 70 hr, 

respectively in 16.8 MPa and 33.1 MPa specimens. Post-MDT, crack-width opening 

velocities were 0.35-0.96 mm/hr, approximately 1/3rd to 2/3rds of pre-MDT velocities. A 

0.5°C ambient temperature drop delayed MDT by 6.5 hr amongst specimens of the 

same size and strength. Generally, MDT appeared to correlate with the material strength 

(irrespective of ambient temperature or specimen size), while TFC was more influenced 

by ambient temperature. Finally, SCDA reapplication proved effective for incompletely 

cracked specimens.  

 

Keywords: SCDAs, expansive cements, concrete, cracking, masonry conservation, 

demolition. 
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Notation  

TFC     = Time to First Crack 

TFMC = Time to First Major Crack 

MDT   = Minimum Demolition Time 

L         = distance between two holes 

k         = spacing ratio      

D        = hole diameter 

di        = inner diameter of steel cylinder 

do       = outer diameter of steel cylinder 

h        = height of steel cylinder 

wcmax  = cumulative maximum crack width 

wsmax  = single maximum crack width 

 lm         = maximum length of the minor cracks on the top face 

vw1       = velocity of cumulative crack width opening in Stage 1 

vw2      = velocity of cumulative crack width opening in Stage 2 

wmax   = final maximum cumulative crack width 

ve-all    = overall elongation velocity 

ve-p     = elongation velocity of crack from the hole to the periphery 

ve-b    = elongation velocity of crack from the periphery to the block bottom 

vr1     = velocity of cumulative crack width opening in the first 4 hr in retesting 

vr2     = velocity of cumulative crack width opening after 4 hr in retesting 
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1. Introduction   

Expansive cement properties were first identified by Cadlot and Michaelis in the 1890s 

when investigating ettringite in cement (Candlot, 1890, Candlot, 1906, Michaelis, 1892). 

Such materials were not, however, marketed until the early 1970s for concrete and rock 

removal (Gani, 1997). Although not yet used for selective removal of masonry, there is 

no reason that they cannot be used in that application as well, as the cracking is highly 

limited and very controllable. 

 

Much of the research to date, however, for these products [typically referred to as 

Soundless Chemical Demolition Agents (SCDAs)] has focused on their chemistry 

(Cohen, 1983a, Cohen, 1983b, Cohen et al., 1991, Cohen and Richards, 1982, Neville, 

1981), rather than on their mechanical behavior and even less of it has been in actual 

production-scale samples (irrespective of the surrounding material – rock, concrete, 

masonry). From an engineering perspective, six main variables have been identified that 

influence SCDA performance: strength of the surrounding material to be demolished; 

hole diameter; distance between holes; water/SCDA ratio; mix water temperature, and 

ambient temperature.  

 

The depth and orientation of the holes also play key roles (Huynh and Laefer, 2009 ). 

Hole depths of 70-90% of the sample height have been proposed depending upon the 

material to be demolished and the SCDA brand (Huynh and Laefer, 2009 , Dexpan, 

2016, Bristar, 2016). Significant research has been done on hole diameter and spacing. 

For example, Gómez and Mura (1984) proposed the correlation L = kD, where L is the 

distance between two holes in the sample, D the hole diameter, and k a spacing ratio 

dependent upon the material to be demolished. They also proposed 5 < k < 10 for 
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prestressed concrete, 12 < k < 18 for soft rock and concrete, 8 < k < 12 for medium hard 

rock, and k < 10 for hard rock. However, Gambatese (2003) proposed a dissimilar, and 

generally more conservative, spacing of 4 < k <10; possibly from the lack of explicit 

material scaling considerations applied to the small-scale experiments from which the 

rules were derived. Dowding and Labuz (1982) studied an SCDA in thick-walled, steel 

cylinders and in rock specimens in the laboratory and the field. They concluded that the 

expansive pressure was independent of the hole diameter. Conversely, however, they 

found that hole size strongly impacted demolition time. For example, intact dolomite 

slabs (0.2-1.0 m3, of a 165 MPa compressive strength) with a 38 mm hole cracked after 

18 hr, while the same material with a 12.7 mm hole required 42 hr. Additionally, after 

90 hr, the maximum single crack width in the 38 mm hole sample was approximately 

40% of the hole diameter, while that of the 12.7 mm hole was just 3% of the hole’s 

diameter.  

 

The maximum obtainable pressure is known to be influenced by the water content, as 

investigated by Hinze and Brown (1994) who showed an inverse relationship between 

an SCDA’s slurry’s water content and the maximum expansive pressure. An 

approximately 33% decrease in maximum expansive pressure was recorded at 24 hr 

when the water content increased from 30% to 34% (both within the manufacturer’s 

recommended range). In a similar study, Hinze and Nelson (1996) reduced the slurry’s 

water content to 27.7% (3% lower than manufacturer’s suggestion), which increased the 

maximum 24 hr expansive pressure by 19.8% at 35˚C. Moreover, when they replaced 

half of the SCDA with sand, at an ambient temperature of 35˚C and water content of 

31%, the maximum, expansive pressure at 24 hr was reduced by only 14% compared to 

the slurry with no sand.  
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Temperature is also known to have a significant influence on the maximum obtainable 

expansive pressure. In a study by Dowding and Labuz (1982), when the ambient 

temperature was decreased by 10˚C, the expansive pressure decreased by about 30% at 

24 hr and by about 10% at 48 hr for specimens in thick-walled, steel cylinders [inner 

diameter (di) 12-40 mm, outer diameter (do) 102-172 mm, height (h) 100 mm]. They 

also reported increased expansive pressures proportional to the mix water temperature. 

In a similar study, (Hinze and Brown, 1994) also used metal cylinders (di = 25-50 mm, 

do = 57-72 mm, h = 100 mm). At ambient temperatures of 20-45˚C, the 24 hr expansive 

pressure generated at 20˚C was approximately half of that produced at 30˚C and one-

quarter of that generated at 45˚C. More recently, Laefer et al. (2010) conducted an 

investigation on 33 concrete blocks, each 0.77 m3 and found that the time to first crack 

(TFC) decreased by 13 hr when the ambient temperature was increased from 24˚C to 

38˚C, while minimum demolition time (MDT) was reduced by about 4 hr. Similarly, a 

22.8˚C increase in the mix water temperature (from the 15˚C as instructed by 

manufacturer to 37.8˚C) reduced the TFC and MDT by about 6 hr and 3 hr, respectively, 

for 0.77 m3 samples of 42.9 MPa compressive strength.   

 

Cold temperatures would seem to have the reverse effect. A single field experiment on 

a reinforced concrete pier at 13˚C required 96 hr for sufficient post-chemical cracking 

for removal (Dowding and Labuz, 1982). Natanzi et al. (2016a) investigated heat and 

expansive pressure developed through the hydration process under cool and moderate 

ambient temperatures (2-19˚C) in thin-walled, steel cylinders. In that study, the pressure 

varied by 20 MPa over the 17˚C. They also reported hydration heats of as much as 

triple the ambient temperature and volumetric expansion 1.1-1.4 times that of the 
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SCDA’s original material volume. While these studies clearly indicate certain 

performance trends, the outcomes cannot be directly correlated to industrial usage, and 

to date, there has been no study of SCDA performance in large-scale concrete samples 

at temperatures below 20˚C. Given that most industrial environments are in that 

temperature range, such information should be highly beneficial to the economical and 

efficient application of SCDAs in the field. As such, this is the topic of this paper. 

 

2. Experimental investigation 

2.1 Sample and experimental conditions   

The study presented herein investigated six large-scale, unreinforced concrete blocks 

involving two different material strengths and two distinct ambient temperatures. Batch 

A included 3 blocks (each 1 m3) and Batch B 3 blocks (each 0.77 m3). Instead of 

drilling into the material to insert the SCDA slurry, each block had a vertical hole cast 

into its centre to avoid micro-cracking prior to the SCDA’s introduction (Fig.1). In this 

study, a single hole and the ratio k ~ 12 was selected, with L = (457.2 mm and 500 mm) 

from the centre to the boundaries. A hole diameter of 40 mm was employed and located 

at a depth of 70% of the block. Block size and geometry were chosen to minimize 

scaling and boundary condition problems; the samples can be considered as 

representative of individual footings or boulders (Laefer et al., 2010). Batch A 

(compressive strength of 33.1 MPa) was tested at an average temperature of 19.0˚C, 

while Batch B (16.8 MPa) was tested at a mean temperature of 16.4˚C.  

 

Experiments were conducted with a commercially available SCDA (DexpanTM Type II, 

Table 1). The manufacturer’s instructions were followed with respect to the 

water/chemical ratio (30%), mixing water temperature (15˚C), and time to pour the 
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SCDA slurry into the boreholes after mixing with water (10-15 minutes) (Dexpan, 

2016). The concrete was comprised of sand, cement, and water (Table 2) to avoid 

heterogeneity within the specimens.  

 

2.2 Data measurement 

To monitor cracking and displacement, visual grids were overlaid all surfaces 100 mm 

(Batch A) and 102 mm (Batch B) [Figs.1-2]. Crack widths were recorded with 25.4 mm 

dial gauges (with mechanical rulers for redundancy) at 4 levels along each specimen’s 

height (Fig.1). Vernier callipers readings were taken along the crack lengths, at the 

intersection of the gridlines and the crack lines across each specimen (Fig.2). Crack 

lengths were also marked on each block during testing to record their temporal 

progression. Temperatures were recorded every 15-30 min., with 4 thermocouple cables 

cast into each concrete block, 2 cast within the SCDA, and 1 left on top of each block.   

 

2.3 Retesting 

At the end of testing, two of the six blocks remained incompletely cracked. This raised 

the question of whether reapplication of SCDA would induce further cracking. To test 

this, the original, solidified SCDA was vacuumed out and new SCDA slurry was 

introduced. A tube slightly smaller than the diameter of the hole in the original test was 

wrapped with a ~1 mm thick plastic, inserted into the hole of each of the two 

incompletely, cracked blocks. The tube was then withdrawn, leaving the plastic as a 

lining for the hole to prevent SCDA leakage through the original cracks. This procedure 

ensured that the SCDA quantity was consistent with the original test. SCDA slurry was 

reintroduced using the original procedure. Cracks, displacements, and temperatures 

were similarly recorded over the subsequent days. 
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One of the main challenges in benchmarking SCDA products is the absence of a well-

established set of quantifiable parameters with which to discuss performance. Laefer et 

al. (2010) proposed three criteria to determine the demolition potential of SCDAs: 

1. Time to First Crack (TFC) – the time after introduction of an SCDA when the first 

easily detectible crack appears in the surrounding material (as opposed to within 

the SCDA itself). 

2. Cumulative crack width is the maximum summation of the widths of all cracks 

around the perimeter of the block of material to be removed.   

3.  Minimum Demolition Time (MDT) – time for the cumulative crack width around 

the perimeter of the sample to reach at least 25.4 mm (to facilitate mechanical 

extraction of the cracked material of an industrial sized material of 0.77-1.00 m3). 

Although this may be the most significant parameter for demolition, the numeric 

value on which to base the MDT may vary depending on specific circumstances 

(e.g. site conditions, access, and material needing demolition); work has yet to be 

done to test the viability of a single MDT value for multiple materials and various 

geometries. 

 
The objective of this research was to determine correlations between time and 

demolition parameters in unreinforced concrete (or soft rock) when using a commercial 

SCDA in cool environments and to begin establishing parameters that could be 

incorporated into a lab-scale standard for future benchmarking. The current 

experimental scale was intended to reflect fieldwork. For that, crack formation and 

propagation were compared for different material strengths and ambient temperatures. 

Additionally, temperature changes within the SCDA slurry were considered.   
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3. Experimental results and discussion 

Results including ambient temperature, TFC, and MDT for each block are presented in 

Table 3. Crack propagation rates (width and length) were also investigated.   

 

3.1 Crack width versus time 

Despite the manufacturer’s guidelines predicting cracking within 0.75-1.00 hr after 

SCDA introduction, all 6 blocks (0.77-1.00 m3, 16.8-33.1 MPa) tested at 16.1-19.3˚C 

required at least 24 hr before any visible surface cracking occurred. Batch A (1.00 m3, 

strength 33.1 MPa) required more than 25 hr to reach TFC (Table 3). Cracking 

continued for 5 days for Blocks 1 and 2 and nearly 8 days for Block 3, something 

heretofore not reported in the literature. Notably, in Batch B TFC occurred about 3.5 hr 

later (at 29 hr), even though the specimens were smaller (only 0.77 m3 vs 1.00 m3) and 

weaker (only 16.8 MPa vs 33.1 MPa). This can be explained by the lower ambient 

temperature in Batch B (see Section Influence of temperature). Conversely, MDT took 

more time in the larger, stronger Batch A blocks (Table 3). MDT was largely 

proportional to material strength. Batch B blocks were only about half as strong as 

Batch A and had an average MDT of approximately 60% of Batch A’s (Table 3). So, 

MDT appeared to correlate with the material strength (irrespective of ambient 

temperature or specimen size), while TFC was more influenced by ambient temperature 

(25.5 hr at 19˚C and 29.0 hr at 16.4˚C). MDT was reached within 24 hr after TFC in 

Batch B but required nearly 48 hr for Batch A (40.7-49.4 hr, Table 4). 

 

Figures 3 and 4 show cumulative crack widths measured by vernier callipers across the 

top face of the block and at three levels on the sides (high, middle, and low). In Blocks 

1-3 (Batch A), cracking spread quickly after initiation and opened quite uniformly 
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throughout the block height. In contrast, in Blocks 4-6 (Batch B) cracks widened more 

in the upper regions, and never developed in the lower portions to the same extent (see 

Fig. 3 vs Fig. 4).  

 

At 36 hr after SCDA introduction, cumulative crack width on the perimeter of Blocks 4 

and 5 was approximately 16% of the hole diameter (D = 40 mm), and about 9% in 

Block 6 (Table 5). However, after 48 hr, cumulative crack width was approximately 

equal to the hole diameter in Blocks 4 and 5 and about 74% of that in Block 6 (Table 5). 

The Batch A blocks (1-3) only achieved cumulative crack widths 15-39% of the hole 

diameter at 60 hr (Table 5), at which time all Batch B blocks had extended to 125% of 

the hole diameter. At the end of demolition (85-186 hr), cumulative crack width on the 

top face of the 6 blocks was similar, av. 161% of the hole’s diameter (Table 5). So 

irrespective of ambient temperature, concrete strength, sample size and cracking 

characteristics, cumulative maximum crack widths (wcmax) were ultimately nearly 

indistinguishable. The single maximum crack width at the end of testing (wsmax) was 

less consistent between blocks, and those of Batch B were only 73% of those of Batch 

A (83.8% vs 114.4%).   

 

Cracks on the top face were either Y-shaped or bisected. A typical major crack (largest 

crack branch) shown for Block 3 is plotted in Fig.5, along with the maximum 

cumulative crack width. Block 3 cracks are shown in Fig.2, with their widths displayed 

in Fig.6. In Blocks 1-4, there were three major cracks (Y-shaped) across the specimen 

tops but only two major cracks (bisected) emerged in Blocks 5 and 6. This observation 

is similar to a previous study (Laefer et al., 2010), where 33 concrete blocks were tested 
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under warmer temperatures (average 22˚C) with a different SCDA. In that study, no 

definitive reason was ascertained as to crack patterning.   

 

In Fig.7, at MDT, the average maximum single crack width in Batch B was ~60% of 

the cumulative crack width at the samples’ perimeters. In the stronger Batch A blocks, 

tested at the higher ambient temperature (19˚C vs 16.4˚C), this ratio was 80-90%. 

Cumulative crack width distribution in the lower strength Batch B blocks was more 

uniform than that in the higher strength concrete blocks of Batch A. These phenomena 

can be explained based on energy dissipation. Batch A was approximately twice as 

strong as Batch B (Table 2) so more energy was needed to create the initial crack in 

each Batch A block. After the initial crack occurred, it was easier for a crack in Batch A 

to widen rather than to create a new crack. Consequently, the maximum single crack 

width in Batch A dominated the cumulative crack width measurement. Inversely, in the 

weaker Batch B blocks’ energy generated by SCDA could break a new crack (3rd 

branch), as well as expand existing ones.  

 

3.2 Crack propagation 

Here, specific characteristics of crack propagation are discussed, as represented by 

crack length on the unfolded planes (Fig.2). Initially, micro-cracks occurred around the 

holes. Some subsequently extended to the specimens’ perimeters and down their height. 

These were considered major cracks. Those that did not progress were labeled as minor 

cracks. In Blocks 2 and 4, all cracks became major ones. The other blocks developed 

both major and minor cracks.  
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Since minor cracks are insufficiently large for demolition, it is necessary to evaluate 

when a minor crack becomes a major one. To assist in this, the maximum length of the 

minor cracks on the top face will be designated as lm. A crack is only major, if it 

propagates further than lm (i.e. out of the dashed circle in Fig. 2). Herein, the time at 

which a crack extends beyond lm is termed Time to First Major Crack (TFMC). The 

original distance between the hole edge to the periphery was approximately 437 mm for 

Batch B and 480 mm for Batch A and to the specimen bottom was 1,352 mm for Batch 

B and 1,480 mm for Batch A. Table 6 shows the weaker Batch B blocks tested under 

colder temperatures achieved a major crack at lm > 7D, while the larger, stronger Batch 

A blocks tested under warmer conditions required a significantly greater distance lm > 

12D. For Batch B, average TFMC (29.4 hr) was ~0.4 hr after TFC (29.0 hr) and ranged 

between 25.5 hr and 46.4 hr in Batch A (Table 3). In other words, TFMC occurred after 

TFC by 13.8 hr and 20.8 hr in Blocks 3 and 1, respectively.  

 

The single largest crack width in each block is illustrated as a percentage of the MDT 

(Fig.7), and progression over time is shown in Fig.8. For Batch B blocks, once cracking 

began, cracks rapidly reached the top face peripheries – about 1 hr (approximately 30 hr 

after SCDA introduction) for Blocks 4 and 5 and 2.8 hr (31.8 hr after SCDA 

introduction) for Block 6. However, the larger, stronger Batch A blocks required nearly 

2 days for initial cracking to reach the block edges (Table 3). Times for cumulative 

cracks to propagate from the hole to the bottom of the sample were distinctive. Blocks 4 

and 5 needed only 3.5 hr to crack completely through, once cracking began, while 

Block 6 needed 8 hr (Table 3). In contrast, Batch A blocks took 47.5-75.1 hr after 

SCDA introduction for cracks to reach the bottom. Once cracking began, it took ~ 22-

24 hr for cracks in Blocks 1 and 3 to reach the bottom, and nearly 50 hr in Block 2. No 



 13 
 

specific reason was apparent for the differences in the two batches or amongst 

individual blocks. 

  

3.3 Crack width opening rates 

Two distinct cracking stages were identified during demolition. When cumulative crack 

widths were less than 25.4 mm, opening rates progressed rapidly and linearly with time 

(Stage 1). Beyond this, cumulative crack widths opened less rapidly and less linearly 

(Stage 2) [Figs. 3-5]. These velocities were designated as vw1 and vw2, respectively. 

Since cumulative crack widths in Stage 1 were linear with time, vw1 was computed by 

dividing crack width by time. After reaching MDT, the relationship looked non-linear 

but crack opening occurred over very small time increments so an average vw2 was 

obtained by integrating across each short time step.  

 

Fig.9 shows vw1 was 1.45-2.33 mm/hr in Batch B but only 0.51-0.62 mm/hr in Batch A. 

Stage 2 velocities for all blocks were generally slower (vw2 ranged 0.73-0.96 mm/hr in 

Batch B and 0.35-0.73 mm/hr in Batch A). In Batch A, opening velocities in the two 

stages did not differ greatly, unlike those in Batch B where they were highly distinctive. 

In Batch B, the ratio of crack opening velocity vw2/vw1 was 0.32 and 0.39 for Blocks 4 

and 5, whilst 0.66 for Block 6 (Table 4). In Batch A the ratios were 1.13 and 1.28 for 

Blocks 1 and 2, and 0.68 for Block 3. No correlations were apparent for the velocity 

ratios with ambient temperature, block size, or strength. The final maximum cumulative 

crack widths wmax were similar for all blocks (62-66 mm), despite significant 

differences in cracking velocities and overall times (Table 4). 
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Crack widths varied from a hole’s edge to the bottom of its block. The widths in some 

major branches were smaller around the hole and wider at the peripheries (Fig.10a). 

Inversely, some branches were largest at the hole and decreased gradually to the blocks’ 

peripheries (Fig.10b). When the critical tensile strength of concrete was overcome, 

cracks formed around the hole and widened. The former case can be explained by 

thermal stress theory in a thick cylinder (Timoshenko and Goodier, 1970). During 

SCDA hydration, a large amount of heat was generated surrounding the hole. Material 

temperature disparities between the hole’s circumference and the block’s edges cause 

tensile stresses close to the edges and compressive stresses near the hole (Timoshenko 

and Goodier, 1970). Also, there was some sliding between crack surfaces and rotation 

of pieces around the block’s center, thereby, making crack widths on block edges wider 

at selective locations.   

 

3.4 Influence of temperature 

Temperature has been influential in similar studies (Hinze and Brown, 1994, Laefer et 

al., 2010), but the relative impacts of temperature of the SCDA, the material to be 

demolished, and the surrounding air has not been considered. Throughout testing, the 

ambient, SCDA, and concrete temperatures remained distinctive (see Fig.11 for typical 

readings). Ambient temperature at Blocks 3 and 6 were on average 0.5˚C colder than 

others in their batch (Table 3) due to their position in the lab. Small differences in 

ambient temperature did not strongly influence the TFC, but did delay MDT by nearly 5 

hr in Batch A and more than 6 hr in the smaller and weaker Batch B samples (Table 3). 

The two effects on final crack widths are shown in Fig.3 versus Fig.4. 
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Additionally, when the ambient temperature was reduced by as little as 0.5˚C, the initial 

crack width velocity vw1 decreased an average of 14% in Batch A (strength 33.1 MPa) 

and 37% in Batch B (material strength 16.8 MPa). In the high strength material (Batch 

A), Block 3’s vw1 was 0.085 mm/hr slower than Blocks 1 and 2 (0.51 mm/hr) versus an 

average of 0.60 mm/hr, respectively (Table 4). For Batch B, the decrease of 0.5˚C in the 

ambient temperature resulted in a significant decrease 0.85 mm/hr vw1 compared to 

Blocks 4 and 5 (1.45 mm/hr vs an average of 2.3 mm/hr). Notably, as the maximum 

crack widths at the end of the testing were largely indistinguishable (Table 4), the 

overall, final, crack width rates can be considered equivalent, once cracking initiated.  

 

Ambient temperature also impacted crack length growth velocities. Although Batch A 

blocks were warmer, their cracks required at least twice as long to reach the specimen 

bottom than the Batch B blocks (Fig.8). The overall elongation velocities (ve-all) for 

Batch A were 29.8-67.6 mm/hr but 169.0-386.3 mm/hr for Batch B, with significant 

speed differences from the hole to the periphery (ve-p) and then from the periphery to the 

block bottom (ve-b) [Table 4]. This warrants further investigation with respect to 

variations in ambient temperature and material strength.     

 

3.5 SCDA re-application  

Two SCDA temperature peaks occurred (Fig.11; Table 7). The first peak in Batch A 

blocks was within 13-16.5 hr, while it took 18-22 hr in the colder Batch B environment. 

Conversely, in Batch B, the second peak appeared after nearly 2 days (42-47 hr), while 

those in Batch A required additional time (57-66 hr). In both batches, the first peak 

occurred before TFC and is likely to be the hydration point. In the warmer Batch A 

conditions (19˚C), the second peak occurred before MDT (57-66 hr vs 70.4 hr) but 
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generally after MDT (42-47 hr compared to 42.2 hr) for Batch B. In all cases, the 

SCDA temperature remained very low (17.4-19.4˚C). Heat generated by the SCDA was 

probably diffused by the surrounding concrete, so the “gun phenomenon” (Soeda et al., 

1994) did not happen.  

 

The probable heat transfer was further confirmed when SCDA was re-introduced into 

Blocks 1 and 3 to see if further cracking could be induced. In that case, the original 

holes were lined with a double plastic layer ~1 mm. Peak temperatures now rose to 

80˚C (Fig. 12), probably due to the insulating effect of the plastic. The potentially 

greater pressure developed under these higher SCDA temperatures were released 

through the existing cracks so no direct comparisons can be made. Although there may 

have been some impact of the possibly higher water content, because of the absence of 

absorption opportunities through the concrete, prior testing would indicate that any 

change caused by water content loss would increase the hydration temperature (Hinze 

and Brown, 1994, Hinze and Nelson, 1996) which was the opposite of what was seen.   

 

During the re-testing of Blocks 1 and 3, the average ambient temperature was slightly 

higher than in the initial test (20.8˚C vs 19.0˚C). Notably, no new cracks formed during 

the re-testing. Instead, the existing major cracks from the initial test continued to open, 

as was predicted. At approximately 36 hr after SCDA reapplication, cumulative crack 

widths in both blocks opened 4-10 mm more than those recorded at the end of initial 

testing (Table 8 and Fig.13). After reapplication, the maximum cumulative crack width 

on the top face opened significantly (+10 mm), while individual cracks opened only 

another +1-2 mm each after 36 hr, except for each block’s single, widest crack, which 

opened approximately +10.5 mm (Block 3) and +7 mm (Block 1). This proves the value 
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of SCDA reapplication for rectifying incomplete demolitions. Overall, once the 

cracking began again (2 hours after SCDA reapplication), there was significant 

widening within the first few hours (4 hr for Block 1 and 3 hr for Block 3). The velocity 

after reapplication (vr1) in Block 1 was 1.6 mm/hr, and 2.48 mm/hr for Block 3 (at least 

twice as fast as any of the initial crack widening velocities). After approximately 4 hr of 

cracking, the additional cumulative crack width opening rate (vr2) was notably slower -

~0.03 mm/hr in Block 1 and 0.04 mm/hr in Block 3 (Fig.13). Subsequent to this point, 

crack widths are likely to have reduced confinement beyond the expansion capacity of 

the SCDA. 

 

3.6 Discussion 

In the present study, cracks were not observed until at least 25.5 hr after SCDA 

introduction, an order of magnitude longer than the 0.75-1.00 hr predicted by the 

manufacturers (Dexpan, 2016). Additionally, samples continued to crack for several 

days, albeit at a slower rate – something not previously reported. Manufacturers’ data 

appear to have been collected under vastly different conditions than the testing herein, 

but as no specifics were available as to sample size, sample strength, and ambient 

temperature, further comparison is not possible. 

 

The experiments herein showed that while TFC was influenced strongly by ambient 

temperature, the arguably more critical MDT was more controlled by material strength, 

with stronger materials requiring more time. This is consistent with prior large-scale 

tests (Laefer et al., 2010) at higher ambient temperatures using a different SCDA 

(Fig.14), although the Dexpan seems more temperature sensitive than the Bristar. 

Further refinement based on ambient temperature, is likely as a half a degree reduction 
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extended the MDT by 6.5 hr. Lower temperatures also retarded initial width 

development, although final values were not definitively impacted.  

 

Material strength also inhibited cumulative crack width growth as a function of time. In 

the strong material (Batch A), cumulative crack width was ~15-39% of the hole’s 

diameter at 60 hr of testing, but more than 100% for the weaker (Batch B) blocks. At 

the end of demolition, the maximum crack width was approximately 161% of the 

borehole diameter in both Batches A and B. Additionally, maximum single crack width 

at the end of testing in the stronger material was 114% of the original hole diameter, 

while only 83.8% in the weaker one. In contrast, Dowding and Labuz (1982) reported a 

maximum crack width of only ~40% of the 38 mm boreholes after 90 hr in slabs (0.2-

1.0 m3) of the much stronger dolomite (165 MPa). At 90 hr, the maximum crack width 

in Batch A was only 90.4-115.3% of the borehole diameter, and cracking persisted for 

up to 186 hr.  

 

Independent measuring of ambient temperature from that of the SCDA showed a 

profound tendency for heat transfer from the SCDA into the surrounding concrete. 

When the hole was lined with plastic, temperatures of nearly an order of magnitude 

higher were achieved. As no published studies to date have considered this 

phenomenon, the direct applicability is called into question of both manufacturers’ and 

independent results, which discuss pressure as a function of ambient temperature 

(Dexpan, 2016, Dowding and Labuz, 1982, Hinze and Brown, 1994, Laefer et al., 2010).  

 

Furthermore, SCDA temperature peaked twice during the testing. The first was within 

13-22 hr. The second appeared about 24 hr later in the 16.8 MPa concrete and 48 hr in 
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the 33.1 MPa concrete. Cracking always occurred prior to the second peak, but further 

extrapolation is not possible from the limited dataset. While obviously linked, the exact 

relationship between pressure development and hydration remains unknown. 

 

4. Conclusions and future work  

The current study examined six, relatively large-scale, concrete blocks under moderate 

ambient temperatures. Initial cracking required more than 25 hr after SCDA 

introduction, and cracking continued for up to 8 days. The low SCDA temperatures 

achieved indicate significant thermal transfer from the SCDA to the concrete, which 

may reduce maximum pressures and discount available usage guidelines provided by 

SCDA manufacturers. Cool ambient temperatures vastly delayed the time to first crack 

and notably extended the cracking duration. Thus, pre-lining the holes for better SCDA 

heat retention is ripe for consideration. SCDA reapplication was effective hole 

widening and required an order of magnitude less time than the original procedure for 

cracking onset. 

 

The relative influence of the competing factors of specimen size, strength, and ambient 

temperature is still not fully known, although several new terms are introduced to 

further enable performance comparisons between specimens and testing locales: crack 

widening velocities, an overall crack elongation velocity, minor versus major cracks, 

and time to first major crack. These will become the basis of reporting future 

experimental and numerical work.  

 

Furthermore, while work to date has largely focused on in situ rock and concrete blocks, 

some highly preliminary work has just been published on a series of four, single-wythe, 
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concrete masonry unit wallettes (66.5 cm* 22.5 cm) in a cement-based mortar [Natanzi 

et al. 2016b]. That work demonstrated the potential of cracking masonry walls by 

inserting SCDA through holes drilled through the mortar joints. The full feasibility of 

doing this, however, is far from established given (1) the largely uncontrolled cracking 

mechanism, (2) the fact that the mortar joints in the wallette were significantly larger 

than typically seen in the field, and (3) the single wythe nature of the wall. The efficacy 

of the procedure, however, has now been established and creates a clear pathway for 

more extensive work in the largely unexplored potential use of SCDAs. The approach 

may have its greatest impact in selective unit removal.
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Table 1: Chemical specification 

Characteristic Description of DEXPANTM Type II 
Recommended temperature range: ℃  10-25  
Recommended water content: litres 1.5 
Water content selected: litres 1.5 
Water temperature: ℃  15  
Chemical components Silicon dioxide (SiO2 – 5.1%), 

aluminium oxide (Al2O3 – 1.6%) 
Ferric oxide (Fe2O3 - 2.5%), calcium 
oxide (CaO – 89.6%) 

                  Source: (Dexpan, 2016). Total 98.8% by weight 
 

Table 2: Mix design for concrete blocks 

Batch Target 
concrete 
mix 

Water/ 
cement 

Sand/ 
cement 

Plasticizer 
Sika 
plastiment 
186 (l/m3) 

28 day 
compressive 
strength,  
MPa 

A (Blocks 1-3) Medium 0.3 5/1 0.8 33.1  
B (Blocks 4-6) Low 0.3 5/1 0.8 16.8  

 

Table 3: Synthetic data of testing results 

Block 
number 

T 
(℃) 

TFC  
(hr) 

TFMC 
(hr) 

Time to 
specimen 
perimeter 

(hr) 

Time to 
specimen 
bottom  

(hr) 

MDT  
(hr) 

Crack  
Shape 

∆T*  
(℃) 

∆MDT* 
(hr) 

1 19.3 25.6 46.4 46.5 47.5 66.3 Y -0.6 8.6 
2 19.0 25.5 25.5 52.3 75.1 70.0 Y -0.3 4.9 
3 18.7 25.5 39.3 40.7 49.2 74.9 Y   
Mean 19.0 25.5 37.1 46.5 57.3 70.4 - -0.5 6.8 
4 16.6 29.0 29.0 29.6 32.5 40.2 Y -0.5 6.3 
5 16.5 29.0 29.0 30.0 32.5 39.9 ½ -0.5 6.6 
6 16.1 29.0 30.3 31.8 37.0 46.5 ½   
Mean 16.4 29.0 29.4 30.5 34.0 42.2 - -0.5 6.5 

                             * Block 3 minus Blocks 1 & 2, and Block 6 minus Blocks 4 & 5 

 
Table 4: Velocities of cumulative crack width opening and crack length growth 

Block 
num. 

tmax  
(hr) 

wcmax 
(mm) 

wcmax-25.4 
(mm) 

MDT-TFC 
(hr) 

tmax-MDT 
(hr) 

vw1  
(mm/hr) 

1 120.4 63.53 38.13 40.7 54.2 0.62 
2 124.0 64.82 39.42 44.5 54.0 0.57 
3 185.5 64.21 38.81 49.4 110.6 0.51 
Mean 143.3 64.19 38.79 44.8 72.9 0.57 
4 94.0 64.94 39.54 11.2 53.8 2.27 
5 85.0 66.05 40.65 10.9 45.1 2.33 
6 85.0 62.48 37.08 17.5 38.5 1.45 
Mean 88.0 64.49 39.09 13.2 45.8 2.02 
Block 
num. 

vw2  
(mm/hr) 

vw2/vw1 ve-p 
(mm/hr) 

ve-b 
(mm/hr) 

ve-all 
(mm/hr) 

1 0.70 1.13 23.0 1000.0 67.6 
2 0.73 1.28 17.9 43.9 29.8 
3 0.35 0.68 31.6 117.6 62.4 
Mean 0.59 1.03 24.2 387.2 53.3 
4 0.73 0.32 728.3 315.4 386.3 
5 0.90 0.39 437.0 365.8 386.3 
6 0.96 0.66 156.1 175.9 169.0 
Mean 0.87 0.46 440.5 285.7 313.9 
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Table 5: Relationship between crack widths and hole diameter 

Block  w36hr* 
(mm) 

%D w48hr  
(mm) 

%D w60hr  
(mm) 

%D wcmax 

(mm) 
%D wsMDT 

(mm) 
%D wsmax 

(mm) 
%D 

1 - - - - 15.63 39.0 63.53 158.8 23.31 58.3 46.85 117.1 
2 - - - - 7.92 19.8 64.82 162.1 20.07 50.2 38.67 96.7 
3 - - - - 5.90 14.7 64.21 160.5 23.24 58.1 51.77 129.4 
Mean - - - - 9.82 24.5 64.19 160.5 22.21 55.5 45.76 114.4 
4 6.55 16.3 42.93 107.3 55.91 139. 8 64.94 162.4 14.71 36.8 26.99 67.5 
5 6.25 15.6 40.63 101.5 55.42 138.6 66.05 165.1 14.12 35.3 37.63 94.1 
6 3.66 9.2 29.69 74.2 50.14 125.4 62.48 156.2 16.47 41.2 35.88 89.7 
Mean 5.49 13.7 37.75 94.4 53.82 134.6 64.49 161.2 15.10 37.8 33.50 83.8 

          * Cumulative/single crack width at specified time and end of the demolition process.   
          - : not measured items 

 

Table 6: Length of minor cracks 

Block 
number 

lm  
mm 

D  
mm 

n=lm/D 

1 460  40 11.5 
2 N/A 40  N/A 
3 475 40  11.9 
4 N/A 40  N/A 
5 304.8 40  7.1 
6 304.8  40  7.1 

                * N/A = not available items 

 

Table 7: SCDA hydration time 

Block  Peak 1 Peak 2 Peak 2 - Peak 1 
 Time 

(hr) 
T  

(°C) 
Time 
(hr) 

T  
(°C) 

∆Time 
(hr) 

∆T  
(°C) 

1 13.0 19.4 57.5 19.4 44.5 0.0 
2 13.0 19.4 57.0 19.4 44.0 0.0 
3 16.5 19.0 66.0 19.0 49.5 0.0 
4 22.0 18.2 43.0 18.6 21.0 0.4 
5 18.0 17.7 42.0 18.1 24.0 0.4 
6 18.0 17.4 47.0 17.5 29.0 0.1 

 

Table 8: Cumulative crack width at SCDA reapplication 

Block  Position w0hr w12.5hr w13.17hr w36.17hr w36.5hr 
 Top 49.10  57.52  - - 58.11  
 High 58.33  61.50 - - 62.00  
1 Middle 56.54  59.00 - - 61.00 
 Low 58.11 60.10 - - 62.68  
 S-max* 47.00  49.00  - - 49.00  
 S-min* 12.39 13.52 - - 14.11  
 Top 53.39 - 62.25  63.44  - 
 High 50.00  - 60.00  60.50  - 
3 Middle 46.59  - 58.20  60.34  - 
 Low 45.00  - 52.00 52.50 - 
 S-max* 50.00  - 60.00 60.50  - 
 S-min* 5.82  - 6.44  6.72  - 

                           * S-max: Maximum single crack width; S-min: Minimum single crack width. 
                            Unit of data (crack width) is mm. 

- : not measured items 
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Fig.1 Typical specimen configuration – Batch B Block 4. 

 

Fig.2 Sketch of the final crack propagation – Block 1 (Typical of Batch A). 

 

Fig.3 Cumulative crack width versus time – Block 1 (Typical of Batch A)  
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Fig.4 Cumulative crack width versus time – Block 4 (Typical of Batch B) 

 

 

Fig.5 Crack width versus time – Batch A Block 3  
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Fig.7 Comparison between maximum single crack width and cumulative crack 

width at MDT  

 

Fig.8 Crack length versus time  

 

Fig.9 Velocities of cumulative crack width opening at Stage 1 and Stage 2  
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Fig.10a Distribution of cumulative crack width on sides – Type 1 Batch A Block 1  

 

Fig.10b Distribution of cumulative crack width on sides – Type 2 Batch A Block 1  

 

 

Fig.11 Variation of temperatures throughout the demolition process – Batch B 

Block 4  
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Fig.12 SCDA temperature inside the hole – Re-testing through SCDA 

reapplication  

 

Fig.13 Cumulative crack width opening at the second pour with plastic cover inner 

the hole surface – Batch A Block 3  

 

 

Fig.14 Trend of MDT versus material strength [Data of Bristar from (Bristar, 

2016)]  
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