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MORE BABYLONIAN LUNAR THEORY IN THE ASTRONOMICAL PAPYRUS P.COLKER

P.Colker, an unprovenanced papyrus paleographically dated to the fi rst century AD in the private collec-
tion of Professor M. L. Colker (Charlottesville, Virginia, USA), was, when Neugebauer published a partial 
transcription and discussion of it in 1988, the fi rst known example in Greek of a so-called System B lunar 
syzygy table, one of the most complex among the varieties of astronomical tables known from Late Bab-
ylonian cuneiform tablets from Babylon and Uruk.1 Of the three columns of data in the fragment, Neuge-
bauer identifi ed col. iii as the component of System B known as Column G, which is an approximation of 
the length of the time interval from the preceding to the present conjunction or opposition of the Sun and 
Moon taking into account the periodic variation in the Moon’s apparent speed.2 In my subsequent edition 
of the papyrus, I conjectured that cols. i and ii together are Column J, which is a correction to be added to 
or subtracted from G to account for the periodic variation of the Sun’s apparent speed.3 Col. ii consists just 
of abbreviated words alternately signifying “additive” and “subtractive”, and it was the presence of these 
indications, written at intervals of six lunar months (i.e. approximately half a year) that suggested that the 
numerals in col. i belonged to a sequence of J. I was unable to confi rm this hypothesis, however, because 
the rules for computing J are rather complicated, while the numerals preserved in col. i – which are only 
the ends of the original numbers – were diffi cult to read from the black-and-white photograph on which my 
article, like Neugebauer’s, was based.

The recent discovery of a papyrus in the Cairo Museum (P.Cair. Mus. S. R. 3059, part) containing 
a sequence of System B Column H, which provides the basis for computing Column J, suggested that it 
might be worthwhile to revisit the question of the identity of P.Colker cols. i and ii.4 Through Prof. Colk-
er’s kindness I have been able to study the papyrus in person as well as to photograph it, resulting in the 
much improved transcription of the problem columns offered below.5 (Col. iii, whose readings could be 
controlled by the known rules for computing Column G, did not require revision.) The new readings make 
it possible to confi rm that cols. i and ii were J, as well as to reconstruct the values of this column and the 
lost Column H from which it was derived.

Transcription and translation of P.Colker cols. i and ii
In the translation, uncertain digits are represented by “x” and insecurely read digits are underlined.
 5  ]ζ   ̣      ]7 x
   ]      ]
   ]      ]
   ] κ       ] 20
   ]  ̣  ̣  πρ(οσθετικός)  ]xx additive
 10  ]  ̣  ̣      ]xx
   ]  ̣      ]x
   ]  ̣      ]x
   ]  ̣  ̣      ]xx
   ]  ̣ κ ν⟦  ⟧̣     ]x 20 50

1 Neugebauer 1988.
2 For the arrangement and computational rules of the System B tables, see Neugebauer 1955, 1.69–85 and (on the specifi c 

columns with which the present article is concerned) Neugebauer 1975, 1.482–497.
3 Jones 1997, 172.
4 Aish–Jones 2016. See also PSI 15.1491, containing a terse description of a System B lunar table with columns recogniz-

able as H, J, and G in that order.
5 See Aish–Jones 2016, fi g. 2. Additionally, a color photograph of P.Colker was published in Finkel–Seymour 2008, 193. 

I am grateful to John Steele and Irving Finkel for providing me with this photograph in higher resolution.
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 15  ]ζ ν  ἀφ(αιρετικός)  ]7 50 subtractive
   ] να μ     ] 51 40
   ] μη °͞      ] 48 0
   ]   ϛ̣ ν      ] x6 50
   ] κ  λ      ] 20 30
 20  ]δ κ      ]4 20
   ]θ κ  πρ(οσθετικός)  ]9 20 additive
   ] ιη    ̣      ] 18 x
   ]  ̣ κθ λ     ]x 29 30
   ]  ̣      ]x
 25  ]      ]
   ]      ]
   ]  ̣  ἀφ(αιρετικός)  ]x subtractive

5 ζ : faint |   ̣: traces near baseline, apparently parts of an ascending and 
a descending stroke
8 κ : faint and indistinct
9   ̣  ̣: blurred traces
10   ̣  ̣: indistinct traces
11   ̣: blurred ink, no distinct strokes
12   ̣: faint vertical stroke
13   ̣  ̣: small ink traces near baseline
14   ̣: the right end of a horizontal stroke near top height, nearly touching 
the kappa, probably γ, ϛ, or ζ | ⟦  ⟧̣: indistinct blur of ink, probably not 
an intentional letter
18   ̣: vertical stroke, either ι or ν
19 κ : left half of letter stripped away; ε  or ϛ ̣ also possible
22 η : left vertical and lower half of right vertical, the rest of the letter 
indistinct |   ̣: blurred but possibly the upper part of a vertical
23   :̣ pairs of traces of ink at baseline and top letter height, suggesting 
four extremities of a squarish letter, remainder blurred
24   ̣: right end of slightly descending horizontal stroke near baseline
27   ̣: two specks of ink near baseline

Algorithms for Columns H and J
The following analytical sections of this article assume that the reader is familiar with the basic princip-
les of Babylonian mathematical astronomy as described, for example, in the introduction of Neugebauer’s 
Astronomical Cuneiform Texts.

As attested in numerous Babylonian System B lunar tablets, Column H is a linear zigzag function com-
puted according to the following parameters and algorithm:6

  Column H
  Parameters:
   minimum  mH = 0
   maximum  MH = 0;21
   step   dH = 0;6,47,30
   period  PH = 1008/163 = 6;11,2,34,36,…

6 Neugebauer 1955, 1.78. To maintain consistency with the notations of the papyrus and P.Cair. Mus. S. R. 3059 (part), we 
will consider the units of Columns H and J to be “large hours”, equivalent to 4 hours; in Babylonian texts the fundamental unit 
was the UŠ, equivalent to 4 minutes or 1/60 of a large hour.



 More Babylonian Lunar Theory in the Astronomical Papyrus P.Colker 139

  Algorithm:
Let H(n) designate the value of Column H in row n of a table. H(n) is on either an 
increasing (↑) or a decreasing (↓) branch of the sequence.

  If H(n) ↑ and H(n) + d  ≤ M, then H(n+1) = H(n) + d
   else H(n+1) = 2M – H(n) – d
  If H(n) ↓ and H(n) – d ≥ m, then H(n+1) = H(n) – d
   else H(n+1) = 2M – H(n) + d

Column J is a non-linear zigzag function; instead of having a constant increment/decrement d, its values 
alternately increase and decrease between a defi ned minimum and maximum by a sequence of values of 
the linear zigzag function H. Two variants are known for J’s numerical parameters:7

  Column J
  Parameters (abbreviated):
   minimum  mJ = –0;32,28
   maximum  MJ = +0;32,28
   period8  PJ = 3896/315 = 12;22,5,42,51,…
  Parameters (unabbreviated):
   minimum  mJ = –0;32,28,6
   maximum  MJ = +0;32,28,6
   period  PJ = 2783/225 = 12;22,8
  Algorithm:

Let H(n) and J(n) designate the values of Columns H and J in row n of a table. J(n) 
is on either an increasing (↑) or a decreasing (↓) branch of the sequence.

  If J(n) ↑ and J(n) + H(n+1) ≤ MJ, then J(n+1) = J(n) + H(n+1)
   else J(n+1) = 2MJ – J(n) – H(n+1)
  If J(n) ↓ and J(n) – H(n+1) ≥ mJ, then J(n+1) = J(n) – H(n+1)
   else J(n+1) = 2 mJ – J(n) + H(n+1)
  Synchronization

The purpose of defi ning Column J in this complicated way was to smoothe its 
periodic variation so that the rate of change would be slow around the mininum 
and maximum and fast around the mean (i.e. around zero).9 Hence the maxima 
and minima of J must approximately coincide with the minima of Column H, 
whereas Column J’s transitions from additive to subtractive and vice versa must 
approximately coincide with H’s maxima.10 To maintain this synchronization in 
the long term would require PJ = 2PH. This relation does not hold exactly for either 
the unabbreviated or the abbreviated parameters of J, but the discrepancy and the 
resulting systematic phase drift are much smaller for the abbreviated parameters, 
so it is possible that the leaving off of the third sexagesimal place in M and m was 
motivated not only by arithmetical convenience but also by improved coherence. 
The unabbreviated parameters are attested only in System B tablets from Uruk, 

7 Neugebauer 1955, 1.78-79.
8 PJ, calculated as 4(MJ – mJ)/(MH – mH), is an idealization since the dates of its maxima and minima are neither well 

defi ned nor equally spaced, as is the case with linear zigzag functions; see Neugebauer 1975, 1.492–496. For the unabbreviated 
parameters PJ = 12;22,8 is a well attested Babylonian parameter for the length of the year in mean lunar months, which shows 
that the inventors of the System B H–J scheme employed this defi nition of PJ.

9 For further discussion of the exceptional computational basis of System B Column J see Aaboe 2002 and Britton 2003.
10 For an illustration of the chaos that could result when an arithmetical error disturbed the synchronization, see 

Neugebauer 1955, 1.156 with Fig. 42.
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whereas use of the abbreviated parameters appear in tablets from Babylon and 
occasionally from Uruk.11

In passing, an unobvious detail in the calculation of J as it is practiced in the cuneiform tablets deserves to 
be noted. As defi ned above, H is a zigzag function whose period is half a solar year and whose minimum is 
zero. One might be tempted to redefi ne it as a zigzag function with the solar year itself as period and with 
m = –M = –0;21, modifying the rules for J so that H(n+1), which now can be either positive or negative, is 
always added to J(n) with appropriate refl ections at the maxima and minima. In the tablets, however, the 
situation sometimes arises that H has passed a zero minimum (or on the alternative defi nition, has changed 
sign) before J reaches one of the extrema, and in these cases it becomes clear that the criterion for whether 
to treat H as additive or subtractive was the current trend (increasing or decreasing) of J; H only switches 
from being treated as additive to subtractive or vice versa in the following row of the table.

First analysis of P.Colker cols. i and ii
Lines 15–20, which are comparatively well preserved in the papyrus, comprise a complete subtractive 
half-period of Column J. A subtractive half-period begins with a quarter-period of decelerating decrease 
followed by a quarter-period of accelerating increase, so the minimum must have been reached around 
lines 17–18. We can infer that Columns H and J were both decreasing in lines 15–17. Hence the last two 
places of H(17) were 56,20, and we can use the securely read numerals together with the algorithm for H to 
extrapolate the last two places of Columns H and J back to line 14 by the following argument. 

Either H(16) is on the same decreasing branch as H(17) or on the preceding increasing branch. In the 
former case, H(16) = H(17) + 0;6,47,30, so that the last places of H(16) are 43,50 and the last places of J(15) 
are 7,50, in agreement with the readings of the papyrus. In the latter case, H(16) would end in 16,10, and 
the last places of J(15) would be 35,30, which is obviously not the case. The same considerations allow us 
to deduce that H(15) is on the increasing branch, that is, H passes its maximum between lines 15 and 16, so 
that H(15) ends in 28,40 and J(14) in 20,50, matching the papyrus’s readings. H(14) is also on the increasing 
branch, since a branch of H always comprises three or four successive values. Summarizing what we have 
so far:
14  0;xx,41,10 ↑   0;xx,20,50 additive ↓
15  0;xx,28,40 ↑  0;xx,7,50 subtractive ↓
16  0;xx,43,50 ↓  0;xx,51,40 subtractive ↓
17  0;xx,56,20 ↓  0;xx,48,0 subtractive ↓
Column J must have passed its minimum either between lines 17 and 18 or between 18 and 19; a minimum 
between 19 and 20 is excluded because it would result in a branch of J comprising just one value, which 
is impossible. We know that H(18) is still on the decreasing branch, again because a branch of Column H 
always comprises three or four values; hence H(18) ended in 8,50. If J passed its minimum between lines 
17 and 18, the last places of J(18) would have been either 59,10 (using the abbreviated parameters for J) or 
59,22 (using the unabbreviated parameters). Instead the papyrus has x6,50, which is consistent with this 
being a normal decreasing step, so we restore:
18  0;xx,8,50 ↓   0;xx,56,50 subtractive ↓
The passage of J’s minimum thus followed this line, and from the surviving fi nal places of lines 18–20 we 
see that the abbreviated parameters were used, since otherwise J(19) would have ended in 20,42.
19  0;xx,38,40 ↑  0;xx,20,30 subtractive ↑
20  0;xx,26,10 ↑  0;xx,54,20 subtractive ↑
21  0;xx,13,40 ↑  0;xx,19,20 additive ↑
At this stage, we have abundant confi rmation that col. i is indeed J, with col. ii providing the indications of 
when it changes from additive to subtractive and vice versa.

11 Neugebauer 1955, 1.169.
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Reconstructing Columns H and J
To narrow down the possible reconstructions of col. i, an Excel spreadsheet was prepared to reproduce the 
calculated sequences of H and J assuming any hypothetical values of H(14) and J(14), which determine all 
values of H and J both before and after line 14. Paying attention only to the secure readings in cols. i and 
ii, lines 14 through 21, one fi nds as possible values for H(14) and J(14) the combinations marked ü in the 
Table 1.

J(14) = 
0;12,20,50

J(14) = 
0;13,20,50

J(14) = 
0;14,20,50

J(14) = 
0;15,20,50

J(14) = 
0;16,20,50

H(14) = 0;12,41,10 ü ü (1)
H(14) = 0;13,41,10 ü ü (2) ü ü (3) ü (4)

Table 1. Candidates for the values of H and J in P.Colker line 14

The trace of a letter along the left edge of the papyrus on line 14, which would belong to the fi rst place of 
J(14) and hence to a letter whose numerical value is between 2 and 6, is compatible with γ, ϛ, or at a stretch 
ε. We may thus reduce the choices to those in the table for which the check mark is followed by a paren-
thesized number.

The sequences of J generated from these remaining four pairs of values have identical last places from 
row 12 onwards as far as the papyrus is preserved. In all the sequences, the change from additive to subtrac-
tive takes effect on row 28, whereas the papyrus indicates the change on line 27. This must refl ect a mistake; 
either the scribe simply wrote the subtractive indication one line too high in col. ii, or an arithmetical error 
affected the last few rows of the papyrus. The only potential discriminant in lines 12–28 is the ambiguous 
traces of the second digit of the fi rst place of J in line 23, which could be either ζ, in agreement with (1), 
or η, in agreement with (2), whereas they are unlikely to be ε or ϛ as required respectively for (4) and (3).

In rows 5 through 12, the last digits generated by (2), (3), and (4) are identical to each other, but differ 
from those of (2). Unfortunately the papyrus offers scarcely anything legible in these lines, but the uncer-
tain zeta in line 5 would be consistent with H(5) = 0;30,57,40 as in (2), (3), and (4) but not with 0;30,42,40 
as in (1). Combining this discriminant with that of line 23, we would be left with (2) as a unique solution for 
reconstructing the papyrus’s sequence of J. Obviously this narrowing down of our original seven possibili-
ties to one can at best be regarded as probable since it rests on just three insecurely read letters.

Table 2 gives a complete reconstruction of the H and J sequences that would have been in lines 1–28 
according to our preferred choice of values. As Fig. 1 shows, the synchronization is excellent. (For clarity, 
the units shown in the graph are UŠ rather than large hours.)

Fig. 1. Graph of reconstructed Columns H and J of P.Colker.
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Line H J
1 0;9,23,40 0;21,55,0
2 0;16,11,10 0;5,43,50
3 0;19,1,20 0;13,17,30 subtractive
4 0;12,13,50 0;25,31,20
5 0;5,26,20 0;30,57,40
6 0;1,21,10 0;32,18,50
7 0;8,8,40 0;24,28,30
8 0;14,56,10 0;9,32,20
9 0;20,16,20 0;10,44,0 additive
10 0;13,28,50 0;24,12,50
11 0;6,41,20 0;30,54,10
12 0;0,6,10 0;31,0,20
13 0;6,53,40 0;27,2,0
14 0;13,41,10 0;13,20,50
15 0;20,28,40 0;7,7,50 subtractive
16 0;14,43,50 0;21,51,40
17 0;7,56,20 0;29,48,0
18 0;1,8,50 0;30,56,50
19 0;5,38,40 0;28,20,30
20 0;12,26,10 0;15,54,20
21 0;19,13,40 0;3,19,20 additive
22 0;15,58,50 0;19,18,10
23 0;9,11,20 0;28,29,30
24 0;2,23,50 0;30,53,20
25 0;4,23,40 0;29,39,0
26 0;11,11,10 0;18,27,50
27 0;17,58,40 0;0,29,10
28 0;17,13,50 0;16,44,40 subtractive

Table 1. Reconstructed Columns H and J of P.Colker. Single rulings indicate passage of a minimum;
double rulings, passage of a maximum.

Neugebauer has provided a test for whether a sequence of H can be a continuation of another sequence, 
and a formula for determining the intervening number of rows when such continuity is possible.12 Since 
a sequence of H repeats its values exactly after 1008 rows (which is equivalent to about 81 1/2 years), the 
formula’s results are not unique, but only the smallest mathematically possible intervals will be plausible 
candidates for the actual span of time between the dates covered in a pair of tables that we hope to connect 
in this way. It is a matter of interest to see whether the sequence of H from which P.Colker’s column J was 
computed could be a continuation of the sequence in the Cairo Museum papyrus or vice versa.

We have established above that P.Colker’s sequence of H had, on line 14, either 0;12,41,10 or 0;13,41,10 
on an ascending branch. The Cairo Museum papyrus, line 13, has 0;13,51,10 on an ascending branch. The 
criterion for whether the two sequences are joinable is that the difference between two values on the same 

12 Neugebauer 1955, 1.78.
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kind of branch is an integer multiple of 0;0,2,30. Both candidate values for P.Colker satisfy this condition 
with respect to 0;13,51,10; in other words, a continuation of the Cairo Museum papyrus’s column H will, if 
prolonged indefi nitely, eventually reproduce both candidate sequences for P.Colker.

If the difference between two values of H on ascending branches is δ, a sequence starting with the 
smaller of the two values will yield the larger value after 338400δ ± 1008n rows, where n can be any inte-
ger. Using the candidate value 0;12,41,10, we have δ = 0;1,10,0, from which it results that a sequence start-
ing with 0;12,41,10 will fi rst yield 0;13,51,10 after 532 rows (about 43 years), and a sequence starting with 
0;13,51,10 will fi rst yield 0;12,41,10 after 476 rows (about 38 1/2 years). With the other candidate, 0;13,41,10, 
we have δ = 0;0,10,0, from which we fi nd that a sequence starting with 0;13,41,10 will fi rst yield 0;13,51,10 
after 940 rows (about 76 years) while a sequence starting with 0;13,51,10 will yield 0;13,41,10 after just 68 
rows (about 5 1/2 years). This last interval is so small that it is tempting to conjecture that the two papyri 
were part of a single series of computations of conjunctions or oppositions spanning several years. Since 
each papyrus covers about two years, they could easily have come from a single roll.
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