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Abstract: Bridge structures are subjected to deterioration due to excessive usage, overloading, aging, and environmental impacts. Use 
of visual inspection by live, on-site inspectors predominates the requisite inspection of these structures, despite the known 
disadvantages of subjective results, high costs, and traffic disruptions due lane closures needed for close-range inspection access. Over 
the last two decades, significant advancements have occurred in the field of a remote sensing for bridge inspection. Prominent amongst 
these are use of a point cloud based inspection derived from images collected with an unmanned aerial vehicle (UAV). The approach 
can rapidly acquire surface details and overcome many of the shortcomings of live, visual inspection but further processing has been 
required. This paper automates that method for damage inspection of bridge decks. To achieve that, this paper first proposes a robust 
and efficient method to automatically extract a point cloud of a bridge deck through a cell-based region growing segmentation. Next, 
locations and areas of the patch deterioration are automatically determined by comparing elevations of the point clouds to the surface 
of the undamaged bridge deck. Finally, a deep learning method, using a one-class autoencoder, is employed to classify the point cloud 
of the bridge deck into cracking area and undamaged one.  

Keywords: bridge inspection, bridge deck, UAV, point cloud, segmentation, patch deterioration, cracking, deep learning, 
autoencoder 

1. Introduction 

The most recent American Society of Civil Engineers’ (ASCE) Report Card on infrastructure reported more than 50% of 
that nation’s 614,387 bridge are more than 40-years old with about 9.1% of them exhibiting structural deficiencies (ASCE 
2017). Similar quantities of aging bridges were also found in a 6 European nation study, where the majority of bridges 
were built in the period 1945-1965, undergone significant deterioration (Pakrashi, et al. 2011). Assuming a 50-year 
designed lifespan, the current performance of any of the bridges must be assumed to be significantly reduced due to age 
coupled with a variety of likely factors including excessive usage, overloading, material aging, and environmental 
impacts. As such, an accurate assessment of such a bridge’s condition is needed for maintaining a safe, functional, and 
reliable structure. Additionally, inspection is needed to update asset inventories to assist in bridge management. In 
practice, visual inspection with on-site inspectors associated with special equipment is the predominant method. This 
approach, albeit the most common one, has many downsides including being subjective and highly dependent upon an 
inspectors’ experience, being slow and expensive inspectors, and requiring traffic delays and closures (Metni and Hamel 
2007; Phares et al. 2004).  

In contrast, with the development of robotics and computer vision, low-cost UAVs have been introduced and widely 
used in topographic surveying. The method can capture high resolution images of surfaces from an air, and then high 
dense, accurate three-dimensional (3D) data points of the components can be generated. From such point clouds, features 
and 3D models of objects can be extracted. That argues for use of UAV for bridge inspection as an alternative or 
complimentary method, as it does not require traffic closure or experienced, on-site inspectors. 

Initial UAV deployments with imagery capabilities have focused on specific tasks. For example, Kim et al. (2015) 
aimed to detect cracks in bridge superstructures. Ellenberg et al. (2016) analysed an error budget of an UAV with an 
integrated 10-megapixel camera measuring in situ displacements of a steel girder in a laboratory. Result showed 
deviations of up to 31.5%. Recent efforts on reconstructing 3D point clouds from overlapping images have been developed 
for bridge assessment, but reported accuracies are relatively low. For example, Neitzel and Klonowski (2011) showed 
point cloud-based images having an absolute deviation of up to 20 cm. Moreover, Escobar-Wolf et al. ( 2017) used 
infrared and digital single-lens reflex (DSLR) Nikon D800 cameras mounted on UAV to image the bridge deck to identify 
delamination. The study involved the Merriman and Stark Road overpass bridges, on highway I-96 in Detroit, Michigan, 
and reported that infrared and DSLR images can give acceptable results of delamination. Recently, Lovelace (2015) 
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investigated UAV technology for bridge safety inspections. The focus was capturing the surface of major bridge 
components of 4 bridges in Minnesota and concluded that while UAVs can aid in bridge inspection and that defects from 
UAV-based images are detectable, the current generation of hardware and supporting imagery software cannot replace 
on-site inspectors where tactile functions (cleaning or measuring) are needed to detect damage or see its full extent. 

 

2. A proposed method 
 
In light of these advancements, this paper proposes a robust and efficient method to automatically extract a point 

cloud of a bridge deck generated from a bundle image captured by a low-cost UAV (Fig. 1). The proposed workflow 
consists of 3 main parts: (I) data acquisition and preprocessing, (II) bridge deck extraction and (III) Bridge deck damage 
detection.  Part II involves decomposing the point cloud into 2D adjoining cells and using a cell-based region growing 
approach to group adjacent cells having deviations features satisfying predefined conditions. Then, backward and forward 
algorithms were applied to minimize over- and/or under-segmentation. In Part III, locations and areas of patch 
deterioration are determined by comparing selected (i.e. damaged) sections to non-selected (i.e. undamaged) section of 
the bridge deck’s surface. Finally, in Part III, a deep learning method, an autoencoder-based one class, was proposed to 
extract cracking location of the bridge deck. 

This paper mainly focuses on Parts II and III, as Part I employs commercial software to generate a point cloud images 
captured from the UAV captured images and uses an open-source software for semi-automatic denoising. To facilitate 
identifying bridge pavement surface damage, in Part II, a robust, efficient segmentation is proposed to automatically 
extract the point cloud of the bridge pavement surface. Part III ultimately reports the condition of the bridge deck based 
on patch deterioration and cracking. 

 
Fig. 1. Proposed workflow 

3. Test-bed bridge 

To test the proposed workflow, the Blessington bridge connecting Kilbride Rd. to Lake Dr Rd., crossing Liffey Lake in 
County Wicklow, Ireland was selected. The bridge is of reinforced concrete, about 130 m long and 8m wide with 2 traffic 
lanes plus 1 pedestrian lane (Fig. 2). A low-cost UAV, DJI Phantom 4 quadrotor with a 4K camera was used to capture 
the bridge. The 4K camera has a field of view of 94°, and a focal length of 35 mm. This can take an image a 4000 x 3000 
pixel image, which translate to a ground sampling distance of 10 mm/pixel from a height of 15 m.  

   
Fig. 2. Blessington bridge and flight 

paths for data capture 
a) A point cloud generated from images  b) A point cloud after removing noise data 

Fig. 3. A point cloud of the bridge from a image acquired from UAV 
The data capture strategy was designed to ensure comprehensive coverage of the bridge deck. This involved 7 parallel 

flight paths (2 along each side, 3 above the desk) at 8 m -15 m above the bridge deck. A total of 212 images were collected 
within the 1 hour of flying. These were converted into 3D data point cloud with Agisoft PhotoScan (AgiSoft 2017), in 
Part I of the procedure. The software eliminates distorted or blurred images and those with inadequate overlap to other 
images (Siebert and Teizer 2014). Based on the automatic detection of common features, the images are aligned by the 
software to form a single point cloud, which in this case involved more than 16.8 million points [each with an x, y, z 
coordinate and associated red-green-blue (RGB) colors (Fig. 3a)]. The process took about 1 hour on a Dell XPS with i7 
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CPU with a speed clock 2.8 GHz, 4 cores and 16 Gb RAM, on Window 10 operation system. Since, the presence of the 
water’s waves and shadowing beneath the bridge complicates the data set, the next step involved eliminating these points, 
which can be considered as noise. This was done in CloudCompare V2.9 (Filter 2018), an open-source software. After 
noise removal (Fig. 3b), approximately 12.5 million points remained for further processing; more details of the noise 
removal can refer to Chen et al. (Chen, et al. 2018). 

 

4. Bridge deck extraction 

A goal of Part II is to extract the bridge deck from within the point cloud. A cell-based region growing was adapted for 
this step. The process begins by decamping the 3D point cloud into a 2D horizontal plane and a 2D bounding box 
demarcating the boundaries of entire the input data. The bounding box is defined as a pair of the corners [xmin, ymin] and 
[xmax, ymax] derived from the 3D point cloud. Next, a quadtree (Samet 1984) is employed to recursively subdivide the 
bounding box into 4 smaller adjoining 2D cells until the termination criteria, which in this case was only a maximum cell 
size of 0.5 m. Cells were classified as “empty” if the cell contained no data points or “full” if at least one point was present.  

As a full cell may contain point clouds from multiple bridge components (e.g. safety rail, bridge deck and pier, as 
shown in Fig. 4), a new algorithm was devised to eliminate bridge deck points. By observing a distribution of the point 
cloud within the cell in a vertical direction, it can be seen the point cloud of the bridge deck often in a form of the highest 
peak of a probability density shape. For example, the blue points in Fig. 4 showed the point cloud in the cells, while the 
red circle filled blue points are the point cloud of the bridge deck. Results of this filtering are to secure the cells only 
contains a point cloud of one of bridge’s component. 

  
a) Point clouds of safety rail and bridge deck b) Point clouds of curb, bridge deck and pier 

Fig. 4. Cells containing point clouds of different bridge components 

Next, a cell-based region growing is to partition a 3D point cloud of a bridge into sub-set point clouds representing 
to individual surfaces. In this study, it is assumed that the point cloud within the cell representing to a patch of the surface. 
As such, local surface features of each cell, which includes its normal vector and the residual, are computed for a 
segmentation process. The points within each cell are assumed to describe a plane for which the centroid (p0) of the 
surface (S) can be expressed as Eq 1. Using principal component analysis (PCA) enables determination of the surface 
normal n = (nx, ny, nz), which is the eigen-vector corresponding to the smallest eigen-value determined from the covariance 
matrix given in Eq 2. The surface of the cell can be expressed in the form S (p0, n). Finally, the distances, d(p, S), from 
all points in the cell to the surface S are computed, and the residual (res) is defined as the root mean square of these 
distances. 
𝑝" = 	

%
&

𝑝'(&
')%             (1) 

𝐶 = 𝑝'( − 𝑝" 𝑝'( − 𝑝" ,&
')%          (2) 

where p = (xi, yi, zi) Î R3 is x-, y-, z- coordinates of the data points. 
The cell-based region growing is a process to incrementally group adjoining cells having the local surface features 

satisfying conditions. The process starts with the cell having the smallest residual, which is herein called the searching 
cell. Adjoining cells are added to the region of the searching cell, if difference of the normal vectors and elevations is less 
than 2.5°and 50 mm respectively, as established empirically. Having two conditions help ensure continuity of the region. 
New adding cells are then considered searching cells, if the residual values of these cells are less than the residual 
threshold, which is empirically selected by 10 mm. This condition aims to set the seeding cell must be represented a 
smooth patch of the surface. The process continues until all cells are exhausted. The process implemented herein is similar 
to works of Vo et al. (Vo et al. 2015).  

Since a cell on a region boundary may contain multiple component surfaces (e.g. a traffic lane and a pedestrian path), 
results at this stage may be over- and/or under-segmented. To address this, backward and forward algorithms are 
introduced. The backward algorithm is to solve the over-segmentation issue, where the point clouds of other regions were 
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segmented to the current region. The forward algorithm is for the under-segmentation, where the point clouds of the 
current region have not yet included can be seek and merged to the region. From the cell Ci on the boundary of region Ri, 
its neighbour cells, Cj were extracted. The Cj points were classified into 1 of 3 groups: (1) interior cell(s), Ck of Ri, (2) 
boundary cell(s), Cl of Ri, and (3), out-region cell(s) Cm of Ri. Next, the fitting surface Sl was created from the point 
clouds within Ck by using PCA. In the backward algorithm, the points (pi) in Ci were removed, if the distance, d(p, Sl), 
exceeds than the distance threshold of 10 mm. Similarly, in the forward algorithm, points (q) in Cm were merged into Ri 
if the distance, d(q, Sl), fails to exceed the distance threshold of 10 mm. Figure 5a-d illustrates the backward and forward 
algorithms, while Fig. 5e shows the automatically extracted bridge deck. Finally, performance pf the proposed method 
was evaluated by comparing the point cloud of the bridge pavement extracted to manually extracted reference data. This 
resulted in an F1-score of 0.95, with an execution time of only 171.4 seconds when implemented in Matlab script and run 
on an HP 2570p with a i7-3520M CPU @ 2.9 GHz and 16GB RAM. 

  

 
The data points of a pavement surface of the 

bridge was rendered in a red color. 

a) A point cloud of Ri and adjacent segments b) Classification of neighbour cells 

  
c) Result of the backward algorithm d) Result of the forward algorithm e) Segmentation results 

Fig. 5. Cell-based region growing segmentation for extracting a pavement surface of a bridge 

5. Bridge deck condition 

5.1 Patch deterioration 

A goal of Part III is to identify bridge deck damage in the form of patch deterioration and cracking, although other damage 
types may be present. The patch deterioration is parts of the surface to be loosed and/or filled additional material during 
road pavement maintenance. In this case, patching often differs from undamaged areas in term of geometry and possibly 
texture. As such, in this study, areas were considered as the patch deterioration if the elevations of the point clouds of the 
areas differ from the un-damaged surface, which can be obtained by fitting through all point clouds of the bridge deck. 
However, to minimize negative impact of the point cloud of damaged area to the fitting surface, it was assumed the patch 
deterioration was taken account of a small portion of the bridge deck. The fitting surface of the bridge deck (expressed in 
Eq 3) can be obtained by employing a 3D curve fitting algorithm the built-in Matlab software (MathWorks 2016). The 
fitting results showed an R-square value of 0.998 with an RMS of 12.7 mm, implying that the fitting surface can be 
represent the undamaged condition of the bridge deck. Additionally, elevation differences (ef) from the point cloud to the 
fitting surface were then computed according to Eq 4.  
S(x, y) = 47.32 -0.03*x + -0.04*y -0.002xy -0.003*x2 -0.0007*y2     (3) 
efi = zi – S(xi, yi)           (4) 
where x and y are x- and y- coordinates of the point cloud, while xi, yi and zI are coordinates of a point pi in the data set. 
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a) Distribution of ef b) Distribution of patch deterioration 
Figure 6. Identifying patch deterioration of a bridge deck 

Results showed ef varying from -114.1 mm to 100.2 mm, with a mean (µ) of 0.0 mm and the standard deviation (s) 
of 12.7 mm (Fig. 6a). The area of each range ef is shown in Fig. 6b. Patch deterioration with ef in the range from µ ± 
1s to µ ± 2s is around 247.8 m2 with 28.8% of the bridge deck (Fig. 6b). Moreover, the damaged patch had an ef 25.4mm 
- 38.1mm ([µ + 2s, µ ± 3s]) across 46.8 m2 or about 5.4% of the total area of the bridge deck. Interestingly, damage 
patches having an ef larger than 38.1mm are mostly on the boundary of the pavement surface. That is because the over-
segmentation still presents, where parts of the point cloud of the pedestrian lane were included in the bridge deck segment. 

5.2 Cracking extraction 

In undamaged areas, a point cloud’s sampling step (i.e. distance between two adjacent data points) is typically equal, 
except for missing data. The sampling step is larger at locations where cracking is present because of surface 
discontinuities in these locations. According to Laefer et al. ( 2014) a crack can be detected in a point cloud if the crack 
width is larger than two times the sampling step. However, in practice, noise and mixed data points interfere with this 
process (Truong-Hong et al. 2016). Interestingly, by observing the texturing surface, it can be seen that the cracks present 
as dark regions while un-cracked areas are bright ones (Valença et al. 2017). Therefore, colours of the point cloud can be 
good features for classifying whether the points in the crack area or not.  

Based on these observations, a machine learning technique in the form of Autoencoders-based one class was 
employed to identify cracked regions on the bridge pavement. An autoencoder is a neural network consisting of two parts: 
encoder and decoder. The encoder plays as a feature extractor that explicitly represents input data X in a feature space. 
Let fq denote the encoder, and X = {x1, x2,…, xn} be a dataset. The encoder fq maps the input xi into a latent vector zi = fq 
(xi), where zi is the code or latent representation of xi. The decoder gq map zi back into the input space, which forms a 
reconstruction 𝑥. = gq  (zi). The encoder and decoder are commonly represented as single-layer neural networks in the 
form of non-linear functions of affine mappings as follows: 
fq  = ys(W1x + b1)                     (5) 
gq  = yg(W2x + b2)                  (6) 
where W1, W2 and b1, b2 are the weight matrices and biases of the encoder and decoder, ys and yg are the activation 
functions of the encoder and decoder, such as a sigmoid or tanh function. 

Autoencoders learn to minimize the reconstruction error (RE) between the input and its reconstruction values at the 
output layer with regard to the parameters θ = {W1, W2, b1, b2}. The reconstruction loss function can be the mean squared 
error (MSE) or the cross-entropy loss. By compressing input data into a lower dimensional space, the classical 
autoencoder avoids simply learning the identity and removes redundant information (Japkowicz, et al. 1995). As such, 
AEs are often applied for constructing one-class classifiers (Cao et al. 2016; Cao et al. 2018). Thus, the REs can be used 
as classification score, which means that a query point having classification score below a pre-determined threshold is 
classified in the in-class, and otherwise it is categorized as the out-class.   

In this experiment to develop a model to predict crack areas, point clouds of the crack regions were manually 
extracted (Fig. 7a). A total of 12,164 points was used as a training data set. The AE was designed with two hidden layers, 
and three neurons in each, with the aim to reduce the number of hyper-parameters of the AE, Adadelta algorithm (Zeiler 
2012) together with early-stopping techniques (Prechelt 1998) were employed. 

After a learning model was created, two data sets extracted from the entire data set of the pavement surface of the 
bridge deck were used to predict crack locations. Results of the prediction are shown in Fig. 7b and c. A visualisation 
evaluation showed that most of the cracks in Data set 2 and 3 were extracted (Fig. 7b and c). However, the method was 
given to over-prediction, where along boundaries of the bridge deck, where these regions were mistakenly classified as 
cracks because of having similar colors to the crack locations. This issue can be eliminated by introducing a further step 
comparing shapes of the predicted cracking to a real one.  Moreover, additional attributes of the point cloud may be 
included in a training model to improve an accuracy of the classifier.  

6. Conclusions 
1. A cell-based region growing was proposed to automatically extract a point cloud of the bridge deck. The 

evaluation was showed the proposed method can extract the bridge deck with F1-score of 0.95 and processed 
more than 12 million data points in 174.1 seconds 

2. Patch deterioration of the bridge deck was automatically identified by comparing elevations of the point cloud 
to the undamaged bridge deck surface. Both location and area of the patch can be reported and used for decision 
making and bridge management. However, an evaluation of the proposed method should be evaluated against 
an independent method.  

3. Implementation of deep learning in the form of an Autoencoder-based one class was successful in extracting 
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most of cracks in the bridge deck, in which only RGB colors of the point cloud were used in the training model. 
Over-extraction occureed along bridge deck boundaries, but can be solved by analysing shapes of the extracted 
cracks. Furthermore, additional attributes of the point cloud can be used in learning the model to improve an 
accuracy.    

      
a) Data set 1 and the training data b) Data set 2 and  resulted cracking c) Data set 3 and  resulted cracking 

Note: color points is either a training data or resulted cracking predicted from a machine learning model 
Fig. 7. Illustrated results of cracking extraction from Autoencode-based one class 
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