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Model
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Ptolemy’s solar model was the only fully worked-out kinematic solar model
from classical antiquity of which medieval and early modern astronomers
had knowledge. Its features are well known. It is a simple eccentre model,
entirely in the plane of the ecliptic, with a constant eccentricity in a direction
that is fixed relative to the intersections of the ecliptic and celestial equator.
Hence the period of the sun’s anomaly is equal to the tropical year, so that
the tropical year and the the astronomical seasons do not vary in duration.
The specific eccentricity, apsidal line, and tropical year adopted by Ptolemy
were first established by Hipparchus in works that have not come down to
us (Almagest III 1 and 4). Moreover, since the angle between the ecliptic and
the equator is also constant (Almagest I 12), there will be no variation in the
maximum and minimum noon altitudes of the sun on summer and winter
solstices, nor any variation in the extreme points of the horizon where the
sun rises and sets at the solstices. To calculate the sun’s ecliptic coordinates
for a given date, it suffices to tabulate a single mean motion representing the
sun’s uniform motion along its eccentre (Almagest III 2), together with an
anomaly table with this mean motion as its sole argument (Almagest III 6).
The sun’s longitude is obtained by adding together the mean motion, the
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correction from the anomaly table, and the longitude of the eccentre’s apogee;
the sun’s latitude is always zero.

About a generation before Ptolemy completed the Almagest, the Platonic
philosopher Theon of Smyrna gave an account of the Hipparchian solar
model in his work Things Useful in Mathematics for the Reading of Plato1.
Theon uses the model to illustrate the interchangeability of the epicyclic and
eccentric models (ed. Hiller, 152–172). Between the detailed demonstration
for the sun and the extension of the equivalence to the other planets, Theon
interjects the following remarks (ed. Hiller, 172–173):

These things are demonstrated also for the other planets. But the sun appears to
behave in this way without deviation according to both models, because its periods
of restitution, i.e. that in longitude, that in latitude, and that in ‘‘depth’’ and what
is called anomaly, are so close to each other that most of the mathematicians believe
that they are equal, each being 3651/4 days.

But those who inquire more precisely believe [1] that the period in longitude, in
which the sun traverses the zodiacal circle from some point to the same point and re-
turns from solstice to the same solstice and from equinox to the same equinox, is ap-
proximately the stated time, with the sun’s longitude restored to the same point at the
same hour after a four-year period; [2] that the period in anomaly, according to which
the sun becomes furthest from the earth and consequently smallest in the appearance
of its size and slowest in its motion towards the trailing signs, or contrariwise closest to
the earth and consequently seeming largest in size and fastest in motion, is approxi-
mately 3651/2 days, again with the sun appearing at the same point in depth at the same
hour after a two-year period; and [3] that the period in latitude, in which the sun returns
from the same point to the same point, being furthest north or furthest south, so that
the shadows of the same gnomons are seen again equal, is approximately 3651/8 days,
with the sun returning to the same point in latitude after an eight-year period.

These are very odd things for Theon to say. While discussing the Hipparch-
ian model, both before and after this passage, Theon draws attention to the
specific and apparently fixed longitude of the apogee, Gemini 51/2æ, which is
required if the model (epicyclic or eccentric) is to reproduce the lengths of
the astronomical seasons that Theon assumes earlier in his work. Yet here he
asserts that the sun’s period of anomaly is a quarter of a day longer than the
tropical year, so that the longitude of the solar apogee must advance by close
to 1/4æ per year. The specification of a solar latitudinal motion is also a sur-
prise, since in the treatment of the Hipparchian model it was assumed that
the components of the model lie in the plane of the ecliptic.

Theon does, however, mention solar latitude in two other places, stating
that the sun deviates from the ecliptic by as much as 1/2æ either way, making
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a total latitudinal range of 1æ. This information was derived from a source,
presumably the philosopher Adrastus of Aphrodisias whom Theon often cit-
es, that was also used by Chalcidius (4th century A.D.) in his commentary
on Plato’s Timaeus. Chalcidius’ assertion (ed. Waszink, 139) that the sun
diverges about half a degree to the north or to the south of the ecliptic agrees
closely with Theon. The fifth-century writer Martianus Capella seems to have
misunderstood Chalcidius’ likening the ecliptic to a plumb-line (libra), so
that in his version (De Nuptiis 867, ed. Willis, 328) the latitudinal deviation
of ∫1/2æ occurs only in the zodiacal sign Libra. It is plausible, but not demon-
strable, that Theon’s solar periodicities came from the same source in which
he and Chalcidius found the maximum solar latitude of 1/2æ.

Solar latitude was a widespread concept in earlier Greek astronomy2. In
particular, Eudoxus believed that the sun’s solstitial rising and setting points
on the horizon exhibited a small variation, and if we are to believe Simplicius,
his homocentric sphere model for the sun involved three spheres expressly to
account for this phenomenon. In his extant Commentary on the Phaenomena
of Aratus and Eudoxus Hipparchus dismisses a solar latitudinal motion,
pointing out that lunar eclipse predictions accurate to within two digits, i.e.
about 1/12æ, were being made on the basis of models that assumed that the
earth’s shadow (and hence the sun) were centred on the ecliptic. On the face
of it this argument should have been decisive. Ptolemy does not so much as
mention the notion of solar latitude in the Almagest. As for Theon’s three
periods, the neat geometrical progression of the fractions has the air, as Neu-
gebauer observed, of a numerological speculation (1975, 630–631).

Two Greco-Roman papyri put Theon’s remarks on solar theory in a new
light. The first is a fragment from the top of a table of sexagesimal numerals
that I came across in 1996 among the papyri from Oxyrhynchus at the Ash-
molean Museum, Oxford; it is now published as P. Oxy. LXI 4174a3. The
table is written on the back of a document; both hands can be dated paleo-
graphically to within a few decades of A.D. 200. Parts of seven columns,
separated by vertical rulings, are present:

i. Integer multiples, from zero to at least five, of a sexagesimal number
ending in 16.

ii. Integer multiples, from zero to at least six, of 0;59,5,48.
iii. Integer multiples, from zero to at least fourteen, of 0;59,9,30.
(vacant column)
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iv. Integers from one to at least 11.
v. Integer multiples, from one to at least thirteen, of 0;2,27,50,40.
vi. Integer multiples, from one to at least thirteen, of a sexagesimal number

beginning 0;2,2x (where x is an undetermined digit).

This is easy to recognize as a mean motion table. Since 360/365;15 is approxi-
mately 0;59,8, the numbers in cols. ii–iii appear to be some sort of daily mean
motions of the sun. The format is as in Ptolemy’s Handy Tables, with a mean
motion of zero corresponding to day 1, so that these columns evidently give
the part of the mean motion corresponding to the actual day number in a
calendar month, rather than the mean motion corresponding to a given num-
ber of elapsed days as in the Almagest4. The calendar was probably the Egyp-
tian, with thirty-day months, but there is no way to prove this.

Columns v–vi, following a vacant column and an index column, are also
clearly mean motions corresponding to the number of equinoctial hours in
col. iv. If we multiply the base number of col. v, 0;2,27,50,40, by 24, we obtain
a daily motion of 0;59,8,16, which is likely to be the base number of col. i.
Conversely, dividing the base number of col. ii, 0;59,5,48, by 24, we obtain
an hourly motion of 0;2,27,44,30, which could be the base number of col. vi.
Thus we have (at least) three distinct tabulated mean motions, all close to
the sun’s mean motion in longitude.

The periods of these motions, assuming the third fractional place of each
daily motion to be precise within ∫1, are:

(a)
360

0;59,8,16
Ω 365;14,55,32∫0;0,6,11 days

(b)
360

0;59,5,48
Ω365;30,10,15∫0;0,6,11 days

(c)
360

0;59,9,30
Ω365;7,18,39∫0;0,6,10 days

By way of comparison, Theon’s solar periods of (a) longitude, (b) anomaly,
and (c) latitude are:

(a) 3651/4 daysΩ365;15 days
(b) 3651/2 daysΩ365;30 days
(c) 3651/8 daysΩ365;7,30 days

The correspondence is beyond doubt, so that we can securely identify cols. i
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and v of the papyrus as a solar mean motion in longitude, cols. ii and vi as a
mean motion in anomaly, and col. iii as a mean motion in latitude. We may
further remark that none of the daily motions in the papyrus is precisely what
one would obtain by dividing Theon’s periodicities into 360æ and either round-
ing or truncating at the third fractional place. On the other hand it is probably
not a coincidence that the difference between the papyrus’s mean daily motions
in longitude and anomaly, 0;0,2,28, is exactly twice the difference between its
mean daily motions in longitude and latitude, 0;0,1,14. In other words, the sun’s
apogee is presumed to advance at twice the speed that the sun’s nodes precess.
This suggests that the rates of mean motion, whatever their origin, have been
adjusted according to some notion of numerical tidiness. Also the mean motion
in longitude is too short to be a good sidereal year, and too long to be a good
tropical year in the light of Hipparchus’ investigations of precession.

Unfortunately the papyrus does not contain evidence of the epoch values,
so that we do not know where the solar apogee and nodes were supposed to
be for any particular date. Moreover, the existence of a mean motion table
implies an accompanying anomaly table, and probably also a table giving
latitude as a function of the mean motion in latitude, but the papyrus gives
us no information about their nature.

Our second papyrus may take us a step towards filling these gaps. This
fragment, in the collection of the Istituto Papirologico ‘‘G. Vitelli’’ (Flor-
ence), has to date been published only in a provisional edition by M. Manfre-
di (1966), without inventory or publication number, although subsequent ref-
erences to it identify it as PSI inv. 515 and as PSI XV 1490, to appear in the
long-awaited fifteenth volume of the Papiri della Società Italiana5. According
to Manfredi, the hand of the astronomical text belongs to the second century
A.D., and more probably to the first half of that century; documentary notes
in the margins and a document written on the back were added about the
end of the second or the beginning of the third century6. We give below a
translation of Manfredi’s provisional text, enclosing in brackets the breaks
in the construable text as well as hypothetical restorations. The superscript
numerals indicate the corresponding line numbers of the Greek text7.

[... in longitude] (1) 156;28,[xx],23; in depth (2) 51;14?,7,44; in latitude
238?;[xx,xx,xx]. (3) Again setting these out [in the] (4) second row of the
[... thir](5)ty-day interval, we will extend downwards [the re(6)maining]
29 rows and [...](7) of one four-year interval [...](8) adding on [...(9)...]
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course [... in longitude?] (10) 44;[x]x,x,1?1?, [in depth? (11) x?]38;48,x[x?,xx?

...(12)...(13)...] in position? [...(14) in latitude?] 294;35,[xx,xx ...] (15) It is
evident? that also [...(16)...] (17) procedure? outside? [...](18) of anomaly
[...](19) we [shall set out] according to the [...](20) way. The sun in both
mo(21)dels? [...](22) increases? and diminishes? [its] (23) motion by two
degrees [24? minutes?] in a quad(24)rant? whether it travels situated on
an [eccentric circle] (25) or [on an epi](26)cycle. For this has been [demon-
strated?] by us in the (discussion) concerning (27) the sun’s anomaly. (28)

So since by two degrees 24? (minutes) [in] a quad(29)rant? the difference
is [...](30) of the motion, I? added? [...](31) from? the quadrant [...](32) three
degrees. For not [...(33)...] two are [...(34)... (35)...] (36) as? I? demonstrated?

[...] (37) travel? [to the] mean? [...(38) semi?]circle [...(39)... (40)...] (41) ap-
proximately two fifths? [...(42) it is evident?] that if [...(43) from?] the two
fifths [...(44) ] will obtain [...(45) ] of the 2;24? degrees? [...(46) ] to be [...](47)

the increment of ano[maly...]

As the translation makes evident, there are numerous breaks in the text, and
indeed not a single line is complete in the papyrus. The gaps are, however, for
the most part small. If Manfredi’s arrangement of the three pieces of papyrus
constituting the manuscript is correct, we have a vertical strip containing part
of a single column of text from the papyrus roll, comprising forty-seven lines
from top margin to bottom margin. (Manfredi expresses some uncertainty
about a join of fragments at line 12.) Except in lines 1–5, in which the left edge
of the column is preserved, the beginnings and ends of all lines are missing. The
width of the column can, however, be estimated as roughly twenty-five letters
on the basis of Manfredi’s plausible restorations in lines 1–5, 19–20, and 24–28.
Hence about half the text of the column is actually legible, and this is enough
to give us some hope of making out the drift of the argument.

Lines 1–2 set out three sexagesimal numbers. The second and third are
identified as ‘‘of depth’’ and ‘‘of latitude.’’ The first number, which was the
beginning of the list (it is preceded by the series-initiating particle mèn), was
without doubt ‘‘of longitude.’’ Unless a numeral has broken off at the end of
line 1, which is possible but I think unlikely, the mean motions are approxi-
mately as follows:

longitude: 156;28æ
anomaly: 51;14æ
latitude: 238æ 8
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According to lines 3–6 these numbers are to be written in the second row
of a table covering a thirty-day interval, and the ‘‘remaining twenty-nine
days’’ are to be filled in. In other words, we are constructing a mean motion
table representing the daily motion of a heavenly body. Because the text speci-
fies the second line, and marks the operation as a repetition (‘‘again’’Ωpálın),
it looks as if the lost preceding text gave mean motions to be entered for day
1 of the table, and then described how to obtain the numbers for day 2 by
adding appropriate increments. The rest of the table would be produced by
repeating this step as many times as needed.

The larger structure of the table can be inferred from the combination of
a thirty-day table with the allusion to a four-year interval in line 7. In mean
motion tables like Ptolemy’s, which employ the old Egyptian calendar with
its uniform years of 365 days, the calendrical units by which the tables are
organized are equinoctial hours, days, Egyptian months of thirty days, Egyp-
tian years, and larger cycles of years. A four-year periodicity is, however,
present in the Alexandrian (reformed Egyptian) calendar of the Roman
period, in which every fourth year ended with six extra ‘‘epagomenal’’ days
instead of the usual five epagomenals. Thus in all likelihood the mean mo-
tions of line 2 pertain to the second day of the first month of the first year
of a cycle of four Alexandrian years.

Now these mean motions are obviously not just the increments relative to
an arbitrary epoch, as they would be in Ptolemy’s mean motion tables. No
heavenly body could possibly be imagined to travel 156æ in longitude in a
day or two! The table being constructed in the papyrus has to be of a different
kind, containing the actual mean positions for specific dates in specific years.
The numbers in lines 1–2 would pertain to the second day, Thoth 2, of an
Alexandrian year beginning a four-year intercalation cycle. Since the first
such cycle began with the regnal year Augustus 5 (26/25 B.C.), the year in
question would be Augustus 5 π 4n for some integer n.

Manfredi quite reasonably supposed that the mean motions in this sec-
tion of the papyrus were the moon’s; and with this hypothesis Neugebauer
concurred9. The moon is, after all, the only heavenly body having an apsi-
dal line and nodes that move comparatively rapidly, justifying the separate
tabulation of mean motions in longitude, anomaly, and latitude. Accepting
this assumption, I attempted to find dates within a historically plausible
range for which the mean motions of the papyrus approximately matched
the lunar mean motions according to the theory of the Almagest. My
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search was fruitless. It was only after the discovery and identification of P.
Oxy. LXI 4174a that it occurred to me that the mean motions might be-
long to the sun.

My guess turned out to be easy to verify. Since the sun’s longitudinal
period is very close to the mean length of the Alexandrian calendar year, the
sun’s mean longitude on a given calendar day of a particular year in the four-
year cycle shifts only a small amount after each cycle. Using Ptolemy’s tables,
we find the mean tropical longitude of the sun at noon, Thoth 2, Augustus
5 as 156;11æ; the papyrus has 156;28æ. The agreement would be almost perfect
for noon, Thoth 2, Augustus 85 (A.D. 55/56), or for 6 P.M., Thoth 2, Aug-
ustus 5. In other words, the mean position in longitude in line 1 of the pa-
pyrus is within a few minutes of the sun’s mean position according to Ptole-
my’s model–how few minutes depends on the epoch time and date employed
by the author of the papyrus, which we do not know. We may conclude, not
only that the papyrus is giving solar mean motions, but also that its longi-
tudes are tropical rather than sidereal. As is well known, Ptolemy’s tropical
longitudes are systematically too large by about 0;24æ in 26 B.C., with the
error increasing by about 0;0,15æ per year10. The longitudes of the papyrus
seem to exhibit a similar error, which could be equal to Ptolemy’s error or a
bit smaller.

The longitude of the sun’s apogee, according to the papyrus, is approxi-
mately:

lAΩ156;28æ – 51;14æΩ105;14æ

This is about 37æ higher than the actual longitude of the solar apogee for
about A.D. 0; by contrast, the Ptolemy-Hipparchus apogee, 65;30æ, is only
about 3æ too high for that date11. It seems reasonable to suppose that the
solar theory behind this papyrus was essentially the same as underlay the
mean motions of Theon and P. Oxy. LXI 4174a (the alternative being that
two kinematic models for the sun with solar latitude were the basis of popular
tables). Assuming the daily progress of 0;0,2,28æ for the apsidal line that we
deduced from P. Oxy. LXI 4174a, it would require about 159 years for the
apogee to shift from Hipparchus’ 65;30æ (determined probably some time
before 135 B.C.) to 105;14æ. Hence in this respect the model could be held to
be more or less consistent with Hipparchus’ work.

The starting point for measuring (lunar) mean motion in latitude in Ptole-
my’s works is the northern limit of the orbit; one could also imagine using
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the ascending node as the starting point. According to the papyrus, the longi-
tude of the starting point, whichever it is, was:

lBΩ156;28æ – 238æ<278æ

This is fairly close to the winter tropic point. Assuming with P. Oxy. LXI
4174a that the nodes precess 0;0,1,14æ per day, 159 years earlier the longitude
of this point would have been about 298æ.

Resuming the reading of the papyrus, we find in lines 10–14 several rather
poorly preserved sexagesimal numbers. These may be further mean motions
(not necessarily of the sun), but I can make no sense of them.

Lines 18–47 describe the construction of an anomaly table for the sun,
which makes good sense following the construction of the solar mean motion
table in lines 1–7. This table is ostensibly based on a theoretical treatment of
epicyclic and eccentric solar models given elsewhere by the author of the text
(this is the clearest indication that we are dealing with part of a treatise rather
than an isolated procedure text). The most noteworthy element here is the
maximum equation, which is 2;24æ (line 45, imperfectly legible also in lines
23 and 28)12. In Almagest III 4, Ptolemy derives from Hipparchus’ solar
eccentricity (1/24 of the radius of the solar eccentre) a maximum equation of
2;23æ. This is not significantly different from the 2;24æ of the papyrus; indeed
a discrepancy of 0;1æ could easily arise from the use of a table of chords
tabulated for fewer angles than Ptolemy’s. It follows that the solar model of
the papyrus incorporated the Hipparchian eccentricity, while attributing a
rotation to the apsidal line.

It is difficult to tell what the anomaly table was like. I rather get the im-
pression from the disjointed instructions in lines 28–47 that the equations
were not computed trigonometrically as in Ptolemy’s equation tables, but
interpolated linearly between zero at the apogee and perigee and the maxi-
mum, 2;24æ, at the quadrants.

One of the points of interest about P. Oxy. LXI 4174a and the tables
described in PSI inv. 515 is that, unlike many of the astronomical tables
preserved on papyrus, they are truly kinematic: like Ptolemy’s tables, they
‘‘exhibit the uniform circular motion’’ of a model. P. Oxy. LXI 4174a is
late enough so that its format could conceivably have been influenced by
the example of the Handy Tables. We can be practically certain, however,
that the treatise of which PSI inv. 515 is a fragment was composed before
the publication of the Almagest (about A.D. 150). The mean motion table
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and its companion, the equation table, were inventions that antedated Pto-
lemy.

I conclude with some remarks on the solar model with which I believe that
the two papyri discussed above are concerned. Of the two novel aspects of
this model, the shifting apogee is the easier one to understand. Hipparchus
established his familiar solar model from two observed time intervals, the
number of days between spring equinox and summer solstice and the number
of days between summer solstice and autumnal equinox. Three centuries
later, Ptolemy claimed to have observed exactly the same season lengths, so
that the eccentricity and apsidal line of the model must have remained
stationary. But what would happen if one observed slightly different time
intervals? One possibility, if the total interval from summer solstice to autum-
nal equinox appeared to remain the same, but the interval from spring equi-
nox to summer solstice appeared to become shorter, would lead to an eccen-
tricity fairly close to Hipparchus’, but an apogee with a greater longitude.
There is very good reason to believe that Hipparchus himself carried out such
a second determination of the solar model a few years after the one reported
in the Almagest, obtaining from season lengths 941/4 and 921/2 days an eccen-
tricity of approximately 2;20/60 (instead of 2;30/60) in the direction of longitude
67æ (instead of 65;30æ)13. One can well imagine how someone might have
interpreted such data as evidence for a shifting apogee. Eventually, of course,
such a model would lead to predictions that ought to have been in conflict
with reasonably careful observations of the dates of the equinoxes and sol-

Fig. 1. Maximum displacement of longitude of vernal equinoctial point corresponding to
solar latitude (b) when solar nodes coincide with tropical points.
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stices; but the general acceptance of Ptolemy’s solar observations during the
later Roman period shows that such checking was not a matter of routine.

The empirical motivation of a theory of solar latitude is much more prob-
lematic, especially since, as Hipparchus noted, it flies in the face of accurate
eclipse theory. The presumed nodal motion of 1/8æ per year is so slow that
one may wonder what kind of observations of solstitial altitudes or rising
and setting points could have been adduced to detect it. One noteworthy
effect of solar latitude, if the entire solar model was assumed to lie in the
oblique plane, is that the intersections of the plane of the sun’s orbit with the
equator should oscillate around the intersections of the ecliptic with the
equator (cf. fig. 1). This would lead to a trepidation of the equinoctial and
solstitial points, with a period equal to the period of solar latitude (about
2900 years). With a maximum latitude of 0;30æ, the amplitude of the trepi-
dation would be about 2;16æ along the ecliptic. Naturally this back-and-forth
motion of the solstitial and equinoctial points would interfere with any
attempt to determine a solar model by means of observed dates of equinoxes
and solstices. Solar latitude may thus have had something to do with the
origins of the concept of the trepidation of the equinoxes.
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NOTES

1. For Theon’s date see Neugebauer (1975) 949.
2. Neugebauer (1975) 629–631.
3. Text, translation, and commentary in Jones (1999) v. 1, 170–171 and v. 2, 164–167.
4. On the Handy Tables (of which no satisfactory edition exists) see Neugebauer (1975)

969–1028; the structure of the solar and lunar mean motion tables is described on pp.
983 and 986–987.

5. Neugebauer (1975) 945; Baccani (1992) 36. I have so far not succeeded in obtaining a
photograph or more recent information about the papyrus.

6. Baccani (1992) 36 dates the papyrus to the first/second century, i.e. presumably c. A.D.
100.

7. In the transcription in Manfredi (1966) 240–241, the line numbers from 40 on are off
by one.

8. In some contexts in Greek astronomy the mean motion in latitude is expressed in units
called bathmoi (‘‘steps’’) such that 1 bathmosΩ15æ. Here the units are clearly degrees,
since a mean motion cannot exceed 24 bathmoi.

9. Neugebauer (1975) 945.
10. Britton (1992) 41–42.
11. Britton (1992) 44.
12. In line 28 Manfredi reads what seems to be the fractional part as 21 (ka), but with

doubt about the alpha.
13. Rawlins (1991), Thurston (1995).


