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ABSTRACT: This paper proposes an approach to classify, localize, and extract 17 

automatically urban objects such as buildings and the ground surface from a digital 18 

surface model created from aerial laser scanning data. To achieve that, the approach 19 

involves three steps:  1) dividing the original data into smaller, more manageable 20 

pieces using a method based on MapReduce gridding for subspace partitioning; 2) 21 

applying the DBSCAN algorithm to identify interesting subspaces depending on 22 

point density; and 3) grouping of identified subspace to form potential objects. 23 

Validation of the method was achieved using an architecturally dense and complex 24 

portion of Dublin, Ireland. The best results were achieved with a 1 m3 sized clustering 25 

cube, for which the number of classified clusters equaled that which was derived 26 

manually and that amongst those there the following scores: correctness = 84.91%, 27 

completeness = 84.39%, and quality = 84.65%. 28 
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INTRODUCTION 32 

Urban Modelling (UM) benefits from spatial data mining to detect, localize, and extract geographic 33 

objects such as the ground surface, vegetative regions, and manmade objects. Such datasets may 34 

come from satellite, Light Detection And Ranging (LiDAR), environmental sensors, and even 35 

social networks. Traditionally such UM datasets have been stored and visualized in a Geographic 36 

Information System (GIS) or a spatial database to be used for civil, political, or commercial 37 
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applications. However, the increasing density of such data now challenges its most basic 38 

functionality and usefulness. A key challenges includes how to achieve data analysis in a 39 

computationally efficient way in huge datasets without overwhelming the computational 40 

infrastructure. Normally, a small Digital Surface Model (DSM) of a limited area derived from 41 

LiDAR point cloud data would consist of several million to a few billion three-dimensional (3D) 42 

points. Each point is typically affiliated with 3D coordinates, a timestamp, an intensity 43 

measurement, and possibly Red-Green-Blue colour indicators, if there is a co-registered image. 44 

Making these points compatible with a Spatial Data Model (i.e. generating a geo-Identification Key 45 

and Spatial Objects for each point) requires significantly more storage than that needed to host the 46 

original dataset. Given the rapid trajectory of LiDAR density growing at nearly an order of 47 

magnitude per decade (see Vu et al. 2016), traditional LiDAR storage solutions will only 48 

increasingly struggle to support the rapidly escalating number of LiDAR users and the ever-49 

expanding types of queries. For these reasons, Big Data platforms can offer a logical and useful 50 

choice to store and analyze large-scale, urban, spatial data generated from LiDAR point clouds.  51 

A related issue is object identification within large data sets. Of growing popularity are 52 

clustering based approaches to group similar data objects (e.g., Fu et al. 2014) for storage and 53 

querying (e.g., Kurasova et al. 2014). While there are many well-known algorithms to find data 54 

clusters depending on the distance metrics between objects or points, Kailing et al. (2004) noted 55 

that these algorithms often fail to detect meaningful clusters in datasets with large differences in 56 

densities and/or in the presence of high-dimensional, real-world data sets. More dimensions mean 57 

more distance between points, which compromises efficiency. Notably, many clustering approaches 58 

are already quite memory intensive. Therefore, their scalability is highly uncertain. Consequently, 59 

implementing a clustering approach in a Big Data context holds the promise of addressing these 60 

problems directly and offers the potential for unprecedented efficiency. To this end, this paper 61 

introduces a new, fully automatic approach for cluster-based data mining of LiDAR data with no 62 

reliance upon pre-processing and usage of only the 3D coordinate information. The approach takes 63 

raw 3D points of a given LiDAR-based DSM and converts them into sets of clusters, where each 64 

cluster is a set of high density points. A cluster represents an object such as a building or a ground 65 

surface. The remainder of this work is organized as follows:  Section 2 reviews the peer-reviewed 66 

literature in the field of clustering mining and big data; Section 3 describes the approach in details; 67 

Section 4 presents series of validation experiments; and Section 5 formulates general conclusions 68 

and identifies areas for future research. 69 

 70 

 71 
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RELATED WORKS 72 

Data mining for the purpose of building segmentation, extraction, and reconstruction is a well-73 

established topic within the geomatics community. The general approaches have been either 74 

procedural in nature and require predefined geometries or libraries or they have been data driven. 75 

These often rely upon voxelization (e.g., Vo et al. 2015) or k-nearest neighbour approaches (e.g., 76 

Truong-Hong et al. 2013). The techniques have often been cross-applied to laser scanning 77 

(terrestrial, mobile, and aerial), photo-based imagery, and a combination of the two (e.g., the 78 

Dempster-Shafer theory for data fusion by Rottensteiner et al. 2004; three-dimensional roof 79 

extraction using laser scanning data and multispectral orthoimagery work by Awrangjeb et al. 2013; 80 

building boundary detection with laser scanning and optical imagery by Li et al. 2013; and raster 81 

and point cloud based GIS analysis by Jochem et al. 2012).  82 

Clustering approaches have been widely used for various proposes such as data mining, 83 

image analysis, and machine learning. Generally, these approaches are used to find regions in a 84 

predefined space (Chakrawarty et al. 2014). In the context of urban data mining, these approaches 85 

are mainly used to extract a set of patterns, points, or objects from the data. Many clustering 86 

algorithms have been published since the early introduction of K-NN algorithm (Truong-Hong et al. 87 

2013) and the K-means algorithm (Jain 2010) in the decade of the 1950s. K-NN is a partitioning 88 

approach based on a classification algorithm that aims to split a space into k clusters. A K-means is 89 

a partitioning based clustering algorithm that is used to cluster N objects into K clusters depending 90 

upon the distance between the centres of the clusters. More recently, the Density-Based Spatial 91 

Clustering of Applications with Noise (DBSCAN) algorithm was introduced by Ester et al. (1996) 92 

to find arbitrarily shaped clusters, handle noise, and address data of any type in clustering. The main 93 

difference between these algorithms is that K-NN and K-means are considered partitioning 94 

algorithms, and they are relatively sensitive to the outliers, which means having outliers would 95 

reduce their accuracy (Chen et. al. 2006). On the other hand, since DBSCAN is a clustering 96 

algorithm based on density, it is realtive  insensitive to the outliers (Xu and Tian, 2015). This means 97 

that DBSCAN is robust towards outlier detection (Noise) and, thus, selected for implementation 98 

herein. 99 

The basic idea of DBSCAN is that a cluster is formed around a core point, if and only if, the 100 

neighbourhood of a given radius has a minimum number of points. Since its introduction in 1996, 101 

DBSCAN has been used extensively and continuously in this field. Recent examples include the 102 

work by Lee et al. (2014), who proposed a framework based on DBSCAN as a default clustering 103 

algorithm to extract associated points-of-interest patterns from geo-tagged photos. In related work, 104 

Zhou et al. (2015) employed DBSCAN to detect the geographic locations of tourism destinations 105 

from geo-tagged digital photos, while in Wang et al. (2013), DBSCAN was used for automated 3D 106 



buildings reconstruction from LiDAR Data. The authors first detected the building outlines and then 107 

reconstructed the models.  108 

Although this algorithm and many others are well-established and extensively used with 109 

success on limited datasets, should they be applied indiscriminately to a large dataset, their 110 

computational expense would likely overwhelm the process. In contrast a subspace clustering 111 

technique holds the potential to improve the data mining speed and the ability to detect robustly 112 

clusters of interest. Such an approach can reduce retrieval time by minimizing the number of 113 

records accessed (Parsons et al. 2004). In this case, the whole space of the problem is divided into 114 

smaller subspaces, and each subspace contains a piece of a cluster. Subspaces with density above of 115 

a defined threshold are selected as potential members of a cluster. In order to divide a whole space 116 

into smaller subspaces and to find potential clusters, grid-based clustering methods can be applied 117 

(e.g., Chang et al. 2002 and 2005; Parsons et al 2004). Clustering methods have a series of common 118 

steps (Aggarwal et al. 2013) starting with creating the grid structure with a finite number of 119 

subspaces, proceeding to calculating the density for each subspace, then sorting the subspaces 120 

according to their densities, followed by identifying the cluster centres, and finally by traversing of 121 

neighbour subspaces. As an extension of this, Darong et al. (2012) proposed a combination of a 122 

grid-based partition technique and the DBSCAN algorithm. Those experimental results showed that 123 

this combination improved not only the segment separation between clusters and noise but proved 124 

also to be more robust.  125 

While these various studies have produced important results for building extraction, few 126 

have considered the trajectory of the rapidly escalating size of point cloud datasets with respect to 127 

their spatial extent and their density. The current generation of data readily attains 50 pt/m2 with 128 

data sets of 225 pt/m2 being publicly available (e.g., UCD Digital Library, (2007)). Thus, a spatial 129 

Big Data context appears as an inevitable requirement. The work presented in Zhang et al. (2009) 130 

described how spatial queries could be adopted and expressed in a MapReduce framework, which is 131 

the key of the Big Data processing. A MapReduce framework is a software model used to support 132 

parallel computing of huge sets of data and consists of two functions Map and Reduce, which 133 

operate using key-value data types. The function 'Map' processes the original data into key/value 134 

pairs, and the function 'Reduce' takes these pairs and merges them in a way that all values 135 

corresponding to a specific key are combined into a single set. Zhou et al. (2015) using DBSCAN 136 

on a Hadoop distributed system demonstrated the ability to support a scalable geoprocessing 137 

workflow and expedite geospatial problem solving, as previously predicted by Fu et al. (2014). The 138 

improved scalability stems from the framework’s division of the input dataset into smaller parts and 139 

its subsequent outward distribution of them to nodes for parallel processing. In a generic sense, 140 

Wang et al. (2010) demonstrated experimentally that more nodes in a cluster significantly improve 141 



the execution time of the MapReduce processing. Recently, a Big Data approach for buildings 142 

extraction from a DSM was introduced by Aljumaily et al. (2015). The approach first employed a 143 

MapReduce process where neighboring points are mapped into subspaces as cubes. Next, a non-144 

MapReduce algorithm was used to remove trees and other obstructions. Finally all adjacent cubes 145 

belonging to the same object were extracted based on defining an object as a set of adjacent cubes 146 

that belong to one or more adjacent buildings.  147 

 148 

CLUSTERING APPROACH 149 

The goal of the work presented herein is to perform in a Big Data context clustering classification 150 

on raw LiDAR data without reliance on pre-processing. The main objectives of the clustering 151 

classification are to (A) remove vegetation and other obstructions from the DSM and (B) detect and 152 

localize outlines of urban objects such as buildings and the ground surface. The proposed approach 153 

involves three steps involving (1) MapReduce grid-based partitioning; (2) dense subspace detection; 154 

and (3) object formation. These steps are described in detail in the following subsections.  155 

As part of this work, a 1km2 study area in the centre of Dublin Ireland was used. A total of 156 

~225 million points from aerial laser scanning were acquired in the winter of 2007 for a dense 157 

urban area of Dublin, Ireland. The data were acquired by contractors using a FLI-MAP 2 system. 158 

The system operated at a scan angle of 60 degrees, with an angular spacing of 60/1000 degrees 159 

between pulses. While the FLI-MAP 2 system can provide spectral data in the form of intensity and 160 

colour, the colour data was not collected. The flying altitude varied between ~380-480m, with an 161 

average value of ~400m. Total 44 flight strips were acquired and 2823 flight path points were 162 

recorded, providing instantaneous aircraft position over time (for more information see UCD 163 

Digital Library, (2007)). 164 

Step-1:  A MapReduce Grid-Based Method for Subspace Partitioning 165 

Since, grid-based methods for subspaces partitioning have the great advantage of reducing 166 

significantly the time complexity, especially for high dimensional datasets (Aggarwal et al. 2013), 167 

the basic idea presented herein is to exploit the coordinates (x, y, z) of each point in the point cloud 168 

and then to map these points into smaller subspaces (i.e. cubes). Herein, a cube is considered to 169 

belong only to one object. Consequently, if two neighbouring points belong to the same cube, then 170 

they belong to the same object. Similarly, two neighbouring cubes are assumed to belong to the 171 

same cluster or object, if they have similar internal point distributions, as will be describe 172 

subsequently. 173 

As such, the dimension (d) of these cubes plays an important role in the final results of the 174 

classification. This is to say, if d is too large, a cube may contain both vegetation and parts of a 175 



building, or two objects may share the same cube. On the other hand, if d is too small, an excessive 176 

number of cubes will result, which may be unnecessarily time consuming. Based on a preliminary 177 

empirical study, the parameter d was initially selected as 1.0m, because the resulting volume is 178 

smaller than most urban objects but relatively insignificant compared to the entire volume of the 179 

whole digital surface model, which was 3,248,520 m3. To test the sensitivity of the value selected 180 

for d, three values (0.5m, 1.0m, and 2.0m) were selected for application to the abovementioned 181 

dataset, as will by explained in section 4.  182 

To reduce the computational cost of the partitioning process, the MapReduce framework is 183 

used as a grid-based method to map the point cloud into cubes (see Figure 1-A). As explained in 184 

Section 2, the MapReduce framework is employed to support parallel computing of huge sets of 185 

data with the goal to reduce the execution time. While the authors’ implementation of the 186 

MapReduce framework can be found in detail elsewhere (Aljumaily et al. 2015), it is briefly 187 

summarised herein. 188 

Specifically, the point P (x, y, z) is mapped to a cube, which has the identification key equal 189 

to KEY=(fix(x), fix(y), fix(z)) (see Figure 1-B). The function fix(v) truncates the value to the 190 

greatest integer less than or equal to v. So the Map function receives the point cloud data and issues 191 

a list in which each point is mapped to the corresponding cube identification key: 192 

{(KEY1, P1,1), (KEY1, P1,2),…, (KEY1, P1,N), 193 

  (KEY2, P2,1), (KEY1, P2,2),…, (KEY2, P2,M), ………….  194 

  (KEYL, PL,1), (KEYL, PL,2),…, (KEYL, PL,O)} 195 

 196 

Next, the Reduce function receives the previous list issues a new list, where KEYi is the cube 197 

coordinates, as a unique entry in the list: 198 

{KEY1, P1,1, P1,2,…, P1,N}, 199 

{KEY2, P2,1, P2,2,…, P2,M}, …..…….  200 

{KEYL, PL,1, PL,2,…, PL,O} 201 

  



A- 3D objects mapping B- 3D point mapping 

Figure 1. Grid-Based Method by MapReduce 202 

At the end of this step, the 3D point cloud is converted into a list where each line in the list forms a 203 

cube with its identification key and its points. Once a cube is obtained, it is submitted directly into 204 

the next step where a filter-based algorithm is applied to distinguish between cubes that form a 205 

cluster and those that do not.    206 

Step-2:  Recognizing interesting subspaces 207 

The main supposition of this work is that if a DSM is partitioned into a set of small, grid-based 208 

cubes with equal dimensions, two types of cubes can be distinguished within a DSM. The first type 209 

is called a dense cube. Each dense cube contains a set of successfully clustered points (Figure 2-A). 210 

In that case, the points are grouped together in the cube to form a partially or totally dense (i.e. 211 

highly populated) sector within the cube. Of importance is that the approach detects arbitrarily 212 

shaped clusters, which mean that cluster formation is independent of the cube’s orientation. 213 

Normally, a dense cube is involved in forming part of the ground, roads, or buildings (mostly in the 214 

form of flat or sloped roofs). 215 

 216 

 217 

Figure 2. dense cube vs. sparse cube. 218 

The second cube type is sparse, where the points within the cube are dispersed and occupy 219 

more space (Figure 2-B). Although Cube A and Cube B have the same number of points, their 220 

respective distributions are highly distinctive. Typically, a sparse cube forms from vegetation, 221 

because of the discontinuous nature of the foliage combined with the laser scanner’s ability to 222 



penetrate gaps in the canopies hitting leaves, branches, and portions of the ground (Slatton et al. 223 

2008). For this reason, such results will generate more dispersed and less compact cubes than the 224 

first type. This second cube type may also include noise and obstructions such as pedestrians, 225 

vehicles, road lighting poles, and so on. 226 

In the work herein, dense cubes are interesting subspaces, because they represent parts of 227 

urban objects. For this reason, once the total space is segmented into cubes, then these cubes will be 228 

submitted to a filter-based algorithm for classification. As previously noted, because the selected 229 

cube volume (i.e. 1 m3) is small in comparison to the DSM’s whole volume, when two 230 

neighbouring dense cubes exist, they are assumed to belong to the same cluster. In contrast, sparse 231 

cubes are generally treated as noise. 232 

To separate these two cube types, the DBSCAN algorithm (Ester et al. 1996) is used. The 233 

approach can efficiently partition ‘cluster’ and ‘noise’ into a dataset D of points of k-dimensional 234 

space. The algorithm states that the neighbourhood of two points p and q is determined by 235 

calculating the distance between the two points dist (p,q). Although the distance can be calculated 236 

by any type of distance measure. In this work, the Euclidean distance is used. If the distance 237 

dist(p,q) is less than Eps (Eps is the maximum radius threshold to delimit the neighborhood of a 238 

point p), then p is considered as a core point, and q is its neighbor. On the other hand, a point q is 239 

considered as noise, if the distance between q and any near core points is greater than Eps. 240 

In the following equation (eqn 1), NEps denotes the point q belongs to the neighbourhood 241 

region of the point p: 242 

 243 

NEps (p) = {q  D | dist(p,q) ≤ Eps} ………………… (eqn 1) 244 

 245 

A point p is the core of a cluster, if there exists at least MinPts of points in its neighbourhood 246 

region, as shown in (eqn 2): 247 

 248 

|NEps (p)| ≥ MinPts ……………………………… (eqn 2) 249 

 250 

Thus, defining the two parameters Eps and MinPts is crucial to the clustering process, 251 

because if an overly large Eps is selected, then many points that do not belong to the cluster will be 252 

included unintentionally. While if an overly small Eps is selected, then points belonging to the 253 

cluster may be unintentionally excluded. The same problem arises with respect to MinPts. If a high 254 

MinPts is selected, then a low-density cluster may be included, while a low MinPts would exclude a 255 

high-density cluster. As will be explained in the next section, to date only an empirical approach has 256 

been deployed for threshold determination of these four parameters. 257 



Now that the main idea of the DBSCAN algorithm has been presented, the specifics of its 258 

implementation are presented below. This starts with supposing that a Cube C consists of a set of 259 

3D points, as shown in (eqn 3): 260 

 261 

{XYZ} = {p1(x1,y1,z1), p2(x2,y2,z2), ….., pn(xn,yn,zn)} ………… (eqn 3) 262 

 263 

To solve the problem of the ‘curse of dimensionality’ mentioned previously, first irrelevant 264 

dimensions of C are removed, as they may obfuscate robust cluster detection. Then the DBSCAN 265 

algorithm is applied. Removing irrelevant dimensions is a well-studied technique (e.g., Parsons et 266 

al. 2004). In the case herein, for each cube a pair of different sets of two-dimensional points will be 267 

generated. The first one {XZ} is where the dimension Y is removed from the points of the cube C. 268 

The second set {YZ} is where the dimension X is removed from the points of C, as shown in 269 

equations (eqn 4 and eqn 5). 270 

 271 

{XZ} = {p’1(x1,z1), p’2(x2,z2), ….., p’n(xn,zn)} …….  (eqn 4) 272 

{YZ} = {p’’1(y1,z1), p’’2(y2,z2), ….., p’’n(yn,zn)}……. (eqn 5) 273 

 274 

Once the irrelevant dimensions have been removed, the DBSCAN algorithm is applied to the two 275 

sets {XZ} and {YZ} according to the following algorithm: 276 

 277 

noise = DBSCAN ({XZ}, Eps, MinPts) 278 

if (noise / PTS) <= maxNoise) { 279 

C is dense cube 280 

}else{ 281 

noise = DBSCAN ({YZ}, Eps, MinPts) 282 

if (noise / PTS) <= maxNoise){ 283 

C is dense cube 284 

}else{ 285 

C is sparse cube 286 

} 287 

} 288 

 289 

Since DBSCAN is an integer method, it returns the number of noise points in C. PTS is the 290 

total number of points in C. The term maxNoise is the maximum allowed percentage of points to 291 

consider whether the cube in question is dense or sparse. The value of this percentage is defined in 292 

an empirical way, as will be explained in the next section. This is to say, only the smallest number 293 



of noise points of the two sets {XZ} or {YZ} is used, because the minimum noise indicates the 294 

better clustering between the two directions. If the noise in one of the views is less than the 295 

percentage maxNoise, then one may conclude that C is a dense cube. Otherwise, if both minimum 296 

noise values exceed the maxNoise, then C is classified as sparse cube. To reduce the computational 297 

time, first the noise is calculated in one direction. If it is less than the maxNoise, then there is no 298 

need to calculate the same for the second direction. Otherwise calculation proceeds. 299 

In Figure 3, a considerable distance reduction between the points is visible when the 300 

irrelevant dimensions Y and X have been removed from the corresponding views. Although 301 

removing dimensions is useful in the case of the X-view and Y-view, the same approach is not 302 

applicable in the case of the Z-view (Top). As shown in Figure 3, there are a lot of holes between 303 

the points from the TOP-view. For this reason, this view is not considered in the approach presented 304 

herein. 305 

 306 

 307 
 308 

 309 

Figure 3. Some of the representative cubes. 310 



Figure 3 also illustrates some of the representative cubes of the DSM. Figure 3-A shows a 311 

prismatic cube with the key identification KEY(316030,233982,22) and 453 points. The cube 312 

consists of a horizontal surface, which represents a subspace of a building roof with a height equal 313 

to 22 m. Within the cube’s prismatic shape, there are some holes between the points. However, 314 

when the Y-dimension and the X-dimension are removed in the X-view and Y-view respectively, 315 

clusters are readily visible. This is to say, the X-view is the projection to the XZ plane, and Y-view 316 

is the projection to the YZ plane. In this case, the noise in the two views is equal to zero, so that this 317 

cube is classified as a dense cube. Noise points are presented in the Figure as small circles. The 318 

cube in Figure 3-B is a sloped building roof. This cube is also classified as dense, although the 319 

noise in the X-view is significant (noise = 113 points), because the noise point number in the Y-320 

view is 0. The cube in Figure 3-C represents a vertical building wall. This cube is classified as 321 

sparse, because neither of the two views forms a cluster. The percentage of the noise points in the 322 

two views exceeds that of the maxNoise. As previously noted by Jochem et al. (2006) the relative 323 

position of the aircraft to the building wall and the large incidence angles often limits point 324 

acquisition on these vertical surface, which could affect negatively the results, because the cubes 325 

from vertical walls are formed with relatively low point densities.  326 

Notably, a general move to higher point densities and new means of flight path planning to 327 

maximize vertical data capture (e.g., Hinks et al. 2009) should help to mitigate this problem. 328 

Furthermore, this limitation when it generates a gap could be used to identify a separation between 329 

the ground surface and the building roofs, further facilitating roof classification, localization, and 330 

then the extraction. Figure 3-D shows a cube that represents vegetation or other undesirable points. 331 

No cluster emerges in either of the two views. So this cube is classified as a sparse cube, because 332 

the percentage of noise in the both views is greater than the allowed percentage. 333 

 334 

Step-3:  Clustering interesting cubes 335 

Once the two cube types are generated, the sparse cubes are removed. The remaining dense cubes 336 

are grouped into clusters, with each cluster representing the outline of an object. To do that, the 337 

Neighbour Adjacent Cube Algorithm is applied. In that algorithm, two adjacent cubes belong to the 338 

same object. This algorithm starts from the highest cube in the dataset and moves downwards 339 

towards the lowest one. As previously mentioned, because vertical walls cubes are not classified as 340 

dense cubes, empty spaces form between the roof building cubes and the ground cubes. Once the 341 

highest object is segregated, the algorithm next segregates the highest remaining object in the DSM. 342 

This continues, until all objects are segregated from the DSM. Notably, although the algorithm 343 

always starts with the highest object, this does not require a height calculation of each object, only 344 

determination as to which cube has the highest Z coordinate. This is an improvement over other 345 



related works [e.g., Zhang et al. (2006), Abdullah at el. (2014), and Aljumaily at el. (2015)] where 346 

object height calculation was needed prior to extraction.  347 

At the end of the classification and then the extraction processes, the DSM dataset being 348 

processed will be empty, because all of its cubes will have been segregated and moved 349 

automatically to the corresponding files where each file represents a cluster. A limitation of this 350 

approach is that if two buildings are joined together (see Figure 4) [e.g., terraced housing], the 351 

approach recognizes them as a single object. This is a well-known problem for many techniques 352 

attempting individual building extraction, as reported by Truong-Hong and Laefer (2015). 353 

 354 

 355 

Figure 4. An object with multiples adjacent buildings. 356 

EXPERIMENTS AND RESULTS 357 

The clustering approach presented in Section 3 is evaluated herein on an architecturally dense and 358 

complex portion of Dublin, Ireland with the aforementioned 225pts/m2 data. Within the 1 km2 study 359 

area, there are 9 tiles from the DSM (see Figure 5). The DSM preparation included several steps 360 

that are outside of the scope of this work, including flight path planning, as well as data collection, 361 

registration, and filtering (as described in Truong-Hong, 2011).   362 

 363 



 364 

Figure 5. DSM of the study area generated herein 365 

The proposed approach depends on the point cloud density. This DSM contained 366 

225,793,264 points according to the first step of the approach (Step-1). These points were mapped 367 

to 3,248,520 cubes resulting in an average of 70 points per cube with a standard deviation of 105.5 368 

points. Their distribution is shown in Figure 6, where the x-axis shows the density divided into 10 369 

point intervals (e.g., the first represents cubes containing 1-10 points). In the last interval, there was 370 

only 1 cube, which contained 666 points, which was the densest in the data set. The peak of the 371 

histogram represents that 3.95% of the points of the DSM. Those cubes contained 241-250 points. 372 

 373 

Figure 6. Distribution percentages of the DSM original 374 

To quantitatively evaluate the approach’s outputs, the following metrics were used:  (1) 375 

measurements of correctness, (2) completeness and (3) fitness measure (F-measure). Many 376 



researchers use the terms precision and correctness interchangeably. The same is true for the terms 377 

recall and completeness. In this paper the terms correctness and completeness will be used to be 378 

consistent with the authors’ previously published work (i.e. Aljumaily et al. 2015). Normally, these 379 

measures are calculated by taking the difference between the classified objects and the reference 380 

objects (Maurya et al. 2012). According to Rutzinger et al. (2009), the correctness evaluates the 381 

exactness of the approach and is a ratio of the relevant points of a classified object to the total 382 

number of points of the referenced objects (see eqn 6). A point was considered relevant, if the 383 

approach classified it correctly, with respect to the corresponding reference object. The 384 

completeness is the ratio of the classified relevant points to the total number of points in the 385 

referenced objects (see eqn 7). The F-measure or fitness evaluates the overall quality (see eqn 8). 386 

These metrics are calculated using terms such as True Positives (TP), False Positives (FP), and 387 

False Negatives (FN). TP are the points correctly included into this object, FP are the points 388 

incorrectly included into this object, and FN are the points mistakenly excluded for this object.  389 

correctness 
FPTP

TP

+
= ………………………  (eqn 6)  390 

completeness
FNTP

TP

+
= ……………………..   (eqn 7) 391 

F-measure   
FNFPTP

TP

++
= ……………….   (eqn 8) 392 

 393 

As mentioned in the previous section, in order to apply the DBSCAN algorithm several 394 

parameters (i.e. Eps and MinPts) must be set. Because these parameters depend on the features of 395 

the dataset, the accuracy of the resulting clustering is directly depending on the user’s choice of 396 

parameters (Zhou et. al. 2012). For this reason, an empirical study was undertaken on the selected 397 

DSM to optimize these parameters for optimal clustering results. In this study, initial values for 398 

each parameters were assigned. These were then increased incrementally and individually until a 399 

degradation of the results was observed. A global optimisation was not, however, undertaken. The 400 

initial values of Eps and MinPts were selected as 0.1m and 10 points, respectively based on the 401 

belief that 0.1 m would be a reasonable distance between two points in a DSM to form a cluster, 402 

and a cluster with less than 10 points having insufficient information for meaningful post-403 

processing activities. The values of Eps and MinPts were increased by 0.05m and 10 points, 404 

respectively. In addition, maxNoise was used as a third parameter to distinguish between a 405 

classification of dense and sparse. In the same way an initial value of (maxNoise < 10) was selected 406 

as the division between dense and sparse cubes. This is to say, if the percentage of the noise in a 407 

cube was less than or equal to 10%, then this cube was considered as a dense cube but otherwise as 408 

sparse cube. An initial setting of 0% only resulted in a clustering of 7% of the data, thus the selected 409 



lowerbound threshold was 10%. The incremental value of maxNoise was established as 10% for 410 

each iteration (i.e., 10%, 20%, 30%, etc). The most significant results of this study are shown in 411 

Table 1, where the bolded values represent the most interesting results of the approach. As shown in 412 

Table 1, many results are similar often achieving around 85% correctness despite being derived 413 

from different thresholds; with the remaining 15% likely to have been lost because of the 414 

complexity of the architecture of the building and the difficulties related to the manual extraction of 415 

the reference objects. Clearly, a further development step is needed in which a formal optimization 416 

process is undertaken. With this caveat understood, a single case will be further investigated below. 417 

Due to space limitations only one set of results is further presented (Eps = 0.1m, MinPts=10, and 418 

maxNoise<30%). Those achieved nearly 85% in all three categories: correctness = 84.91, 419 

completeness = 84.39, quality = 84.65 (Table 1).   420 

Figure 7 illustrates the analysis of the clustering results, where two sets of points can be 421 

distinguished. The first are the points of the dense cubes (Figure 7-A) representing approximately 422 

80% of the DSM across 30% of the cubes, with an average density of approximately 185 pts/cube 423 

and a standard deviation of 85.0. They display a normal distribution. The second are the points of 424 

the sparse cubes (Figure 7-b) representing approximately 20% of the DSM across 70% of the cubes 425 

with an average density of approximately 20 pts/cube and a standard deviation of 44.6 displaying a 426 

normal distribution. In these figures, there is a separation between cubes with high point density and 427 

those with low point density. Those with a density of 250 points/cube are definitely dense 428 

categorization and those with a density of less than 100 points per cube definitively sparse. Looking 429 

at Figure 7, most of the cubes that contained between 100 and 250 points per cube were classified 430 

ultimately by the proposed approach as dense cubes. 431 

 432 

Table 1. The most significant results of the empirical study. 433 

 434 

maxNoise MinPts Eps (m) Correctness Completeness Quality 

10% 

10 

0.1 78.06 90.05 83.62 

0.15 84.51 85.40 84.96 

0.2 87.19 76.88 81.71 

20 

0.1 65.73 96.41 78.17 

0.15 77.22 90.99 83.54 

0.2 81.44 88.13 84.65 

20% 10 

0.1 81.68 87.57 84.52 

0.15 87.66 79.86 83.58 

0.2 87.14 51.37 64.63 



20 

0.1 70.33 94.26 80.56 

0.15 80.68 88.69 84.50 

0.2 84.39 83.99 84.19 

30% 

10 

0.1 84.91 84.39 84.65 

0.15 87.87 71.50 78.85 

0.2 87.20 30.40 45.09 

20 

0.1 75.48 92.21 83.01 

0.15 83.41 86.13 84.75 

0.2 86.84 79.32 82.91 

40% 

10 

0.1 85.73 81.73 83.68 

0.15 87.84 60.45 71.61 

0.2 90.14 18.86 31.20 

20 

0.1 77.76 90.86 83.80 

0.15 84.17 83.56 83.87 

0.2 87.71 78.00 82.57 

 435 

 
A- Dense Cubes 

 
B- Sparse Cubes 

Figure 7. Clustering classification results for Eps = 0.1m, MinPts=10, and maxNoise<30% 436 

Figure 8 shows a comparison study between the reference objects and those automatically 437 

classified objects by the approach proposed herein. First, the reference objects (Figure 8-A) were 438 

manually extracted from the original DSM. In total, there were 106 building groups and 1 ground 439 

surface. This was done using the visualization tool CloudCompare (Compare, 2015); most features 440 

within the study area (e.g., buildings, roads, trees) were easily distinguishable with the naked eye. 441 

CloudCompare provides editing features such as DSM segmentation. Each colour in Figure (8-B) 442 

represents a classified object. Giving a colour to an object means that the object was defined, and all 443 
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the relevant information about it (e.g., coordinates, dimensions, outlines) was harvested to enable 444 

simple extraction of the whole object from the original DSM.    445 

For simplicity, the previous parameters (TP, FP, and FN) were calculated only considering 446 

the cube level. This is to say, all the cubes that were included in both DSMs (Figure 8-A and 8-B) 447 

were considered as TP, if all the cubes that were included in the DSM are classified correctly as 448 

objects (Figure 8-B). They were FP if they classified an object that did not appear as a reference 449 

objects (Figure 8-A). Finally, all cubes that were included in the DSM as reference objects (Figure 450 

8-A) but not classified objects (Figure 8-B) were considered as FN. The same approach was taken 451 

with respect to the classification of the ground surface (Figure 8-C and 8-D). 452 

  

A- DSM of the Reference Objects B- DSM of the Classified Objects 

  

C- The reference of the ground surface D- The cluster of the classified ground surface 

Figure 8. Quantitative evaluate of the approach’s outputs for Eps = 0.1m, MinPts=10, and 453 

maxNoise<30%. 454 

As visible in Figure 9, the approach was able to classify the heavy vegetation and other 455 

obstructions in the DSM and able to segregate fully automatically the outlines of building groups 456 

from the roads and the ground surface. The approach was also very successful for classifying 457 



building groups with complicated roof geometries and those with multiple sections of varying 458 

heights.  459 

 460 

 461 

Figure 9. Vegetation detection by the proposed approach. 462 

In order to validate the results of the proposed approach, a new DSM of approximately 1 463 

km2 was considered (Figure 10). This new data set was selected also from an architecturally dense 464 

and complex portion of Dublin, Ireland. The new data set contained 158,890,014 points. These 465 

points were mapped to 2,150,979 cubes. This DSM was selected, because it is more complicated 466 

than the first one, where many small objects with vegetation and other obstacles were included. 467 

 468 



 469 

Figure 10. DSM of the second study area generated herein 470 

In the validation of the second study area the same thresholds were selected (Eps=0.1m, 471 

MinPts=10, and maxNoise < 30%. The results of the extraction quality were slightly poorer 472 

(correctness=80.02%, completeness=78.01%, and overall quality = 79.44%). The difference 473 

between the qualities of the both study areas is in part an outgrowth of the difficulty of manual 474 

extraction of the second study area where errors may be introduced. In Figure 11, the DSM of the 475 

classified objects and the referenced objects are shown.  476 

  

A- DSM of the Reference Objects B- DSM of the Classified Objects 

Figure 11. Quantitative evaluate of the approach’s outputs of the second case study. 477 

The computational efficiency and scalability of the approach needs to be demonstrated with 478 

respect to the execution time required for each step of the proposed approach. All the experiments 479 

were conducted on a PC with an Intel Core i7 CPU 2.40GHz, 12GB Memory. Regarding to Step-1 480 



(MapReduce Step) the experiment was done using a single node of a Hadoop installation. The 481 

results of execution time are shown in Figure 12. In this figure, the experiments were done by 482 

selecting three different cube dimensions (0.5m, 1.0m, and 2.0m) of the same DSM (Figure 5). 483 

Notably, the execution time using cubes with dimensions of 0.5m were very similar to those using 484 

dimensions of 1.0m. A value of d of 1.0m is recommended, because when the cube dimension is 485 

small and there are many cubes of low density with complex architecture, the original cluster will 486 

unnecessarily be divided into smaller clusters and this will reduce the quality of the clustering. If a 487 

big cube dimension such as 2.0m is selected, other problems arise. The main problem is that when 488 

the cube dimension is large, a cube may contain parts of different objects including vegetation, 489 

which results in their ultimate misclassification. In addition, big cube dimensions mean that there 490 

are a high number of points to be processed within each cube. Consequently, extensive execution 491 

time will be need in the next steps. 492 

 493 

Figure 12. Execution time of the MapReduce step with three different dimensions cubes 494 

Notably, the execution time of the MapReduce step can be improved easily by adding more 495 

nodes as is common for a Big Data platform cluster (Xu et al. 2015). According to the result 496 

showed in Wang et al. (2010) using a cluster of 8 nodes a MapReduce based spatial system 497 

consumes approximately 0.24% of the initial time. 498 

 499 



 500 

Figure 13. Comparison between the proposed execution time for DBSCAN versus K-Means time 501 

    Regarding to the second step (Recognizing interesting subspaces), as mentioned in the 502 

related works section, the DBSCAN is considered a classic clustering algorithm based on density. 503 

The complexity of this algorithm is O(n*logn), and it is robust towards outlier detection (Noise) 504 

(Xu et al. 2015). Other classic algorithm such as K-means is not built for outliers’ detection 505 

purpose. However, in this section in order to ensure the validity of the performance of the DBSCAN 506 

algorithm, a comparison between DBSCAN and the K-Means has been done. But firstly, the K-507 

Means algorithm has been adapted for our approach, i.e., improving K-Means in order to detect 508 

outliers according to the approach presented into (McCaffrey 2013). The result of the comparison is 509 

shown in Figure 13, where it is clearly shown that the DBSCAN algorithm provides better 510 

performance than the K-Means algorithm. For example, in order to cluster 200,000,000 points the 511 

DBSCAN needs no more 9 minutes while the K-Means needs approximately 25 minutes. The 512 

difference likely stems from the fact that DBSCAN was built to detect outliers, while the K-Means 513 

was built for space partitioning, with outlier detection and removal as added components (e.g., 514 

Hautamäki, et. al. 2005).    515 

The time for Step-3 (Clustering interesting cubes) of the approach is insignificant when 516 

compared with the time needed for the first two phases. The execution time of Step-3 (see Figure 517 

14) depends on the size of the object extracted. The object classification time depends on the 518 

number of affiliated and adjacent points. For example, in the case presented herein, each of the 519 

classified clusters (73%) had less than 1,000,000 points. So, to cluster interesting cubes of an object 520 

with 1 million points, this Step-3 needed approximately 2,000 milliseconds (see Figure 14). 521 

 522 

https://msdn.microsoft.com/en-us/magazine/mt149362?author=james+mccaffrey


 523 

Figure 14. Execution time of the clustering interesting cubes step of the approach 524 

CONCLUSIONS 525 

Most current solutions for building classification and extraction from point cloud data are hard to 526 

scale with respect to the forward trajectory of data densities levels. To address this in the context of 527 

object classification, localization and extraction, this paper presents the implementation of a fully 528 

automatic and significantly more scalable approach than otherwise available to support clustering of 529 

LiDAR data in a Big Data context. The approach was tested with two study areas on approximately 530 

2 km2 where more than 200 objects in the DSM were automatically detected at an average 531 

classification quality level of 85% including those with complicated roof geometries and those with 532 

multiple sections of varying heights. The approach was able to classify the heavy vegetation and 533 

other obstructions in the DSM and was able to segregate fully and automatically the outlines of 534 

buildings from the roads and ground surface. 535 

 536 

According to the obtained results, this paper presents the viability to use a clustering 537 

algorithm (DBSCAN) based on point density for the objects extraction from a DSM. This kind of 538 

clustering is suitable for data with arbitrary shape and is able to discard noise or outliers (in this 539 

case, points that do not belong to a building or road). While the current implementation DBSCAN 540 

algorithm has the drawbacks of requiring a high memory capacity with big volume data, the Big 541 

Data framework where the approach is being developed will largely alleviates this problem. In the 542 

ongoing work, the issue of a global optimization strategy for automated parameter selection will 543 

also be considered. 544 

 545 
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