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We consider a two-tier inventory management system with one retailer and one supplier. The retailer serves

a demand driven by a stationary moving average process (of possibly infinite order) and places periodic

inventory replenishment orders to the supplier. In this setting, we study the value of information sharing and

its impact on the retailer’s optimal ordering strategy. We argue that information sharing affects performance

through two key cost drivers: (i) on-hand inventory variability and (ii) replenishment order variability. We

characterize a “Pareto frontier” between these two sources of variability by identifying optimal inventory

replenishment strategies that trade-off one type of variability for the other in a cost efficient way. For the

case in which the retailer is able to share her complete demand history, we provide a full characterization of

the efficient frontier, as well as of an optimal replenishment policy. On the other hand, when the retailer is

not able (or willing) to share any demand information we provide a partial characterization of an optimal

solution and show that information sharing does not always add value. We also show that the question of

identifying conditions under which information sharing does offer value reduces to a delicate analysis of the

invertibility (in a time series sense) of a specific stationary process.
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1. Introduction

Overview: The implementation of efficient inventory replenishment policies, in the context of de-

centralized supply chain systems, relies heavily on the ability of the different supply chain members

(e.g., retailers, distributors, manufacturers and suppliers) to forecast future demand and adjust

production and inventory levels accordingly. Lack of demand information and poor visibility of

inventory positions throughout the system lead to suboptimal performance in terms of operating

costs (excessive inventory) and service level (in the form of unsatisfied demand and backorders).

There exists an extensive body of work in the supply chain management literature dedicated

to measure the value of information sharing and to study the design of contractual agreements
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to support the exchange of demand and inventory data among different supply chain members;

see, for example, Gavirneni et al. (1999), Lee et al. (2000), Aviv (2001, 2007), Chen (2003), Gaur

et al. (2005), Giloni et al. (2014) and references therein. The goal of this paper is to contribute to

this stream of literature by shedding some light on how information sharing impacts performance

through two key cost drivers: (i) on-hand inventory variability and (ii) replenishment order vari-

ability. In particular, our work aims at providing a simple characterization of the tension between

these two forms of variability as well as the underlying mechanism that connects them.

At a high level, the approach that we take to analyze the value of information sharing in supply

chains resembles the one used by Graves et al. (1998) in the context of material requirement

planning (MRP) systems and is motivated by the fact that inventory replenishment policies have

a direct and an indirect effect on the operating costs of a firm.

Direct Cost Effect: On one hand, a replenishment policy impacts the evolution of the physical

flows of inventory stocks and therefore has a direct effect on a firm’s holding and backordering

costs. The problem of minimizing these direct inventory costs has been at the forefront of most

of the traditional literature on inventory theory (see, for example, Zipkin 2000). As we will argue

later, under some mild stationarity assumptions on demand and costs, we can use the volatility of

a firm’s on-hand inventory to quantify this direct cost effect.

Indirect Cost Effect: On the other hand, an inventory replenishment policy also impacts the

cost structure of upstream suppliers that replenish these orders. Indeed, the empirical literature

on supply chain management and the bullwhip effect (see Lee et al. 1997, 2004 and references

therein) argues that orders’ volatility is one of the fundamental drivers of system inefficiencies and

inventory costs; in the form of unplanned purchase of supplies, inefficient utilization of production

capacity and overtime, excess warehousing and transportation, among many other factors∗. Thus,

one should expect that an increase in order volatility should translate into higher procurement and

inventory costs in the long run.

It is our impression that the problem of minimizing these indirect inventory costs has received

much less attention in the inventory management literature, possibly because they materialize

gradually over time and therefore can be less visible and much harder to quantify. However, forward-

looking firms should make an effort to internalize the relationship between ordering decisions and

their suppliers’ performance and costs. In establishing this connection we argue that what matters

is not the volatility of the order process per se but rather the volatility of the forecast error of these

∗ By some estimates these inefficiencies can increase inventory costs by as much as 12.5% to 25%, see Kurt Salomon

Associates (1993).
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orders as computed by upstream supply chain members. The point here is that the inefficiencies

mentioned above are not exclusively driven by the fluctuations of a firm’s orders but rather they

are triggered by the inability of its suppliers to anticipate these orders and optimize production and

distribution accordingly; i.e., what matters is the forecast error experienced by upstream suppliers

as they forecast their own demands.

Motivated by the previous discussion, in this paper we address the following research questions:

- First, how do the volatilities of inventories and orders’ forecasts depend on the inventory

replenishment strategy of a firm?

- Second, is it possible to characterize a “Pareto frontier” between these two sources of variability

by identifying optimal inventory replenishment strategies that trade-off one type of variability for

the other in a cost efficient way? Furthermore, what is the structure of these optimal ordering

policies?

- Finally, is it possible to quantify the value of information sharing and its impact on the ordering

process of a firm and its inventory related costs?

Summary of Methodology and Results: We investigate these research questions in the context

of a two-tier supply chain with a single retailer and a single supplier as depicted in Figure 1.

	DtOt
Demand Replenishment

Orders




Retailer

It
R: Inventory Market



Supplier

It
S: Inventory

Manufacturing
Source Production

Requests

Pt

Figure 1 A two-tier supply inventory system.

In our model, we assume that the retailer observes a demand driven by a stationary and invertible

moving average processDt of possibly infinite order. We also assume that the retailer places periodic

inventory replenishment orders Ot to the supplier and that these orders also admit a representation

given by a stationary (not necessarily invertible) moving average process. Finally, the supplier

replenishes his inventory placing production requests Pt to an uncapacitated manufacturing source.

(We will use female pronouns to refer to the retailer and male pronouns to refer to the supplier.)

The focal point of this paper is to study how the retailer should place her replenishment orders

Ot so as to minimize her long-term average inventory and procurement costs. To do this, we

argue that the connection between Ot and the retailer’s operating costs can be captured using two

specific variability measures: (A detailed mathematical description of the model will be provided

in Section 2)
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• Inventory variability: σ2
I := limt→∞Var(IR

t |MD(t)). This is the stationary variance of the

retailer’s on-hand inventory IR
t conditional on MD(t), the history of observed demand.

• Mean squared forecast error (MSFE): σ2
S := Var

[
Ot+1−E[Ot+1|MS(t)]|MS(t)

]
, where

MS(t) is the supplier’s available information in period t. Depending on the degree of collaboration

between the retailer and the supplier,MS(t) can include the history of orders as well as additional

demand information that the retailer is willing to share. Two extreme cases of interest are: (a) no

information sharing in which MS(t) is generated exclusively by {Ot} and full information sharing

in which MS(t) is generated by both {Ot} and {Dt}.

The notion that σI has a direct impact on the retailer’s operating costs is rather intuitive as

holding and backordering costs are directly impacted by the volatility of her inventory process. On

the other hand, the indirect relationship between σS and the retailer’s costs can be less evident and

will be discussed in detail in Section 6 using the supply chain system depicted in Figure 1. In the

meantime, just to help the reader get some intuition, consider the retailer’s per-period procurement

costs wROt, where wR is the per unit wholesale price that the supplier charges the retailer. If the

planning horizon is sufficiently large, it is reasonable to assume that more volatile orders translate

into higher operating costs for the supplier, which he will pass to the retailer in the form of a higher

wholesale price wR. Thus, a forward-looking retailer should make replenishment decisions taking

into account the fact that the wholesale price that she pays is a function of the variability of her

own orders, that is, wR =wR(σS).

For reasons that will become apparent in our analysis, we will distinguish and study the cases

with and without information sharing separately. For the case in which the retailer is able and

willing to share demand information with the supplier, we provide a complete characterization of

σS and σI and their relationship. In particular, we show that there exists a Pareto Frontier of pairs

(σ∗S , σ
∗
I ) that defines the efficient trade-off between these two sources of variability. The point is that

if the retailer wants to reduce the variability of her on-hand inventory she would have to increase

the volatility of her orders to the supplier (as measured by the MSFE induced by her orders), and

vice versa. Figure 2 depicts an example for the case in which market demand is given by a sequence

of iid normally distributed random variables.

The retailer’s choice of a particular pair (σ∗S , σ
∗
I ) depends on her specific preferences over these

two sources of volatilities. So, for example, if direct inventory costs are the primary cost component

then the retailer would like to minimize σI by selecting a strategy close to point ‘M’ in Figure 2. On

the other hand, if the indirect costs induced by the mean forecast error are more significant then

a replenishment strategy close to point ‘P’ would be more appropriate. (Note that in point ‘P’ the
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Figure 2 Locus of efficient volatility pairs (σ∗S, σ
∗
I ) under full information sharing for the case in which market demand is

driven by a sequence of iid normally distributed random variables with variance equal to one. (By Proposition 2

the Efficient frontier is independent of the mean demand.)

MSFE of the retailer’s orders is exactly equal to zero which means that the supplier can perfectly

predict the retailer’s order in advance.) Of course, points ‘M’ and ‘P’ are only extreme cases and

an optimal replenishment strategy needs to balance the tension between these two objectives.

We also analyze situations in which the retailer is unable (or unwilling) to share demand infor-

mation with the supplier and show that information sharing does not always add value. We also

show that the question of identifying conditions under which information sharing does offer value

reduces to a delicate analysis of the invertibility (in a time series sense) of a specific stationary

process. While the tools for checking invertibility numerically are available, a theoretical analysis

of the value of information sharing has proven to be very challenging. At this point, we can only

numerically observe and report a number of properties that an optimal replenishment policy should

satisfy under no information sharing. Although more work needs to be done to provide a complete

theoretical characterization of an optimal policy under no information sharing, we formulate a

non-linear optimization problem that can be used to approximately compute a solution that has

shown good numerical performance.

To illustrate some of the key takeaways of this paper, let us consider the example in Figure 3

that depicts the efficient frontiers associated with an optimal replenishment policy under full

information sharing and no information sharing, and compare them to four order smoothing policies

that have been proposed in the literature (a detailed description of these benchmark policies is

provided in Section 5):

- BGP-MA: Under this policy the retailer’s orders are equal to a moving average of the market

demand (see Balakrishnan, Geunes, and Pangburn 2004).
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- BGP-ES: In this case, the retailer’s orders are computed using exponential smoothing of the

market demand (see Balakrishnan, Geunes, and Pangburn 2004).

- GKH: Proposed by Graves, Kletter, and Hetzel (1998), this order smoothing policy is derived

by minimizing the variance of the order process subject to a constraint that upper bounds the

variance of the inventory process.

- CL: Finally, to quantify the effect of not internalizing the lack of invertibility of the retailer’s

orders, we consider a replenishment policy that minimizes cumulative supply chain (retailer and

supplier) costs under the assumption that the supplier is always able to obtain the retailer’s orders.

We note that this policy coincides with the order smoothing policy proposed by Chen and Lee

(2009) in those cases where the retailer’s orders are indeed invertible.
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Figure 3 Each plot depicts the efficient frontiers between the forecast error (MSFE) and the inventory volatilities under

full information sharing and no information sharing and compares them to one of the four benchmark policies:

BGP-MA, BGP-ES, GKH and CL. In this example, market demand is iid and normally distributed.

In evaluating the performance of the four benchmark policies, we have assumed that the retailer

does not share any demand information with the supplier. A first observation that emerges from

the example in Figure 3 is that the efficient frontier under full information sharing dominates

(i.e., produces simultaneously lower inventory and MSFE volatilities) the efficient frontier under

no information sharing, in turn dominates the other four benchmark policies.
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It is also worth noticing that the performance of the different policies appear to coincide in

the region where σS ≥ 0.5. In this region an efficient replenishment policy under full information

sharing turns out to be an invertible process and so, as we will show later in Proposition 3, it

is also implementable under no information sharing (see Example 2 in Section 4 for details). In

other words, in this region, sharing demand information offers no real value. On the other hand,

in the region where the retailer’s efficient replenishment policy under full information sharing is

not invertible, when σS < 0.5, information sharing can offer significant value. For example, under

full information sharing the retailer can select an ordering policy that is fully predictable by the

supplier (i.e., σS = 0) and at the same time keep the variability of her inventory process under

control (i.e., σI ≈ 1.4142). On the contrary, for all other policies, including an optimal strategy

under no information sharing, if the retailer tries to select a predictable ordering policy then the

variability of her inventory process will become unbounded.

The example in Figure 3 highlights the fundamental role that the notion of “invertibility” plays

when (i) selecting an optimal inventory replenishment strategy and (ii) determining the value of

information sharing. The goal of this paper is to shed some light on these issues by studying the

mechanisms that connect replenishment decisions and inventory costs with demand forecasting

information.

As a byproduct of our characterization of the efficient frontier between σS and σI, we are able

to contrast two alternative measures of the bullwhip effect. On one hand, we use the traditional

definition that computes the bullwhip as the the ratio of order volatility to demand volatility,

that is, Var(Ot+1)/Var(Dt+1). We also consider an informationally-adjusted version in which the

notion of variability that is used is the one that cannot be forecasted. In particular, we define

this informationally-adjusted bullwhip measure by Var(Ot+1|MS(t))/Var(Dt+1|MD(t)). Using a

set of numerical experiments, we show that these two measures can lead to significantly different

recommendations on what an optimal replenishment policy should be. We argue, however, that the

informationally-adjusted bullwhip provides a more accurate measure if we understand the bullwhip

effect as a measure that connects the propagation of orders’ variability and system inefficiencies.

We close this introduction by reviewing and positioning our results within the existing literature

in supply chain management. We also include a brief subsection at the end with some definitions

and notation.

1.1. Related Literature

In one of the first papers on information sharing in supply chains, Lee et al. (2000) consider a retailer

that serves an AR(1) demand with a nonnegative autocorrelation coefficient, and places orders with
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the manufacturer using a periodic-review order-up-to policy. In their model, both the manufacturer

and the retailer know the parameters of the demand process; however, the retailer might choose

not to share information about the actual realizations of demand with the manufacturer. Lee et al.

(2000) analyze this model and conclude that information sharing results in significant inventory

reduction and cost savings to the manufacturer. However, they qualify their results by noting that

information sharing could be less valuable if the manufacturer uses the historical stream of orders

from the retailer to forecast demand. Raghunathan (2001) further develops this idea and shows that

the value of information sharing indeed decreases monotonically with each time period, converging

to zero in the limit, under AR(1) demand with a nonnegative autocorrelation coefficient.

Zhang (2004) and Gaur et al. (2005) extend the original work of Lee et al. (2000) and Raghu-

nathan (2001) by studying the value of information sharing in supply chains where the retailer

serves an ARMA(p, q) demand as opposed to AR(1) demand. In each of these papers, the retailer

places orders with a supplier using a periodic review order-up-to policy. Both the supplier and the

retailer know the parameters of the demand process; however, the retailer may or may not choose to

share information about the actual realizations of demand with the supplier. Zhang (2004) studies

how the order process propagates upstream in a supply chain under the assumption that ARMA

demand to the retailer and all upstream players is invertible. In such a case, there would be no

value of information sharing to any of the players.

Zhang (2004) did not consider the case when demand becomes non-invertible (i.e., the current

shock cannot be obtained as a linear combination of present and past demand observations only)

at any stage of the chain, a phenomenon that Gaur et al. (2005) were first to point out can happen

even though the retailer’s demand is invertible. In other words, the supplier’s demand may not be

invertible with respect to the retailer’s shocks, even though the retailer’s demand is invertible with

respect to its own shocks. Although the order process proposed by Gaur et al. (2005) can be used,

their order process utilizes a suboptimal forecast as opposed to the best linear forecast of lead time

demand and, hence, results in larger inventory-related costs compared with those under the best

linear forecast as studied by Giloni et al. (2014).

Giloni et al. (2014) characterize where there is value to information sharing, describe those situ-

ations where there is potential benefit to the supplier if the retailer shares its demand information,

determine when the maximum possible benefit may arise, and extend the characterization to fur-

ther upstream players. They show that, in general, neither player (k − 1)’s order nor player k’s

demand is necessarily an ARMA process with respect to their respective shocks, even though the

retailer’s demand is ARMA. Instead, demand propagates in general according to a quasi- ARMA,

or QUARMA process, in which the most recent shock(s) may be absent.
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In a series of papers, Aviv (2001, 2002, 2003, 2007) investigates demand propagation and infor-

mation sharing in supply chains. In each of these papers, Aviv uses the Kalman filter to construct

best linear forecasts and studies cases where the retailer faces demand that has a linear state-space

representation. This includes stationary ARMA(p,q) demand models as well as more general non-

stationary ARIMA(p, d, q) demand models. Under this framework, he shows that the propagation

of demand is state-space-in, state-space-out; i.e., a given player’s demand and order both have

state-space representations. This forecasting approach can be applied to demand models that in

the presence of an infinite past would not be invertible. Furthermore, using such an approach,

one could determine the value of information sharing by comparing a supply chain player’s MSFE

under a sharing arrangement to the MSFE without a sharing arrangement.

Similar to the research by Aviv, Chen and Lee (2009) also consider a supply chain with a single

retailer that uses a Martingale Model of Forecast Evolution (MMFE) to forecast demand. They

focus on minimizing the supply chain costs and discuss the use of information sharing and various

supply chain coordination approaches including information sharing and order variability control.

They show the utility of a retailer sharing its projected future orders as opposed to its demand or

its demand forecasts in order to reduce the overall supply chain costs. Their paper is closely related

to our research since we both consider the tradeoff between the retailer’s and supplier’s inventory

related costs. We however focus on constructing the entire efficient frontier between the standard

deviations of the retailer’s and supplier’s inventory as opposed to identifying a single point in this

frontier in which cumulative supply chain costs are optimized.

Our study of the tradeoff between the standard deviations of the retailer’s inventory and the

supplier’s inventory is also related to the research of Graves et al. (1998). In their paper, they

study the tradeoff frontier of the retailer’s production smoothing and the standard deviation of

the retailer’s inventory. They use the single-stage problem as a building block for the more general

multistage supply chain problem.

Cui et al. (2015) studies a supply chain where a supplier receives orders that are an aggregate

of two processes due to the retailer placing an order that is generated by a standard inventory

policy coupled with order smoothing and a decision deviation process. This assumption is based

upon empirical evidence, where a planner does not place orders strictly according to a standard

inventory policy but rather deviate from it for a variety of reasons. They conclude that in such a

context, sharing the demand processes is almost always valuable. Without the additional process,

they cite Giloni et al. (2014) in pointing out that there is value to information sharing if and only if

the retailer’s order is non-invertible. Indeed, in our paper, determining whether or not the retailer’s
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order is invertible with respect to its shocks is a crucial component. However, in our paper, the

concept of the “value of information sharing” is more subtle than in the existing literature. The

existing literature compares the inventory-related cost of a fixed policy with and without sharing.

And it follows from Giloni et al. (2014) that the two costs are the same if and only if the order is

invertible with respect to the retailer’s shocks. In this paper, we seek to compare the costs (direct

and indirect) of an optimal policy under sharing with a (possibly different) optimal policy under

no sharing.

1.2. Notation and Definitions

Let X = {Xt : t∈Z} denote a discrete-time Gaussian and stationary stochastic process.

- Linear Past MX(t): We denote by MX(t) := sp{1,Xt,Xt−1, . . .} the linear past of X, that

is, the Hilbert space generated by {1,Xt,Xt−1, . . .} with inner product given by the covariance

operator.

- Linear forecast mX(t): We define mX(t) :=E[Xt+1|MX(t)] to be the linear forecast of Xt+1

conditional on the past history MX(t).

- Mean squared forecast error (MSFE) σ2
X(t):

σ2
X(t) :=E

[
(Xt+1−mX(t))2

∣∣MX(t)
]
.

When X is a stationary process the MSFE is independent of t and we write σ2
X.

- Invertibility: We say that a process X is invertible with respect to a Gaussian white noise

sequence ξ = {ξt : t∈Z} ifMX(t) =Mξ(t), that is, if the linear past of X coincides with the linear

past of ξ.

- Convergence exponentially fast: We say that a real-valued sequence {xk}k≥0 tends to

zero exponentially fast if there exist positive constants c1 and c2 such that for all k≥ 0,

|xk| ≤ c1 exp(−c2 k).

- Order in probability Op(1): We say that X is Op(1) if for every ε > 0 there exist an M

and N such that

P(|Xt|>M)< ε, for all t >N.

2. Single-Stage Inventory Managment System

In this section, we propose a mathematical model to establish the connection between the retailer’s

ordering policy Ot and the variability of her on-hand inventor σI and the root mean squared forecast
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error σS in the context of a single-stage inventory management system as depicted in Figure 4. The

analysis and results of this single-stage model constitute a building block that we will use later, in

Section 6, to study the two-tier supply chain system in Figure 1.

Demand Orders



On-Hand Inventory
MarketSupplier

DtOt

Retailer

It = It�1 + Ot�1 � Dt

Figure 4 A single-state inventory system.

The retailer’s demand is given by an exogenous stochastic process {Dt : t ∈ Z}, where Dt is the

market demand in period t. Throughout the paper, we will make the following assumption about

this demand process.

Assumption 1 (Market Demand) There exists a sequence Ψ = {ψn}n≥0 with ψ0 = 1 that tends

to zero exponentially fast such that the retailer’s demand {Dt} admits a one-sided MA(∞) repre-

sentation with respect to a Gaussian white noise sequence {εt} (with E[εt] = 0 and Var[εt] = σ2
ε )

given by

Dt = d+
∞∑
n=0

ψn εt−n, (1)

where d > 0 is the per-period mean demand. Furthermore, we assume that {Dt} is invertible with

respect to {εt}.

Remark 1 A few comments about this assumption are in order. First, it is worth noticing that the

representation of the demand process in equation (1) is not particularly restrictive as any stationary

ARMA process admits such a representation. At the same time, the one-sided moving average repre-

sentation does imply that {Dt} is weakly stationary and so we are excluding non-stationary ARIMA

processes and all other non-stationary processes. Second, under the stationarity assumption, the invert-

ibility requirement entails no loss of generality since the demand to the retailer is exogenous so she sees

only {Dt} from which she must construct a set of shocks that span the same linear past as {Dt}, that

is, MD(t) =Mε(t) (see Section 1.2 for definition). For the same reason, the normalization ψ0 = 1 is

also imposed without loss of generality to ensure the identifiability of the demand model. �

The retailer serves the demand Dt from a stock of on-hand inventory that she replenishes by

placing orders every period to an external supplier. We let Ot denote the order placed by the

retailer in period t and assume a one-period replenishment lead-time, i.e., the supplier delivers

the order Ot in full at the beginning of period t+ 1. We also assume that excess demand is fully
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backlogged. It follows that the retailer’s inventory It at the end of period t evolves according to

the material-flow equation:

It = It−1 +Ot−1−Dt t= 1,2, . . . . (2)

The retailer’s objective is to minimize her long-term average procurement plus inventory costs.

If we let CR
t (Ot, It) denote the retailer’s cost in period t, as a function of her order quantity Ot and

inventory level It, then her inventory management problem is given by:

ΠR := inf
Ot

limsup
T→∞

1

T
E

[
T∑
t=1

CR
t (Ot, It)

]
. (3)

In order to solve the optimization problem in (3) we need to further specify the structure of the

retailer’s cost function CR
t . For example, it is a standard practice in the inventory management

literature to assume a linear cost function of the form CR
t (Ot, It) = wOt + hI+

t + b I−t , where w

is the per-unit procurement cost (or wholesale price) and h and b are the retailer’s per-unit per-

period holding and backordering costs, respectively. For the moment, instead of choosing a specific

functional form for CR
t , we will assume that the retailer’s long-term average cost is a function of

the volatility of the inventory σI and order process σS. (A precise definition of σI and σS will be

given shortly). Mathematically, we assume that there exists an increasing function CR(σI, σS) such

that

limsup
T→∞

1

T
E

[
T∑
t=1

CR
t (Ot, It)

]
= CR(σI, σS). (4)

Implicit in this expression is the fact that both σI and σS depend on the retailer’s inventory

repleneshiment strategy {Ot}.

Our motivation to write the retailer’s problem in (4) in terms of an abstract cost function

CR(σI, σS) is to both highlight and isolate the two distinctive cost effects associated with an in-

ventory replenishment policy that we discussed in the Introduction: (i) the direct operating costs

associated with the retailer’s on-hand inventory and (ii) the indirect replenishment costs associ-

ated with the variability of her orders. Later, in Section 6, we will consider a concrete example to

illustrate how these two effects can be quantified and how one can derive equation (4) in the case

that the retailer’s cost takes the standard linear form CR
t (Ot, It) =wOt+hI+

t + b I−t . We also refer

the reader to Bray and Mendelson (2012) for another example of a two-tier supply chain model in

which the retailer optimizes a cost function that admits a representation like the one in equation

(4) in which the functional CR is linear in σI and σS.
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2.1. Inventory Variability: σ2
I

In this section, we provide an expression for σI in terms of the demand and order process. We start

by making the following assumption:

Assumption 2 (Retailer’s Inventory Replenishment Policy) The retailer’s orders {Ot}
admit a one-sided MA(∞) representation

Ot = d̃+
∞∑
n=0

ψ̃n εt−n, (5)

with respect to the white noise sequence {εt} defined in Assumption 1 and where the sequence

Ψ̃ = {ψ̃n}n≥0 tends to zero exponentially fast.

Remark 2 Under Assumption 1, the demand process is invertible and this guarantees that the retailer

is able to infer her demand shocks {εt} and therefore select an order process as in equation (5). Note

that the assumption implies that Ot is a stationary process. It is also worth pointing out that since

Ot is based on the same shocks observed by the retailer, that is, Ot contains no additional exogenous

source of variation introduced by the retailer (see Cui et al. (2015) for a model in which the retailer

randomizes her orders and introduces additional random shocks). �

To ensure that the retailer’s inventory process in equation (2) is stable under a replenishment

policy defined by (5), we have to restrict the set of values of d̃ and {ψ̃n}n≥0 over which the retailer’s

minimizes her average long-term cost.

Definition 1 (Admissible Policy) A replenishment policy (d̃,{ψ̃n}n≥0) is said to be admissible if

{ψ̃n}n≥0 tends to zero exponentially fast and the following two conditions are satisfied: (i) d̃ = d

and (ii)
∑∞

n=0 ψ̃n =
∑∞

n=0ψn.

Condition (i) simply requires that the mean amount ordered per period d̃ must be equal to the

mean demand per period d. This is a natural requirement since otherwise the inventory would

either grow or decrease unboundedly depending on whether d̃ > d or d̃ < d, respectively. For this

reason, in what follows we set d̃= d and drop the dependence of the retailer’s ordering strategy on

d̃ and refer to Ψ̃ = {ψ̃n}n≥0 as the retailer’s inventory replenishment policy.

Condition (ii) is also needed to ensure that the variance of the inventory process It remains

bounded. To see this, first note that by iterating the inventory dynamics in equation (2) we get

that It satisfies

It = I0 +
t∑

n=1

(On−1−Dn) = I0 +D0−Dt +
t−1∑
n=0

rn, (6)
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where rn :=On−Dn =
∞∑
k=0

(ψ̃k−ψk) εn−k.

Hence, for the variance of It to remain bounded we need the variance of the sum of the {rn} in

equation (6) to remain bounded as t goes to infinity. To verify this condition we make use of the

following intermediate result.

Lemma 1 For a fixed admissible ordering policy, Ψ̃ = {ψ̃n}n≥0, define the sequence {gn}n≥0 by

g0 := 0 and gn :=
n−1∑
k=0

(ψ̃k−ψk), n= 1,2, . . . .

Under the conditions in Assumptions 1 and 2

t−1∑
n=0

rn =
∞∑
n=1

gn εt−n−
∞∑
n=1

gn ε−n.

Note that this expression is Op(1) since gL→ 0 exponentially fast by Assumptions 1 and 2. The

first term is a stationary time series, the second term is a constant and the covariance between

the first and second terms goes to zero as t→∞. We summarize the previous discussion in the

following proposition.

Proposition 1 Under Assumptions 1 and 2, the variance of the inventory process It is bounded

for any admissible replenishment policy Ψ̃ = {ψ̃n}n≥0.

Remark 3 (Initial Inventory) Combining the representation of the retailer’s inventory process in

equation (6) and the result in Lemma 1, we get the following alternative representation for It,

It = I0 +D0−
∞∑
n=1

gn ε−n +
∞∑
n=1

gn εt−n−Dt = Ĩ0 +
∞∑
n=1

gn εt−n− (Dt− d), (7)

where Ĩ0 := I0 +D0− d−
∞∑
n=1

gn ε−n.

From Remark 1, it follows that Ĩ0 ∈MD(0). Hence, we can view Ĩ0 as an additional degree of free-

dom that the retailer can set to further minimize her inventory cost. We will return to this point in

Section 6.2. �

From the MA(∞) representation of Dt in equation (1) and the representation of It in Remark 3,

we get that

It = Ĩ0 +
∞∑
n=0

(gn−ψn) εt−n.
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Hence, conditional on MD(0), the retailer’s inventory It is normally distributed with mean and

variance given by

E[It|MD(0)] = Ĩ0 +
∞∑
n=t

(gn−ψn) εt−n and Var(It|MD(0)) = σ2
ε

t−1∑
n=0

(gn−ψn)2,

respectively. It follows that, conditional onMD(0), It converges in distribution to a Normal random

variable I∞ with mean and variance

µI := lim
t→∞

E[It|MD(0)] = Ĩ0 and σ2
I := lim

t→∞
Var(It|MD(0)) = σ2

ε

∞∑
n=0

(gn−ψn)2, (8)

respectively. When convenient, we will write σ2
I (Ψ̃) to emphasize the dependence of the inventory

volatility on the replenishment policy Ψ̃ = {ψ̃n}n≥0.

2.2. Mean Squared Forecast Error: σ2
S

Let us now turn to the derivation of σ2
S(Ψ̃), the mean squared forecast error associated with the

replenishment policy Ψ̃ = {ψ̃n}n≥0. To this end, let MS(t) be the supplier’s information available

in period t. Given this information, the supplier’s best linear forecast of the retailer’s order Ot is

equal to mS(t) :=E[Ot+1|MS(t)] and the mean squared forecast error (MSFE) is given by

σ2
S =Var[(Ot+1−mS(t))|MS(t)] t= 1,2, . . . (9)

(The fact that σ2
S is independent of t follows from the stationarity of Ot in Assumption 2.)

In general, the information contained inMS(t) is at least as large as the information generated by

the linear past of the retailer’s orders {Ot} and at the same time it is contained in the information

generated by the retailer’s demand shocks {εt}, that is, MO(t)⊆MS(t)⊆Mε(t). For the purpose

of this paper, we will only consider the two extreme cases (see Kovtun et al. (2014) for further

discussion on other cases with intermediate levels of information) :

• Full Information Sharing: MS(t) =Mε(t). In this case, the retailer is willing and able

to share her demand shock information with the supplier. It follows from (5) that the supplier’s

linear forecast is equal to mS(t) = d+
∑∞

n=1 ψ̃n εt+1−n and so the mean squared forecast error in

equation (9) reduces to

σ2
S|FI(Ψ̃) := ψ̃2

0 σ
2
ε . (10)

(The subscript ‘FI’ is mnemonic for Full Information.)
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• No Information Sharing: MS(t) =MO(t). In this case, the only information available to

the supplier is the one generated by the retailer’s orders {Ot}. We can use Kolmogorov’s formula

(see §5.8 in Brockwell and Davis 2006) to express σ2
S in equation (9) in terms of the retailer’s

replenishment policy parameters Ψ̃ = {ψ̃k}k≥0 to get

σ2
S|NS(Ψ̃) := σ2

ε exp

(
1

2π

∫ π

−π
log
(
ψ̃(e−iλ)ψ̃(eiλ)

)
dλ

)
, where ψ̃(z) :=

∞∑
n=0

ψ̃n z
n (11)

is the autocovariance generating function of the retailer’s orders {Ot}. (The subscript ‘NS’ is

mnemonic for No Information Sharing.)

Using the results in (10) and (11), we can derive the following simple bounds for the value

of the supplier’s mean squared forecast error under no information sharing as a function of the

replenishment policy parameters Ψ̃ = {ψ̃n}n≥0.

Lemma 2 (Bounds on MSFE) The mean squared forecast errors σ2
S|FI

(Ψ̃) and σ2
S|NS

(Ψ̃) satisfy

ψ̃2
0 σ

2
ε = σ2

S|FI(Ψ̃)≤ σ2
S|NS(Ψ̃)≤ σ2

ε

∞∑
n=0

ψ̃2
n.

Example 1 Consider the case in which the retailer’s orders are generated according to the MA(1)

process Ot = d+ εt + θ εt−1, for some parameter θ ∈R and assume there is no information sharing.

Figure 5 depicts the value of the supplier’s mean squared forecast error σ2
S as well as the bounds in

Lemma 2 as functions of θ for the case in which the innovation variance is equal to one.

−3 −2 −1 0 1 2 30

1

2

3

4

5

6

7

8

9

10

Mean Squared Forecast Error: σ2
S

θ

Upper Bound

Lower Bound

Figure 5 Supplier’s mean squared forecast error under no information sharing when orders follows an MA(1)

process Ot = d+ εt + θ εt−1 with σε = 1.

A few remarks about this figure are in order. First, it is worth noticing that when θ ∈ [−1,1],

the lower bound is tight. This is due to the fact that for θ ∈ [−1,1] the corresponding order process
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{Ot} is invertible with respect to the demand shocks {εt} and so MO(t) =Mε(t). In other words,

information sharing has no impact on the supplier’s available information when θ ∈ [−1,1] as he

can recover the demand shocks {εt} directly by inverting the retailer’s order process. It follows that

σ2
S|NS

= σ2
S|FI

in this case.

On the flip side, for θ 6∈ [−1,1], the order process is not invertible and the value of σ2
S|NS

gets

closer to the upper bound as θ increases. Indeed, using the expression for σ2
S|NS

in equation (11),

one can show that

lim
|θ|→∞

σ2
ε

∑∞
n=0 ψ̃

2
n

σ2
S|NS

= 1. �

3. Inventory Policies under Full Information Sharing

Now that we have expressed the values of σI(Ψ̃) and σS(Ψ̃) in terms of the retailer’s replenishment

policy Ψ̃ = {ψ̃n}n≥0, we can turn to the question of how the retailer should select the parameters

{ψ̃n} to minimize her average cost. To answer this question we would need to specify the cost

function CR(σI, σS) appearing in equation (4). Instead, we will tackle this problem in a different

way by characterizing a Pareto efficient frontier E of pairs {(σ∗I , σ∗S)} such that for any increasing

cost function CR the retailer’s optimal ordering strategy is such that the corresponding root mean

squared forecast error σS and inventory volatility σI belong to this Pareto frontier. As we will see,

our ability to compute E depends critically on the type of collaboration between the retailer and the

supplier. If the retailer is willing to share her demand information then a simple representation of

the Pareto frontier can be obtained. On the other hand, under no information sharing the problem

is significantly more involved and we are only able to provide a partial characterization of E .

To this end, let us consider the following optimization problem:

Σ(σ) := inf
Ψ̃={ψ̃n}n≥0

{
σI(Ψ̃) subject to σS(Ψ̃)≤ σ and

∞∑
n=0

ψ̃n =
∞∑
n=0

ψn

}
.

In words, this optimization searches (over the set of admissible ordering policies {ψ̃n}n≥0) for the

minimum value of σI subject to the constraint that σS must be bounded above by the value σ.

Since we are assuming that the cost function CR(σI, σS) is increasing in both arguments, an optimal

replenishment policy Ψ̃∗ must satisfy σI(Ψ̃
∗) = Σ

(
σS(Ψ̃

∗)
)
.

It follows from the discussion in the previous section that the complexity of characterizing the

mapping Σ(·) depends directly on the type of information available to the supplier. Let us first

discuss the more tractable case with full information sharing, MS(t) =Mε(t), in this section and

postpone to the following section the case in which there is no information sharing.
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Using the representations of σI and σS|FI in equations (8) and (10), respectively, we can rewrite

the optimization problem that defines Σ(·) under full information sharing as follows:

ΣFI(σ) := inf
Ψ̃
σε

√√√√ψ2
0 +

∞∑
n=1

(gn−ψn)2 (12)

subject to σε |ψ̃0| ≤ σ, (13)
∞∑
n=0

ψ̃n =
∞∑
n=0

ψn, g0 = 0 and gk =
k−1∑
n=0

(ψ̃n−ψn), k= 1,2, . . . . (14)

Although this optimization has an infinite number of decision variables, it admits a surprisingly

simple solution.

Proposition 2 Under full information, when MS(t) =Mε(t),

ΣFI(σ) = σε

√
ψ2

0 +
( σ
σε
− |ψ0 +ψ1|

)2

and the corresponding optimal solution Ψ̃ = {ψ̃n}n≥0 is given by

ψ̃0 = sign(ψ0 +ψ1)
σ

σε
, ψ̃1 =ψ2 +ψ1 +ψ0− ψ̃0 and ψ̃n =ψn+1 for all n≥ 2. (15)

Note that the optimal replenishment policy in (15) is parametrized by the value of σ ∈ R+. By

varying this parameter, we can define the set EFI of efficient pairs (σS, σI) in the sense of Pareto opti-

mality. That is, since the retailer would like to simultaneously minimize both types of variabilities,

there is a subset of volatility pairs (σS, σI) that are efficient in the sense that they collectively dom-

inate every other achievable pair. Using the result in Proposition 2, we characterize this efficient

frontier in the following Definition.

Definition 2 (Efficient Replenishment under Full Information) Given a demand process Dt with

MA(∞) representation as in equation (1), we say that an inventory replenishment policy Ot is

efficient if the resulting mean squared forecast error and inventory variance pair (σ2
S|FI
, σ2

I ) induced

by Ot belongs to the set

EFI :=

{
(σS, σI) : 0≤ σS ≤ σε |ψ0 +ψ1| and σI = σε

√
ψ2

0 +
(σS

σε
− |ψ0 +ψ1|

)2
}
.

Interestingly, the set EFI depends on the parameters of the demand process Ψ = {ψn}n≥0 only

through the first two terms ψ0 and ψ1 and is independent of the values {ψn}n≥2. An example of

EFI for the case in which market demand is IID (with σε = ψ0 = 1 and ψn = 0 for all n ≥ 1) was

depicted in Figure 2.
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Extreme Cases: There are two distinctive efficient inventory replenishment policies that are worth

highlighting. They correspond to the extreme points of the efficient frontier EFI.

-) Predictable Orders: (P) The retailer can choose a replenishment policy that completely

eliminates the supplier’s root mean squared forecast error making her orders completely predictable.

From the result in Proposition 2, this can be achieved by setting ψ̃P
0 = 0, ψ̃P

1 = ψ2 + ψ1 + ψ0 and

ψ̃P
k =ψk+1 for all k≥ 2. (The superscript ‘P’ is mnemonic for Predictable.) Under this Predictable

policy the root mean squared forecast error and inventory volatility are equal to

σP
S|FI = 0 and σP

I|FI =
√
ψ2

0 + (ψ0 +ψ1)2 σε.

Note that this predictable strategy corresponds to point ‘P’ in Figure 2. Also, under the choice

ψ̃P
0 = 0, we have MO(t) (Mε(t) and so the retailer must engage in information sharing to ensure

the full information requirement and the invertibility of the order process.

-) Myopic Policy: (M) Suppose the retailer is only concerned with minimizing the variance of her

inventory process. In this case, she would like to choose the replenishment policy corresponding to

point ‘M’ in Figure 2. According to Proposition 2, this can be achieved by choosing ψ̃M
0 =ψ0 +ψ1

and ψ̃M
n =ψn+1 for all n≥ 1. (In this case, the superscript ‘M’ is mnemonic for Myopic.) Under this

Myopic policy the root mean squared forecast error and inventory volatility are equal to

σM
S|FI = |ψ̃M

0 |σε = |ψ0 +ψ1|σε and σM
I|FI = |ψ0|σε.

Remark 4 We call this replenishment policy ‘Myopic’ because it coincides with the classical myopic

order-up to policy (see Johnson and Thompson 1975 for details†). We will elaborate further on this

connection in Section 6. �

4. Inventory Policies with No Information Sharing

We turn to the case in which the retailer is not able (or willing) to share her shocks with the

supplier. Using the expression for σS|NS in equation (11), we can formulate the optimization problem

that defines Σ(σ) under no information sharing as follows:

ΣNS(σ) := inf
Ψ̃
σε

√√√√ψ2
0 +

∞∑
n=1

(gn−ψn)2 (16)

†Myopic policies have a long tradition in the inventory management literature (e.g., A.F. Veinott 1965) as they

offer a simple and tractable approximation to what is, otherwise, a challenging optimization problem to solve in

general. Furthermore, an important part of their appeal is that they can be optimal under suitable conditions on the

underlying demand process.
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subject to σ2
ε exp

(
1

2π

∫ π

−π
log
(
ψ̃(e−iλ)ψ̃(eiλ)

)
dλ

)
≤ σ2, (17)

∞∑
n=0

ψ̃n =
∞∑
n=0

ψn, g0 = 0 and gk =
k−1∑
n=0

(ψ̃n−ψn), k= 1,2, . . . . (18)

Contrary to the case with full information sharing, a general solution to this infinite-dimensional

optimization problem has proven elusive. Its complexity lies essentially in the first constraint (17)

that connects Ψ̃ = {ψ̃n}n≥0 to the mean squared forecast error σ2
S|NS

. There are, however, situations

in which a solution can be obtained using the methods developed in the previous section and we

will focus on these cases first.

By Lemma 2 we know that for any Ψ̃ = {ψ̃n}n≥0, we have σ2
S|FI

(Ψ̃)≤ σ2
S|NS

(Ψ̃). As a result, the

left-hand side in constraint (17) is bounded below by σ2
ε ψ̃

2
0. This means that any feasible solution

to (16)-(18) is also a feasible solution to the optimization problem (12)-(14) under full information

sharing. The following result is a direct consequence of this observation.

Lemma 3 ΣNS(σ)≥ΣFI(σ), for all σ ∈R+.

This lemma implies that the efficient frontier EFI under full information sharing in Definition 2

is a lower bound to the corresponding frontier ENS under no information sharing. Now, consider

a replenishment policy Ψ̃ = {ψ̃n}n≥0 that is invertible in the sense that the order process {Ot}
induced by Ψ̃ is invertible with respect to the shocks {εt} (see Section 1.2). It follows then that

σ2
S|FI

(Ψ̃) = σ2
S|NS

(Ψ̃) and the left-hand side in constraint (17) reduces to

σ2
ε exp

(
1

2π

∫ π

−π
log
(
ψ̃(e−iλ)ψ̃(eiλ)

)
dλ

)
= σ2

ε ψ̃
2
0.

This condition, together with Lemma 3 lead to the following result.

Proposition 3 Let Ψ̃ = {ψ̃n}n≥0 be the optimal replenishment policy under full information de-

rived in Proposition 2, that is,

ψ̃0 = sign(ψ0 +ψ1)
σ

σε
, ψ̃1 =ψ2 +ψ1 +ψ0− ψ̃0 and ψ̃n =ψn+1 for all n≥ 2

for some fixed value σ ≥ 0, and suppose that the order process generated by Ψ̃ is invertible with

respect to the shocks {εt}. Then, Ψ̃ = {ψ̃n}n≥0 solves the optimization problem (16)-(18) and the

solution coincides with the solution under full information sharing.
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Remark 5 An immediate and important corollary of the previous result is that there is no real value

in information sharing if the solution under full information sharing is invertible. The reason is that

invertibility implies that MO(t) =Mε(t), that is, the supplier can recover all the relevant information

known by the retailer by simply observing the history of orders {Ot}. �

Another implication of Proposition 3 is that the efficient frontiers of volatilities pairs (σS, σI) under

full information sharing and no information sharing coincide on those values of σ for which the

order process is invertible with respect to the shocks {εt}. Unfortunately, the question of how to

identify those cases in which the optimal replenishment policy under sharing is invertible must be

conducted on a case by case basis and boils down to verifying if the identify σ2
S|FI

(Ψ̃) = σ2
S|NS

(Ψ̃)

holds or not. The following example illustrate this point.

Example 2 (IID Demand) Let us consider the case in which the retailer’s demand is white noise.

That is, Ψ = {ψn}n≥0 with ψ0 = 1 and ψn = 0 for all n ≥ 1. We note that this is an important

special case since it (together with Gaussianity) implies that the retailer’s per-period demands {Dt}
are iid, which is a predominant modeling assumption in the inventory management literature (e.g.,

Gavirneni et al. 1999). Also, for notational simplicity let us assume that σε = 1.

In this case, the optimal inventory replenishment policy Ψ̃ = {ψ̃n}n≥0 under full information

sharing in Proposition 2 is given by an MA(1) process with

ψ̃0 = σS, ψ̃1 = 1−σS and ψ̃n = 0 for all n≥ 2,

where 0≤ σ2
S ≤ 1 is the corresponding MSFE induced by Ψ̃ . (We exclude values of σS greater than

1 since they lead to replenishment policies that are not in the efficient frontier, see Definition 2.)

Now, it is well known that the MA(1) process above is invertible if and only if σS ≥ 0.5. Hence,

by Proposition 3 we know that this MA(1) solution is also optimal for the case with no information

sharing if σS ∈ [0.5,1]. In other words, if the retailer would like to select an optimal replenishment

policy with a root MSFE greater than 0.5 then she can select the MA(1) process above even if she

is not able (or willing) to share any demand information with the supplier. �

The previous example raises the question of how to identify an optimal (Pareto efficient) re-

plenishment policy under no information sharing when the invertibility condition in Proposition 3

does not hold. At this point, we do not have a definitive analytical answer to this question and it

appears to us that such an answer would have to be found using alternative methods to the one

developed in this paper. Specifically, it is our impression that the optimization problem (16)-(18)



Caldentey, Giloni and Hurvich: Inventory Policies and Information Sharing

22

that uses the MA(∞) coefficients {ψ̃n}n≥0 to represent a replenishment policy might not be the

most adequate representation of the problem. The issue with this parametrization is that it does

not lead a tractable mathematical framework to characterize invertible processes. An alternative,

possibly more promising parametrization of the problem, is to work directly with the roots of

the characteristic polynomial associated with the retailer’s replenishment policy since the issue

of checking invertibility becomes trivial in this case. However, it is not clear to us whether this

alternative approach would in general simplify the optimization problem (16)-(18) and our ability

to find an optimal solution.

Instead of pursing a different parametrization of the problem, in what follows we propose an

approximate formulation that replaces the optimization problem (16)-(18) by one that is amenable

to analysis and conventional optimization techniques.

The approach that we take is to work with an alternative representation of σ2
S|NS

in terms of

the MA coefficients {ψ̃n} than the one available using Kolmogorov’s formula in equation (11). The

basic idea is to work directly with the representation of σ2
S|NS

as the minimum forecast error among

linear forecasts. To this end, given a history of orders {Ok}k≤t, we construct the linear forecast

Ôt+1 = d+
∞∑
k=1

αk (Ot+1−k− d),

for some fixed vector of parameters α= (αn)n≥1 independent of t.

The squared error (Ot+1− Ôt+1)2 can be written in terms of the MA coefficients {ψ̃n} as follows

(Ot+1− Ôt+1)2 =

(
∞∑
n=0

[
ψ̃n−

n−1∑
k=0

αn−k ψ̃k

]
εt+1−n

)2

.

Then, under appropriate summability requirements, the expected mean squared forecast error, as

a function of the vector α, is equal to

E[(Ot+1− Ôt+1)2] = σ2
ε

∞∑
n=0

[
ψ̃n−

n−1∑
k=0

αn−k ψ̃k

]2

.

When can then can compute the value of σ2
S|NS

as follows:

σ2
S|NS = inf

α
σ2
ε

∞∑
n=0

[
ψ̃n−

n−1∑
k=0

αn−k ψ̃k

]2

.

In practice, by truncating the vector α we can get an approximation for σ2
S|NS

solving

σ2
S|NS(N) := min

α
σ2
ε

∞∑
n=0

[
ψ̃n−

n−1∑
k=0

αn−k ψ̃k

]2

subject to αn = 0 ∀n>N.
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It is well-known (see Chapter 5, Corollary 5.1.1, in Brockwell and Davis 2006) that the solution to

this optimization problem is equal to

σ2
S|NS(N) = σ2

ε

(
γ0−ΓNM

−1
N ΓT

N

)
, (19)

where

γk =
∞∑
n=0

ψ̃n ψ̃n+k, ΓN = (γ1, γ2, . . . , γN) and MN = [mij]∈RN ×RN with mij := γ|i−j|.

Using the approximation in equation (19), we can replace constraint (17) and approximate the

optimization problem (16)-(18) by

ΣNS(σ) ≈ inf
Ψ̃
σε

√√√√ψ2
0 +

∞∑
n=1

(gn−ψn)2

subject to σ2
ε

(
γ0−ΓNM

−1
N ΓT

N

)
≤ σ2,

∞∑
n=0

ψ̃n =
∞∑
n=0

ψn, g0 = 0 and gk =
k−1∑
n=0

(ψ̃n−ψn), k= 1,2, . . . .

Based on a number of numerical experiments, solving the previous problem using standard

optimization packages can be unstable in some instances. The more direct approach of solving for

both α and ψ̃ simultaneously has shown a much better numerical performance. For this reason, we

propose the following alternative formulation:

Σ2
NS(σ) ≈ inf

Ψ̃,α

σ2
ε

∞∑
n=0

(
n∑
k=0

ψn−
n−1∑
k=0

ψ̃k

)2
 (20)

subject to σ2
ε

∞∑
n=0

(
ψ̃n−

n−1∑
k=0

αn−k ψ̃k

)2

≤ σ2 and
∞∑
n=0

ψ̃n =
∞∑
k=0

ψn. (21)

As stated, problem (20)-(21) is an infinite dimensional optimization problem. In practice, we

must truncate the sequences {ψ̃n}n≥0 and α= (αn)n≥1 to compute an approximate solution. For

example, if we assume that demand is given by an MA(q) model for some q ∈N, we can solve this

problem with the additional restrictions that orders are also given by an MA(Q) for some Q≥ q
(i.e., ψ̃n = 0 for all n>Q) and that αn = 0 for all n≥N + 1 for some N ∈N.

Example 3 (IID Demand - Continued) Consider again the case in which the retailer’s demand is

white noise with ψ0 = 1, ψn = 0 for all n≥ 1 and σε = 1, and let us compare the efficient frontiers
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EFI and ENS of volatility pairs (σS, σI) under full information sharing and no information sharing,

respectively. From Definition 2, we have that

EFI :=

{
(σS, σI) : 0≤ σS ≤ 1 and σI =

√
1 +

(
σS− 1

)2
}
.

On the other hand, we use the optimization (20)-(21) to approximately compute ENS. The following

figure depicts EFI and the approximation for ENS with Q= 10 and N = 75.
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Figure 6 Efficient frontiers of volatility pairs (σS, σI) under full information sharing and no information sharing.

Data σε =ψ0 = 1 and ψk = 0 for all k≥ 1.

Recall that the optimal replenishment policy under full information sharing is invertible for val-

ues of σS ≥ 0.5. In this region, the two frontiers coincide which is consistent with our previous

discussion, i.e., for σS ≥ 0.5 information sharing offers no additional value. On the other hand,

in the region σS < 0.5 the efficient frontier under full information sharing is strictly lower and so

information sharing is valuable in this case. Of course, we must keep in mind that the value of ENS

depicted in Figure 6 is only an approximation (actually an upper bound) on the true value of the

efficient frontier under no information sharing. �

5. Numerical Experiments

To illustrate our methodology and results, in this section we conduct a set of numerical experi-

ments to compare the set of efficient replenishment policies under full information sharing and no
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information sharing to four alternative order smoothing policies that have been proposed in the

literature.

Benchmark Policies: For completeness, we provide a brief mathematical description of these

four benchmark policies and refer the reader to the original papers that proposed them for further

details.

a) Simple Moving Average: (MA) Suppose the retailer’s inventory strategy belongs to the fam-

ily of simple moving average:

OMA
t =

1

N

N−1∑
n=0

Dt−n, (22)

for some fixed integer N ≥ 1. The use of a simple moving average ordering policy in the context

of a two-tier supply chain system was studied by Balakrishnan, Geunes, and Pangburn (2004) for

the special case in which market demand is IID. In our context, using the MA(∞) representation

of Dt in equation (1) we get that

OMA
t = d+

∞∑
k=0

ψ̃MA
k εt−k, with ψ̃MA

k :=
1

N

k∑
n=(k+1−N)+

ψn.

It is not hard to see that OMA
t satisfies the conditions in Definition 1 and so it is an admissible

replenishment policy. Based on the representation of σI in equation (8) and after some tedious

but straightforward manipulations we get that the root mean squared forecast error (under full

information sharing) and inventory variance under a moving average policy are given by

σMA
S|FI =

σε
N
|ψ0| and σMA

I =
σε
N

√√√√ ∞∑
k=0

( k∑
n=(k+1−N)+

(N − k+n)ψn

)2

.

In general, the pair (σMA
S|FI
, σMA

I ) is not efficient in the sense of Definition 2. Nevertheless, moving

average policies have a practical appeal due to their simplicity. Also, we see from the expression for

σMA
S|FI

that as N grows the mean forecast error decreases monotonically and the retailer’s orders will

become more predictable. One can also show that the moving average policy with N = 1 coincides

with the myopic policy for the case in which {Dt} is an IID sequence (i.e., ψk = 0 for all k≥ 1).

b) Exponential Smoothing: (ES) This is another order smoothing policy proposed by Balakr-

ishnan et al. (2004). In this case, the retailer’s replenishment policy is

OES
t = (1− ρ)

∞∑
n=0

ρnDt−n,



Caldentey, Giloni and Hurvich: Inventory Policies and Information Sharing

26

for some fixed ρ∈ [0,1). From the MA(∞) representation of Dt in equation (1) we get that

OES
t = d+

∞∑
k=0

ψ̃ES
k εt−k, with ψ̃ES

k := (1− ρ)
k∑

n=0

ρk−nψn.

One can easily verify that OES
t is admissible in the sense of Definition 1. In this case, the mean

forecast error and inventory volatilities are equal to

σES
S|FI = σε (1− ρ) |ψ0| and σES

I = σε

√√√√ ∞∑
k=0

( k∑
n=0

ρk−nψn

)2

.

c) GKH: In a paper by Graves, Kletter, and Hetzel (1998), a production smoothing policy is

proposed with the objective of minimizing the variance of the order process subject to a constraint

that upper bounds the variance of the inventory process. The demand model considered by Graves

et al. (1998) is more general than ours but a special case that coincides with ours is studied in

detail in Section 2 of that paper.

The GKH policy is defined by a matrix of weights W = [wij] such that

OGKH
t = d+

∞∑
k=0

ψ̃GKH
k εt−k, with ψ̃GKH

k :=
H∑
j=0

wkj ψj,

where H is a non-negative integer that parametrizes how far into the future the retailer’s updates

her demand forecasts. The value of W are computed by solving the optimization problem

min
wij

H∑
i=0

H∑
j=0

(wij ψj σε)
2 subject to Var(It)≤K2 and

H∑
i=0

wij = 1 ∀j,

where K is a parameter that bounds the variance of the retailer’s inventory. Graves et al. (1998)

provide a solution to this optimization.

d) CL: Chen and Lee (2009) studied a two-tier supply chain system similar to the one we consider

and proposed an order smoothing policy that minimizes the cumulative supply chain (retailer and

supplier) costs. On the one hand, the mathematical framework that they consider allows for more

general demand models and replenishment lead-times. On the other hand, their analysis does not

explicitly address the issue of invertibility.

In the context of our model, the CL policy is equal to

OCL
t = d+

∞∑
k=0

ψ̃CL
k εt−k, with ψ̃CL

0 := (1− γ)(ψ0 +ψ1), ψ̃CL
1 :=ψ2 + γ(ψ0 +ψ1), ψ̃CL

n :=ψn+1 ∀n≥ 2,
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where the parameter γ ∈ [0,1] is a function of the relative cost structures of the supplier and retailer

as well as a relative measure of uncertainty faced by the supplier (see Chen and Lee (2009) for

details).

Efficient Frontier: Let us now compare the values of (σS, σI) that are achievable under the four

benchmark policies to the efficient frontiers with and without information sharing. In evaluating

the performance of the four benchmark policies, we have assumed that the retailer does not share

any demand information with the supplier.

Figure 7 compares the six policies in the (σS, σI) space for the cases in which the retailer’s demand

is given by an IID process (left panel) or an MA(1) process (right panel).
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Figure 7 Volatilities pairs (σS, σI) under an optimal replenishment policy (with and without information sharing)

and four benchmarks. Data: In the left panel, σε = ψ0 = 1 and ψk = 0 for all k ≥ 1. In the right

panel, σε =ψ0 =ψ1 = 1 and ψk = 0 for all k≥ 1.

As expected the solution that belongs to the efficient frontier under full information sharing

dominates those generated using the (suboptimal) benchmark methods. However, the magnitude

of the improvement depends significantly on whether the retailer’s order under Full Information

Sharing are invertible or not. In the left panel (IID demand) Full Information Sharing orders are

invertible when σS ≥ 0.5 while in the right panel (MA(1) demand) Full Information Sharing orders

are invertible when σS ≥ 1. In these regions, not only orders under No Information Sharing but also

those generated by the four benchmarks perform very well. On the flip side, when the retailer’s

orders under No Information Sharing are not invertible (i.e., σS < 0.5 on the left panel or σS < 1
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on the right panel) then the performance of the No Information Sharing policy as well as the four

benchmarks deteriorate significantly (specially as σS ↓ 0). This example suggests that (i) the lack of

information sharing or (ii) the use of a suboptimal replenishment method can have a significantly

negative effect on performance, especially if the retailer wants to minimize the volatility of her

orders (i.e., when an optimal ordering policy under full information sharing is not invertible).

Remark 6 It is worth noticing that the poor performance of some of the alternative smoothing

policies in the none-invertibility region is not related exclusively to the lack of information shar-

ing. Indeed, let us consider for instance the exponential smoothing policy. Under full information

sharing, the mean forecast error and inventory volatilities are equal to

σES
S|FI = σε (1− ρ) |ψ0| and σES

I = σε

√√√√ ∞∑
k=0

( k∑
n=0

ρk−nψn

)2

.

Thus, inventory volatility grows out of bound (σES
I →∞) as mean forecast error goes down to zero

(σES
S|FI
↓ 0).

Bullwhip Effect: Next, we look at the magnitude of the bullwhip effect under the different policies.

Alternative definitions for the bullwhip effect have been used in the literature depending on the

interpretation that is used to measure order variability (Chen and Lee 2012) as well as on the data

that is available to measure it (Bray and Mendelson 2012). The most popular approach computes

the bullwhip effect as the ratio of the order volatility to the demand volatility, that is, under

this measure the bullwhip effect in period t is equal to BW(t) := Var(O(t + 1))/Var(D(t + 1)).

However, as argued in Chen and Lee (2012), a possibly more appropriate measure –one that better

captures the relationship between inventory costs and how orders’ variability propagates through

the system– is given by B̃W(t) := Var(O(t+ 1)|MS(t))/Var(D(t+ 1)|MD(t)). That is, B̃W(t) is

an informationally-adjusted measure of the bullwhip effect that emphasizes that the notion of

variability that matters is the one that cannot be forecasted. In the context of our model, these

two definitions of the bullwhip effect can be written as:

BW =

∑∞
n=0 ψ̃

2
n∑∞

n=0ψ
2
n

and B̃W =
σ2

S

σ2
ε

.

We compare these two alternatives measures of the bullwhip effect using the six replenishment

policies depicted in panel (b) in Figure 7. To have a uniform (i.e., “apples to apples”) comparison,

we compute the bullwhip effect of these policies keeping constant the volatility of the retailer’s

inventory. Table 1 depicts the two bullwhip effect measures for the case in which the retailer’s

demand is given by an MA(1) process with ψ0 =ψ1 = 1 and the retailer’s orders are such that the

volatility of her inventory is equal to σI = 2.
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Table 1 Comparison of Bullwhip Effect Measures

BW B̃W
Full Information Sharing 1.536 0.072

No Information Sharing 0.812 0.184

Moving Average 1.000 0.232

Exponential Smoothing 0.500 0.250

GKH 0.9215 0.394

CL 1.536 3.000

Data: Retailer’s demand is given by an MA(1) with ψ0 =ψ1 = 1 and σI = 2.

A few words about the results in Table 1 are in order. First, note that there is a striking difference

between the values of the bullwhip effect computed using these two measures. Furthermore, the

different replenishment policies rank quite differently depending on the measure that is used to

evaluate the bullwhip effect. For instance, in this example, under the conventional measure BW the

Exponential Smoothing policy minimizes the bullwhip effect while the Full Information Sharing

and CL policies have the largest bullwhip effect. On the flip side, if the informationally-adjusted

bullwhip measure B̃W is used, then the Full Information Sharing policy would be the one that

minimizes the bullwhip effect. It is worth highlighting that the fact that the Full Information

Sharing policy minimizes B̃W is not a feature of this particular example but rather a general result

since the Full Information Sharing policy is, by construction, the ordering policy that minimizes the

supplier’s mean squared forecast error for a given value of the volatility of the retailer’s inventory.

To the extent that the bullwhip effect is a measure that connects the propagation of orders’

variability and system inefficiencies, Table 1 together with the results in the previous sections

show that the informationally-adjusted measure B̃W provides a more accurate representation of

the bullwhip effect.

6. Illustrative Example: A Two-Tier Supply Chain

Let us now apply the methodology developed in the previous sections in the context of the two-tier

supply chain with a single retailer and a single supplier depicted in Figure 1. Our main goal in

this section is two-fold: (i) to explicitly connect the volatility measures (σS, σI) to the retailer’s and

supplier’s operating costs by proposing a concrete model with endogenous cost parameters and

(ii) to assess the cost implications of information sharing from the perspective of the retailer, the

supplier and the supply chain as a whole.
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The specific setting that we consider is a canonical two-tier supply chain system that has been

used by various authors (Gavirneni et al. 1999, Lee et al. 2000, or Chen and Lee 2009, among

many others) to study similar issues regarding inventory management and supply chain costs under

information sharing. On the retailer side, the inventory management problem coincides with the

single-stage model discussed in Section 3. That is, we consider a retailer who serves an exogenous

demand from a stock of on-hand inventory that she replenishes periodically by placing orders to

a single supplier. We assume that the retailer’s demand Dt and order Ot in period t satisfy the

conditions in Assumptions 1 and 2, respectively. We further assume that demand is fully backlogged

and that the supplier offers a guaranteed one-period replenishment lead-time, that is, an order

placed by the retailer in period t is received in full in period t+ 1. It follows that the retailer’s

on-hand inventory IR
t at the end of period t evolves according to the dynamics in equation (2).

(The superscript ‘R’ is mnemonic for ‘Retailer’.)

In a similar fashion, the supplier serves the retailer’s orders using a stock of on-hand inventory

that he replenishes by placing production requests every period. We assume the supplier has access

to two different modes of production: normal and expedite. A normal production order takes one

period to be completed. The supplier is also able to place expedite production requests which

are delivered in the same period. This expedite mode of production allows the supplier to offer

a guaranteed order fulfillment to the retailer. The supplier’s inventory IS
t at the end of period t

evolves according to the dynamics: (the superscript ‘S’ is mnemonic for ‘Supplier’)

IS
t = IS

t−1 +Nt−1 +Et−Ot, t= 1,2, . . . , (23)

where Nt−1 and Et are normal and expedite production orders placed by the supplier in period

t− 1 and t, respectively. The supplier chooses Et after observing the retailer’s order Ot. To avoid

trivial solutions, we assume that expedite orders are more expensive to produce than normal ones†.

It follows that under an optimal production policy Et = (IS
t−1 +Nt−1−Ot)+, that is, the supplier

only expedites the minimum possible amount to ensures that the retailer’s orders are fully satisfied

every period.

The supplier chooses his inventory replenishment policy so as to minimize his long-term average

expected inventory management cost, which includes regular and expedite production costs as well

as inventory holding costs. (Under the full-service requirement and the option of expediting, the

supplier never stocks out and does not face any backorder or lost sales costs.) We let CS
t denote the

†Otherwise the supplier’s optimal replenishment strategy is trivial, namely, to use only expedite orders for an amount

exactly equal to the retailer’s orders Et =Ot.
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supplier cost in period t, which we assume takes the linear form: CS
t :=wNNt+wEEt+hS IS

t , where

wN and wE are the per-unit normal and expedite production costs (with wE > wN), respectively,

and hS is the per-unit per-period supplier’s holding cost. The supplier’s long-term average cost

minimization problem is equal to

ΠS = inf
Nt,Et

limsup
T→∞

1

T
E

[
T∑
t=1

CS
t

]
= inf

Nt,Et
limsup
T→∞

1

T
E

[
T∑
t=1

wNNt +wEEt +hS IS
t

]
. (24)

Similarly, the retailer’s objective is to minimize her long-term average inventory costs that include

procurement, holding and backordering costs. We let CR
t := wROt + hR (IR

t )+ + bR (IR
t )− be the

retailer’s cost in period t, where wR is the per-unit procurement cost (or wholesale price charged

by the supplier), and hR and bR are the retailer’s per-unit per-period holding and backordering

costs, respectively. The retailer’s inventory management problem is as follows:

ΠR := inf
Ot

limsup
T→∞

1

T
E

[
T∑
t=1

CR
t

]
= inf

Ot
limsup
T→∞

1

T
E

[
T∑
t=1

wROt +hR (IR
t )+ + bR (IR

t )−

]
. (25)

Traditionally, the literature on inventory theory and supply chain management has assumed that

the cost parameters wR, hR, hS and so on, are exogenously given independent of the firms’ inventory

management policies. This is certainly a reasonable assumption in the short-term, however, as

the planning horizon gets large, one should expect to see a connection between the replenishment

policies and these cost parameters. In what follows, we will deviate from this classical modeling

paradigm with fixed inventory cost parameters and propose a variation that internalizes the long-

term effects of the firms’ decisions on their underlying cost structures. In particular, we endogenize

the holding cost rates hS and hR as well as the retailer’s procurement cost wR by making them

dependent on the firms’ inventory management policies and in particular the volatility measures

(σS, σI).

6.1. Endogenous Cost Parameters

Supplier’s holding cost hS: Typically, the financial cost of carrying inventory over time is divided

into two main components‡: (i) a physical holding cost and (ii) an opportunity cost. The physical

cost refers to those operating expenses associated with handling, warehousing and storing inventory

over time. It can also include additional expenses such as security or insurance as well as spoilage

and obsolescence if products seat on inventory for a long time. Opportunity costs, on the other

hand, are related to the financial returns that are forgone on the funds needed to build and hold

‡ For example, see Section 6.3 in Managing Business Process Flows by Anunpindi et al. (2012).
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the inventory for a given period of time. It is a standard accounting practice in inventory theory to

express these physical and opportunity costs in a per-unit basis as a fraction of the procurement or

production cost. That is, if we denote by wS the supplier’s average per-unit production cost then

the cost of holding one unit in inventory during one period of time can be written as hS = αSwS,

where αS is the combined per-unit physical holding and capital (or rate of return) cost per period.

We will assume that the cost rate αS is exogenously given reflecting the specific operational and

financial conditions under which the supplier operates.

Under the proposed holding cost model, hS = αSwS, it becomes clear that different inventory

management strategies should lead to different values for hS in the long run. For instance, if

the supplier decides to consistently place large replenishment orders and hold a large amount of

inventory then we should see wS ≈ wN. On the other hand, if he decides to satisfy the retailer’s

demand using exclusively expedite orders (i.e., holds no inventory) then wS = wE. In order to

calculate wS we need to determine the proportion of the inventory that the supplier procures from

each channel. To this end, we make the following assumption:

Assumption 3 (Supplier’s Inventory Replenishment Policy) The supplier uses a myopic

order-up-to policy to decide the amount of inventory to replenish. In other words, at the end of

every period, the supplier decides myopically how much to order for the next period by minimiz-

ing the argument inside the summation in (24), conditional on all available information, without

internalizing the effect of this decision on future costs.

A myopic order-up-to policy is in general suboptimal, nevertheless, it has a long tradition in the

inventory management literature (e.g., A.F. Veinott 1965) as it offers a simple and tractable ap-

proximation to what is, otherwise, a challenging optimization problem to solve in its full generality.

Furthermore, an important part of its appeal is that a myopic policy can be optimal under suitable

conditions on the underlying demand process (see Johnson and Thompson 1975 for details). It is

not hard to see that if the manager were able to order Nt = Yt− IS
t in every period then this choice

would indeed be optimal. However, unless the supplier were able to return any excess inventory,

we need to impose the additional constraint Nt ≥ 0. The resulting myopic-order-up to policy takes

the form Nt = (Yt− IS
t )+. This strategy is in general sub-optimal unless IS

t ≤ Yt (a.s.) for all t≥ 1.

(For instance, in our model with Gaussian shocks this condition is not satisfied.)

In the statement of the following result, we let L denote the Loss function

L(z) :=E[(Z − z)+] = φ(z)− z (1−Φ(z)),

where φ and Φ are the pdf and cdf of the standard Normal random variable, respectively.
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Proposition 4 Suppose the supplier uses a myopic order-up to policy to replenish inventory.

Then, the average per-unit procurement cost wS is equal to

wS =wN + (wE−wN)
σS

d
L(zS), (26)

where σS is the supplier’s mean forecast error defined in equation (9) and zS is the ‘critical fractile’

zS := Φ−1

(
wE−wN

wE−wN +hS

)
. (27)

Furthermore, the supplier’s long-term average cost is equal to

ΠS =wN d+hS σS z
S +
(
wE−wN +hS

)
σSL(zS). (28)

At this point, the attentive reader should have noticed that he have used a circular argument

in our previous derivation. Indeed, on one hand, the holding cost hS = αSwS is a function of

zS according to equation (26). On the other hand, the value of zS in the myopic order-up-to

policy is a function of hS according to equation (27). This circularity reflects the fact that in our

model the holding cost rate is endogenously determined in an equilibrium that internalizes the

interdependence between the inventory strategies and cost structures. Mathematically, hS solves

the following fixed-point condition:

hS = αS

[
wN + (wE−wN)

σS

d
L◦Φ−1

(
wE−wN

wE−wN +hS

)]
. (29)

It is interesting to note that the effect of the retailer’s ordering process on the value of hS is only

captured through the square root of the mean squared forecast error σS.

Supplier’s wholesale price wR: Let us turn to the connection between the per-unit wholesale

price wR that the supplier charges the retailer and the firms’ inventory management policies. It is

reasonable to assume that a profit maximizing supplier selects this wholesale price wR so as to at

least covers average per-unit operating expenses. To be concrete, let us assume that the supplier

operates under a simple ‘cost plus pricing’ model under which the supplier charges a wholesale

price that is equal to the average per-unit operating cost plus a fixed markup percentage. In other

words, the supplier selects wR so as to achieve a fixed operating margin. Mathematically, let C̄S

be the supplier’s average per unit cost then wR = (1 + rS) C̄S, where rS > 0 is the supplier’s target

operating margin. The average cost satisfies C̄S = ΠS/d, where ΠS is given in equation (28). As a

result, under a cost plus pricing model, the wholesale price wR is equal to

wR = (1 + rS) C̄S = (1 + rS)
(
wN +hS σS

d
zS +

(
wE−wN +hS

) σS

d
L(zS)

)
. (30)
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Retailer’s holding cost hR: Using the same line of arguments as the one we use to derive

the supplier’s holding cost hS, let us assume that the retailer’s long-run average per unit holding

cost hR is proportional to the per-unit procurement cost wR. That is, hR = αRwR for some fixed

positive constant αR that captures the retailer’s physical cost as well as financial (opportunity)

cost of holding inventory over time. It follows that

hR = αR (1 + rS)
(
wN +hS σS

d
zS +

(
wE−wN +hS

) σS

d
L(zS)

)
. (31)

6.2. Retailer’s Cost

Equipped with equations (29), (30) and (31) that provide a concrete connection between the

retailer’s inventory policy and her cost parameters, let us turn to the question of determining an

optimal ordering policy. To this end, recall from the analysis in Section 2.1 that the retailer’s

inventory IR
t converges in distribution to a Normal random variable IR

∞ with mean Ĩ0 and standard

deviation σI given in (8). It follows, after some straightforward manipulations, that we can rewrite

the retailer’s long-term average expected cost as follows:

ΠR = limsup
T→∞

1

T
E

[
T∑
t=1

wROt +hR (IR
t )+ + bR (IR

t )−

∣∣∣∣∣MD(0)

]
=wR d+hRσIL

(
− Ĩ0

σI

)
+ bR σIL

( Ĩ0

σI

)
,

where the second equality follows from the weak convergence of IR
t to IR

∞ and the second equality

follows from the definition of the Loss function L above.

From Remark 3, Ĩ0 is an additional degree of freedom that the retailer can choose to minimize

her cost. It follows that an optimal choice is

Ĩ0 = σI Φ−1

(
bR

hR + bR

)
.

Combining this condition and the identity L(−z) = z +L(z), we conclude that the retailer’s log-

term average cost is equal to

ΠR =wR(σS)d+σI

(
(hR(σS) + bR)L◦Φ−1

(
bR

hR(σS) + bR

)
+hΦ−1

(
bR

hR(σS) + bR

))
.

Since both wR and hR are increasing functions of σS, the retailer can reduce some of her cost

components by reducing the value of σS and placing orders that are more predictable. This will help

the supplier better optimize his own production/inventory costs and pass some of these savings

back to the retailer. On the flip side, the retailer’s cost also depends on the actual evolution of her
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inventory position IR
t and by minimizing σS the retailer can end up increasing this inventory cost

component. These are the direct and indirect cost effects that we discuss in the Introduction.

Combining the expressions for σI and σS derived in Section 3 in terms of the coefficients Ψ =

{ψt} and Ψ̃ = {ψ̃t} in the MA(∞) representations of Dt and Ot, respectively, together with the

endogenous inventory cost model discussed above, the retailer’s optimal inventory replenishment

strategy solves:

inf
Ψ̃

{
wR(σS)d+σI

(
(hR(σS) + bR)L◦Φ−1

(
bR

hR(σS) + bR

)
+hR(σS)Φ−1

(
bR

hR(σS) + bR

))}
(32)

subject to σ2
I = σ2

ε

∞∑
n=0

(gn−ψn)2 where g0 := 0 and gn :=
n−1∑
k=0

(ψ̃k−ψk), n≥ 1, (33)

σ2
S = σ2

ε exp

(
1

2π

∫ π

−π
log
(
ψ̃(e−iλ)ψ̃(eiλ)

)
dλ

)
where ψ̃(z) :=

∞∑
n=0

ψ̃n z
n, (34)

wR and hR are solutions to the system of equations (29), (30) and (31). (35)

Using the results in Section 3 and in particular the representation of the efficient frontier in

Definition 2, we can simplify the previous problem in the case in which there is full information

sharing. For notational convenience, let us define the retailer’s critical fractile

zR(σS) :=
bR

hR(σS) + bR
.

Then, under full information, the optimization problem (32)-(35) reduces to

min

{
wR(σS)d+σε

√
ψ2

0 +
(σS

σε
− |ψ0 +ψ1|

)2
(

bR

zR(σS)
L◦Φ−1 (zR(σS)) +hR(σS)Φ−1 (zR(σS))

)}
subject to 0≤ σS ≤ σε |ψ0 +ψ1|

wR and hR are solutions to the system of equations (29), (30) and (31).

This is a simple one-dimensional optimization problem that can be solved numerically very effi-

ciently.

In the case in which there is no information sharing, we are back into the technical issues discussed

in Section 4. If the replenishment strategy derived from the solution of the previous optimization

problem under sharing is invertible then (by Proposition 3) we know that is also optimal for the

case without information sharing. On the other hand, if it is not invertible then we can use the

approximation for σS in equation (19) to replace constraint (34) and solve numerically the resulting

optimization problem.
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To illustrate our methodology, let us conclude this section with a set of computational experi-

ments to assess the value of information sharing from the perspective of the retailer, the supplier,

and the supply chain as a whole. In these experiments, we use the following numerical values for

our model parameters: σε = 1, d= 2σε, w
N = 1, wE = (1 + 25%)wN, bR = 25%wN, αS = αR = 30%

and rR = 50%. We note that, without loss of generality, our model allows us to normalize certain

parameters as units of measure. For example, in terms of the units of inventory, we have chosen to

normalize σε = 1 and express mean demand d in terms of σε. Similarly, we have chosen to normalize

the per-unit production cost wN = 1 and express both wE and bR in terms of wN. Figure 8 revisits

the example depicted earlier in Figure 7 (panel b) under the specific cost parameters described

above and identifies the optimal solution, that is, the optimal volatility pair (σS, σI) that minimizes

the retailer’s cost under full information sharing. As we can see, the optimal solution lies in the

0 1 2

σS: Forecast Error Volatility
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to
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Figure 8 Optimal volatility pair (σS, σI) under full information sharing. Data: σε = ψ0 = ψ1 = 1 and ψn = 0

for all n≥ 2.

interior of the efficient frontier meaning that neither the inventory variability nor the forecast error

volatility fully dominates the retailer’s choice of an replenishment strategy. An interior solution,

however, is not alway optimal and it is possible that point ‘N’ or point ‘M’ become optimal as we

vary the cost parameters. For example, let us parametrized the cost of expediting wE = (1 + δ)wN

for some δ > 0 (in the previous figure δ = 10%). Then, we can numerically show that for δ larger

than 11.5% the optimal solution switches to point N . On the other hand, the solution moves

towards point ‘M’ asymptotically as δ ↓ 0.

Let us compare the performance of the supply chain under Full Information sharing (FI) and

No Information sharing (NS) to the four benchmark replenishment policies presented in Section 5,
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namely, Moving Average (MA), Exponential Smoothing (ES) and the two policies motivated by

results in Graves, Kletter, and Hetzel (1998) (GKH) and Chen and Lee (2009) (CL). We also

consider as a fifth benchmark the myopic replenishment policy (point ’M’ in Figure 8) given its

popularity in the inventory management literature.

For each policy type j = FI, NS, MA, ES, GKH, CL and M, we compute the retailer, supplier

and supply chain long-term average expected costs ΠR
j , ΠS

j and ΠSC
j , respectively. These costs are

computed under the assumption that the retailer chooses an ordering policy that minimizes her

inventory costs within the specific policy type. For example, the values of ΠR
MA, ΠS

MA and ΠSC
MA

are calculated under the assumption that the retailer chooses the ‘best’ Moving Average ordering

policy that minimizes her costs. We also assume that with the exception of the FI policy, the

retailer is not sharing any demand information with the supplier.

In our computations, we express the performance of this policies relative to Full Information

sharing, that is, we define the relative cost

Relative Cost =
Πk
j

Πk
FI

,

where j ranges over the type of policy j ∈ {NS, MA, ES, GKH, CL and M} and k ranges over the

supply chain agent k ∈ {Retaler, Supplier, Supply Chain}.

Figure 9 depicts the relative cost for the case in which the retailer observers IID demand. Each

of the three rows shows a sensitivity analysis on a different parameter of the model. The top row

varies the mean demand d, the middle row varies the supplier’s cost of expediting wE and the

bottom row varies the retailer’s backorder cost bR. Each column shows the performance of the

relative cost for a portion of the supply chain: retailer (left), supplier (center) and entire supply

chain (right).

A few remarks about these results are in order. First, in terms of the value of information sharing,

we note that lack of collaboration can increase costs quite significant. For instance, on the top row

the supplier’s costs under a No Sharing policy (NS) are almost 20% higher than those under Full

Information sharing when the mean demand d is low§ while those of the retailer can go up by as

much as 10%. The value of information sharing also increases as the supplier’s cost of expediting

increases (middle row) and seems to be less sensitive to the retailer’s backorder cost.

Another point that is worth highlighting is the consistently poor performance of the Myopic

policy (M). This is particularly significant given the fact that the Myopic policy is designed to

§Under our parameter normalization, a low value of d corresponds to an environment where the retailer demand is

highly volatile.
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Figure 9 Sensitivity analysis of the relative cost of the policies NS, MA, ES, GKH, CL and M for the case

in which the retailer observes IID demand. Each of the three rows shows performs a sensitivity on a

different parameter of the model: mean demand d (top), supplier’s cost of expediting wE (middle) and

retailer’s backorder cost bR. Each column depicts the performance of the relative cost for a segment

of the supply chain: retailer (left), supplier (center) and entire supply chain (right).

minimize the variability of the retailer’s inventory position, which in an environment where the

supplier offers guarantee delivery could be seen as an optimal strategy. However, as we have em-

phasized before, a myopic policy attempts to minimize the retailer direct inventory costs without

paying any attention to the indirect costs. However, or numerical experiments reveal that these

indirect costs can be fairly significant. Actually, in Figure 9 the retailer’s costs under a Myopic

policy are always 5% or more higher than those under a Full Information sharing policy (and they

can be as high as 50% more when mean demand is low).

Finally, in terms of the other benchmark policies (MA, ES, GKH, and CL), it appears that a

Moving Average policy offers a slightly better performance than the others.

7. Concluding Remarks

In this paper, we have studied the value of information sharing in the context of a two-tier supply

chain system. Our contribution with respect to the existing literature lies in the approach that we
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use to connect the value of information sharing to the performance of the system. In particular,

we argue that a firm can concentrate the impact of its inventory replenishment strategy into two

sources of variability: (a) the variability of its on-hand inventory σI and (b) the variability of the

forecast error of its orders σS. This approach allows us to study in a parsimonious way the structure

of an optimal inventory management policy without specifying directly the cost function of the

firm.

In the first part of the paper, we characterize the Pareto frontier of efficient pairs (σS, σI) for

the cases in which there is full information sharing and no sharing at all. For the case with full

information the Pareto frontier takes a remarkably simple form and depends only on the first two

terms of the MA(∞) representation of the demand. On the other hand, for the case in which there

is no information sharing, the analysis is more delicate. We show that if the replenishment order

under sharing is inventible then it is also optimal for the case without information sharing. That

is, in this case sharing information offers no real value. On the other hand, when the retailer is not

able (or willing) to share any demand information we can only provide a partial characterization

of an optimal solution and show that information sharing does not always add value. We also show

that the question of identifying conditions under which information sharing does offer value reduces

to a delicate analysis of the invertibility of a specific stationary process.

In the second part of the paper, we propose a model with endogenous cost parameters that

we use to explicitly connect the volatility measures (σS, σI) with the retailer’s operating costs and

conduct a set of numerical experiments to illustrate (i) the value of information sharing and (ii)

the limitations of using alternative replenishment policies that do not internalize the invertibility

or non-invertibility of the retailer’s orders.

In terms of future research, our paper leaves open the question of how to compute an optimal

replenishment policy under no information sharing when an optimal policy under sharing is not

invertible. We conjecture that an alternative parametrization of the problem that works directly

with the roots of the characteristic polynomial associated with the retailer’s replenishment policy

might be better since the issue of checking invertibility becomes trivial in this case. However, more

work needs to be done to confirm or refute this claim.
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Appendix: Proofs

Proof of Lemma 1: Since the ordering policy is admissible (see Definition 1), it follows that

gL→ 0 as L→∞. For any integer k, define fL = εk−L. Using the summation by parts formula,

and using the symbol limn→∞ to denote the limit in mean square as n→∞, we have for any fixed

integer k

∞∑
L=0

(ψ̃L−ψL)εk−L = lim
n→∞

n∑
L=0

(ψ̃L−ψL)εk−L = lim
n→∞

n∑
L=0

fL(gL+1− gL)

= lim
n→∞

[fn+1gn+1− f0g0−
n∑

L=0

gL+1(fL+1− fL)]

=− lim
n→∞

n∑
L=0

gL+1(εk−L−1− εk−L) =
∞∑
L=0

gL+1(εk−L− εk−L−1) .

Therefore,

t−1∑
k=0

rk =
t−1∑
k=0

∞∑
L=0

gL+1(εk−L− εk−L−1) =
∞∑
L=0

t−1∑
k=0

gL+1(εk−L− εk−L−1)

=
∞∑
L=0

gL+1(−ε−L−1 + εt−1−L) =−
∞∑
L=0

gL+1ε−L−1 +
∞∑
L=0

gL+1εt−(L+1)

=−
∞∑
L=1

gLε−L +
∞∑
L=1

gLεt−L . � (36)

Proof of Lemma 2: To prove the lower bound we use the fact that MO(t)⊆Mε(t) and so

σ2
S =Var(Ot|MO(t))≥Var(Ot|Mε(t)) = σ2

ε ψ̃
2
0.

On the other side, we can use the identity

log(x)≤ log(z) +
x− z
z

for all x, z ∈R+
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in equation (11) to get

log

(
σ2

S

σ2
ε

)
≤ 1

2π

∫ π

−π

[
log(z) +

1

z

(
∞∑
n=0

ψ̃2
n + 2

∞∑
n=0

∞∑
k=n+1

ψ̃n ψ̃k cos((k−n)λ)− z
)]

dλ

= log(z) +
1

z

(
∞∑
n=0

ψ̃2
n− z

)
.

Since the inequality holds for any z ∈R+, we can minimize the right-hand size over z. The minimum

is achieved at z∗ =
∑∞

n=0 ψ̃
2
n. We conclude that

σ2
S ≤ σ2

ε

∞∑
n=0

ψ̃2
n. �

Proof of Proposition 2: Let us consider the optimization problem

ΣI(σ) := inf
Ψ̃
σ2
ε

√√√√ψ2
0 +

∞∑
n=1

(gn−ψn)2

subject to σε |ψ̃0|= σ,
∞∑
n=0

ψ̃n =
∞∑
n=0

ψn, g0 = 0 and gk =
k−1∑
n=0

(ψ̃n−ψn), k= 1,2, . . . .

Note first that the first constraint implies that ψ̃0 =±σ/σε. Let us fix one of these two values

for ψ̃0. Then, the optimization reduces to

min
ψ̃1,ψ̃2,...

∞∑
n=2

(gn−ψn)2

subject to
∞∑
n=1

ψ̃n =
∞∑
n=0

ψn− ψ̃0, g0 = 0 and gk =
k−1∑
n=0

(ψ̃n−ψn), k= 1,2, . . . .

Note that if we fix ψ̃0, we also fix the value of g1, and that is why the summation in the objective

function above starts at n= 2. Now, it should be clear that if we can set the values of ψ̃k for k≥ 1

so that gn−ψn = 0 for all n≥ 2 then this choice would be optimal. It is not hard to see that this

is possible by setting

ψ̃1 =ψ2 +ψ1 +ψ0− ψ̃0 and ψ̃n =ψn+1 for all n≥ 2. (37)

As a result, the variance of the inventory process is equal to σ2
I = σ2

ε

(
ψ2

0 + (ψ̃0−ψ0−ψ1)2
)
. It only

remains to decide which of the two feasible values of ψ̃0 minimizes σ2
I . One can see that the optimal

choice is ψ̃0 = sign(ψ0 +ψ1)σ/σε and we conclude that

σI = σε

√
ψ2

0 +
( σ
σε
− |ψ0 +ψ1|

)2

. �
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Proof of Proposition 4: Recall that wN and wE are the supplier’s per-unit production costs

for regular and expedited orders, respectively. It follows that the long-term average per-unit pro-

duction cost is equal to

wS = lim
T→∞

E

[∑T

t=1w
NNt +wEEt∑T

t=1Nt +Et

]
=wN + (wE−wN) lim

T→∞
E

[ ∑T

t=1Et∑T

t=1Nt +Et

]
(38)

= wN + (wE−wN) lim
T→∞

E

[ ∑T

t=1Et/T∑T

t=1(Nt +Et)/T

]
=wN +

(wE−wN)

d
lim
T→∞

T∑
t=1

E[Et]

T

To compute the value of the long-term average expected number of units expedite every period,

we need to derive first the myopic order-up-to policy. Under the condition wE >wN, it follows that

at optimality the supplier expedites the minimum possible, i.e., Et = (IS
t−1 +Nt−1−Ot)−. Hence,

after some straightforward manipulations, we can rewrite the supplier’s long-term average cost in

equation (24) as follows:

ΠS = inf
Nt,Et

limsup
T→∞

1

T
E

[
T∑
t=1

wNNt +wEEt +hS IS
t

]
(39)

=wN d+ inf
Nt

limsup
T

1

T
E

[
T∑
t=1

hSE[(IS
t−1 +Nt−1−Ot)+|MS

t ] + (wE−wN)E[(IS
t−1 +Nt−1−Ot)−|MS

t ]

]

(Recall from Section 2.2 that MS
t represents the supplier’s linear past in period t.)

Under a myopic order-up-to policy, the supplier decides how much to order for the next period

by minimizing the argument inside the summation, that is, by solving every period

min
Nt

E
[
hS (IS

t +Nt−Ot+1)+ + (wE−wN) (IS
t +Nt−Ot+1)−|MS

t

]
.

Using a change of variable, the optimization problem can be rewritten in terms of an order-up-to

level Yt = IS
t +Nt that solves

min
Yt

E
[
hS (Yt−Ot+1)+ + (wE−wN) (Yt−Ot+1)−|MS

t

]
.

Under Assumptions 1 and 2, Ot+1 has a normal distribution with mean and standard deviation

given by

mS(t) =E[Ot+1|MS
t ] and σS =

√
Var[(Ot+1−mS

t )|MS
t t= 1,2, . . .

(Note that Ot is a stationary process and the standard deviation σS is independent of t.) It follows

that the optimal order-up to level is equal to

Yt =mS
t +σS zS where zS = Φ−1

(
wE−wN

wE−wN +hS

)
.
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The number of units expedited in period t+ 1 is equal to

Et+1 = (IS
t +Nt−Ot+1)− = (Yt−Ot+1)− = (Ot+1−mS

t −σS zS)
+.

Conditional on MS(t), the random variable (Ot+1−mS
t −σS zS) is normally distributed with mean

−σS zS and variance σ2
S. We can then evaluate E[Et+1|MS(t)] in terms of the Loss function L to

get E[Et+1|MS(t)] = σSL(zS). Plugging this back in equation (38), we get

wS =wN + (wE−wN)
σS

d
L(zS).

Similarly, we can plug the value of Yt in (39) to get

ΠS =wN d+hS σS z
S +
(
wE−wN +hS

)
σSL(zS). �
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