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Abstract

Recent work on evaluating grammatical
knowledge in pretrained sentence encoders
gives a fine-grained view of a small number
of phenomena. We introduce a new analy-
sis dataset that also has broad coverage of lin-
guistic phenomena. We annotate the develop-
ment set of the Corpus of Linguistic Accept-
ability (CoLA; Warstadt et al., 2018) for the
presence of 13 classes of syntactic phenomena
including various forms of argument alterna-
tions, movement, and modification. We use
this analysis set to investigate the grammat-
ical knowledge of three pretrained encoders:
BERT (Devlin et al., 2018), GPT (Radford
et al., 2018), and the BiLSTM baseline from
Warstadt et al. We find that these models
have a strong command of complex or non-
canonical argument structures like ditransi-
tives (Sue gave Dan a book) and passives
(The book was read). Sentences with long-
distance dependencies like questions (What do
you think I ate?) challenge all models, but for
these, BERT and GPT have a distinct advan-
tage over the baseline. We conclude that re-
cent sentence encoders, despite showing near-
human performance on acceptability classifi-
cation overall, still fail to make fine-grained
grammaticality distinctions for many complex
syntactic structures.

1 Introduction

Models for sentence understanding such as BERT
(Devlin et al., 2018) and GPT (Radford et al.,
2018) are becoming more effective and ubiqui-
tous, leading to a rise in new fine-grained datasets
for evaluating their knowledge of grammar. Such
evaluations are important for both guiding the de-
velopment of more robust models and answer-
ing theoretical questions about what grammatical
concepts are can be acquired through data-driven
learning. To date, most evaluation datasets consist

of constructed sentences illustrating a highly spe-
cific kind of grammatical contrast (Ettinger et al.,
2016, 2018; Marvin and Linzen, 2018; Wilcox
et al., 2018, 2019; Futrell and Levy, 2019), or nat-
uralistic sentences labeled for a particular gram-
matical feature (Linzen et al., 2016; Shi et al.,
2016; Conneau et al., 2017, 2018). These evalu-
ation datasets are useful for studying a single phe-
nomenon such as subject-verb agreement in depth
(Linzen et al., 2016), but fail to test domain gen-
eral grammatical knowledge.

By contrast, the Corpus of Linguistic Accept-
ability1 (CoLA; Warstadt et al., 2018) tests these
models’ ability to judge the grammatical accept-
ability of sentences in a wide domain. CoLA is a
dataset of over 10k example sentences labeled for
acceptability and sampled from linguistics publi-
cations discussing numerous linguistic phenom-
ena. However, in its original formulation, CoLA
does not distinguish between phenomena, making
it difficult to analyze a model’s knowledge a par-
ticular phenomenon.

In this work, we augment CoLA with a new
syntactically annotated evaluation set2 that is both
fine-grained and domain general. All 1043 ex-
amples in the CoLA development set are labeled
with expert annotations that indicate the presence
or absence of 13 classes of syntactic phenomena,
each defined as a union of several more specific
phenomena. This resource makes it uniquely easy
to conduct analyses whose conclusions can be di-
rectly interpreted in terms of modern linguistic
theory, since CoLA data is sampled from exam-
ple sentences in mainstream linguistics publica-
tions and our annotations adapt concepts from that

1The original CoLA can be downloaded here: https:
//nyu-mll.github.io/CoLA/#

2The grammatically annotated CoLA can be down-
loaded here: https://nyu-mll.github.io/CoLA/
#grammatical_annotations

ar
X

iv
:1

90
1.

03
43

8v
3 

 [
cs

.C
L

] 
 2

0 
Se

p 
20

19

https://nyu-mll.github.io/CoLA/
https://nyu-mll.github.io/CoLA/#
https://nyu-mll.github.io/CoLA/
https://nyu-mll.github.io/CoLA/#
https://nyu-mll.github.io/CoLA/#grammatical_annotations
https://nyu-mll.github.io/CoLA/#grammatical_annotations
https://nyu-mll.github.io/CoLA/#grammatical_annotations
https://nyu-mll.github.io/CoLA/#grammatical_annotations


literature.
We use our analysis set to assess GPT and

BERT, which achieve near-human performance
(Nangia and Bowman, 2019) on many tasks in the
GLUE benchmark (Wang et al., 2018), including
CoLA. We treat acceptability classification as a
probing task (Adi et al., 2017), in which a small
classifier is trained on CoLA on top of pretrained
encoders and tested on the analysis set. We com-
pare these models to a baseline pretrained BiL-
STM model released by Warstadt et al. (2018)
with CoLA.

Our results identify specific syntactic features
that make sentences harder to classify, such as
long distance dependencies (What do you think I
ate?), and others that have little effect on diffi-
culty, such as non-canonical argument structures
like passives (The book was read). Furthermore,
some constructions highlight or minimize the dif-
ferences between models. For example, GPT and
BERT far out perform the BiLSTM on movement
phenomena such as clefts (It is Bo that left), yet
have no advantage on sentences with adjuncts (Sue
exercises in the morning). We wish to exercise
caution in interpreting these results since it is not
clear to what extent an encoder’s failure on a par-
ticular phenomenon is due to a weakness of the
encoder rather than the training data or probing
classifier. However, this caveat applies to varying
degrees to all probing resources. In this context of
other similar linguistically informed datasets, our
analysis set addresses the critical need for a eval-
uation task with wide coverage of linguistic phe-
nomena.

2 Related Work

Sentence Encoders Recent research tries to re-
produce the success of robust pretrained word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014) at the sentence level, in the form of reusable
sentence encoders with pretrained weights. Cur-
rent state-of-the-art sentence encoders are pre-
trained on language modeling or related self-
supervised tasks. Among these, ELMo (Peters
et al., 2018) uses a BiLSTM architecture, while
GPT (Radford et al., 2018) and BERT (Devlin
et al., 2018) use the newer attention-based Trans-
former architecture (Vaswani et al., 2017). Un-
like most earlier approaches where the weights
of the encoder are frozen after pretraining, the
last two fine-tune the encoder on the downstream

task. They are among the top performing3 mod-
els on the GLUE benchmark, an evaluation suite
for general-purpose sentence understanding mod-
els like these, which is built around a set of nine
sentence-level classification tasks (Wang et al.,
2018).

Probing Sentence Representations The evalu-
ation and analysis of sentence representations is
an active area of research. Most of this work to
date focuses on in-depth investigation of a partic-
ular phenomenon. A popular evaluation technique
uses probing tasks in which a small probing clas-
sifier is trained to identify particular syntactic and
surface features of a sentence based on a sentence
representation.

Some datasets for probing tasks label naturally
occurring data with the relevant features. For in-
stance, Shi et al. (2016) label sentences with fea-
tures such as past/present tense and active/passive
voice. Linzen et al. (2016) label present tense
verbs for whether they have singular or plural
agreement marking. Adi et al. (2017) label sen-
tences for length and word content. Conneau
et al. (2018) label sentences for syntactic depth
and morphological number.

Another common method is to semi-
automatically generate data manipulating a
small set of grammatical features. For instance,
Ettinger et al. (2016, 2018) build datasets of this
kind to test whether sentence encoders represent
the scope of negation and semantic roles, and
Kann et al. (2019) do so to test whether word and
sentence encoders representations information
about verbal argument structure.

CoLA & Acceptability Classification The Cor-
pus of Linguistic Acceptability (Warstadt et al.,
2018) is a dataset of 10k example sentences in-
cluding expert annotations for grammatical ac-
ceptability. The sentences are examples taken
from 23 theoretical linguistics publications and
represent a wide array of phenomena discussed in
that literature. Such example sentences are usually
labeled for acceptability by their authors or a small
group of native English speakers. A small ran-
dom sample of the CoLA development set (with
our added annotations) can be seen in Table 1.

Within computational linguistics, the accept-
ability classification task has been explored pre-

3The current top performing model (Liu et al., 2019)
is based on BERT, but includes ensembling and extra fine-
tuning.
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3 The magazines were sent by Mary to herself. 7 7 7
3 John can kick the ball. 7
* I know that Meg’s attracted to Harry, but they don’t know who. 7 7 7 7
3 They kicked them 7 7
3 Which topic did you choose without getting his approval? 7
* It was believed to be illegal by them to do that. 7 7 7 7
* Us love they. 7
* The more does Bill smoke, the more Susan hates him. 7 7
3 I ate a salad that was filled with lima beans. 7 7
3 That surprised me. 7

Table 1: A random sample of sentences from the CoLA development set, shown with their original acceptability
labels (3= acceptable, *=unacceptable) and a subset of our new phenomenon-level annotations from the set of
finer-grained features.

viously: Lawrence et al. (2000) train RNNs to do
acceptability classification over sequences of POS
tags corresponding to example sentences from a
syntax textbook. Wagner et al. (2009) also train
RNNs, but using naturally occurring sentences
that have been automatically manipulated to be
unacceptable. Lau et al. (2016) predict accept-
ability from language model probabilities, apply-
ing this technique to sentences from a syntax text-
book, and sentences which were translated round-
trip through various languages.

Lau et al. also attempt to model gradient crowd-
sourced acceptability judgments, reflecting an on-
going debate about whether binary expert judg-
ments like those in CoLA are reliable (Gibson and
Fedorenko, 2010; Sprouse and Almeida, 2012).
We remain agnostic as to the role of binary judg-
ments in linguistic theory, but note that Warstadt
et al. (2018) and Nangia and Bowman (2019) mea-
sure expert and non-expert human performance,
respectively, on subsets of CoLA (see Table 4 for
the former’s results), both finding that new human
annotators, while not in perfect agreement with the
judgments in CoLA, still agree well and outper-
form the best neural network models.

3 Analysis Set

We introduce a grammatically annotated version
of the entire CoLA development set to facilitate
detailed error analysis of acceptability classifiers.
These 1043 sentences are labeled with 13 major
features, further divided into 59 minor features.
Each feature marks the presence of a particular

phenomenon or class of phenomena in the sen-
tence. Each minor feature belongs to a single ma-
jor feature. A sentence belongs to a major feature
if it belongs to one or more of the relevant minor
features. The supplementary materials include de-
scriptions of each feature along with examples and
the criteria used for annotation.

The major and minor features are listed in Table
2, and are fully documented in the Appendix. The
average sentence is positively labeled with 3.22
major features (SD=1.66) on average, and the av-
erage a major feature is present in 224 sentences
(SD=112). The average sentence is positively la-
beled with 4.31 minor features (SD=2.59). The
average minor feature is present in 71.3 sentences
(SD=54.7). Every sentence is labeled with at least
one feature. Sentences without any obvious phe-
nomena of interest are labeled SIMPLE.

3.1 Annotation

The sentences were annotated manually by one of
the authors, who is trained in formal linguistics
and linguistic annotation. The features were de-
veloped in a trial stage, in which the annotator per-
formed a similar annotation with different anno-
tation schema for several hundred sentences from
CoLA not belonging to the development set.

3.2 Feature Descriptions

Here we briefly summarize the feature set in or-
der of the major features. These constructions
are well-studied in syntax, and further background
can be found in textbooks such as Adger (2003)
and Sportiche et al. (2013).



Major Feature (n) Minor Features (n)

Simple (87) Simple (87)
Pred (256) Copula (187), Pred/SC (45), Result/Depictive (26)
Adjunct (226) VP Adjunct (162), Misc Adjunct (75), Locative (69), NP Adjunct (52), Temporal (49), Particle

(33)
Arg Types (428) PP Arg VP (242), Oblique (141), PP Arg NP/AP (81), Expletive (78), by-Phrase (58)
Arg Altern (421) High Arity (253), Passive (114), Drop Arg (112), Add Arg (91)
Bind (121) Binding:Other (62), Binding:Refl (60)
Question (222) Emb Q (99), Pied Piping (80), Rel Clause (76), Matrix Q (56), Island (22)
Comp Clause (190) CP Arg VP (110), No C-izer (41), Deep Embed (30), CP Arg NP/AP (26), Non-finite CP (24),

CP Subj (15)
Auxiliary (340) Aux (201), Modal (134), Neg (111), Psuedo-Aux (26)
to-VP (170) Control (80), Non-finite VP Misc (38), VP Arg NP/AP (33), VP+Extract (26), Raising (19)
N, Adj (278) Compx NP (106), Rel NP (65), Deverbal (53), Trans Adj (39), NNCompd (35), Rel Adj (26),

Trans NP (21)
S-Syntax (286) Coord (158), Ellipsis/Anaphor (118), Dislocation (56), Subordinate/Cond (41), Info Struc (31),

S-Adjunct (30), Frag/Paren (9)
Determiner (178) Quantifier (139), NPI/FCI (29), Comparative (25), Partitive (18)

Table 2: Major features and their associated minor features (with number of occurrences n).

Simple This major feature contains only one mi-
nor feature, SIMPLE, including sentences where
the subject and predicate are unmodified (Bo ate
an apple.)

Pred(icate) These three features correspond to
predicative phrases, including copular construc-
tions (Bo is awake.), small clauses (I saw
Bo jump), and resultatives/depictives (Bo wiped
the table clean).

Adjunct These six features mark various kinds
of optional modifiers, including modifiers of NPs
(The boy with blue eyes gasped) or VPs (Bo sang
with Jo), and temporal (Bo awoke at dawn) or
locative (Bo jumped on the bed) adjuncts.

Argument types These five features identify
syntactically selected arguments, differentiating,
for example, obliques (I gave a book to Bo), PP
arguments of NPs and VPs (Bo voted for Jones),
and expletives (It seems that Bo left).

Argument Alternations These four features
mark VPs with unusual argument structures, in-
cluding added arguments (I baked Bo a cake) or
dropped arguments (Bo knows), and the passive (I
was applauded).

Bind These are two minor features, one for
bound reflexives (Bo loves himself), and one for
other bound pronouns (Bo thinks he won).

Question These five features apply to sentences
with question-like properties. They mark whether
the interrogative is an embedded clause (I know
who you are), a matrix clause (Who are you?), or a

relative clause (Bo saw the guy who left); whether
it contains an island out of which extraction is un-
acceptable (*What was a picture of hanging on the
wall?)4; or whether there is pied-piping or a multi-
word wh-expressions (With whom did you eat?).

Comp(lement) Clause These six features apply
to various complement clauses (CPs), including
subject CPs (That Bo won is odd); CP arguments
of VPs or NPs/APs (The fact that Bo won); CPs
missing a complementizer (I think Bo’s crazy); or
non-finite CPs (This is ready for you to eat).

Aux(iliary) These four minor features mark the
presence of auxiliary or modal verbs (I can win),
negation, or “pseudo-auxiliaries” (I have to win).

to-VP These five features mark various infini-
tival embedded VPs, including control VPs (Bo
wants to win); raising VPs (Bo seemed to fly); VP
arguments of NPs or APs (Bo is eager to eat); and
VPs with extraction (e.g. This is easy to read ).

N(oun), Adj(ective) These seven features mark
complex NPs and APs, including ones with PP ar-
guments (Bo is fond of Mo), or CP/VP arguments;
noun-noun compounds (Bo ate mud pie); modified
NPs, and NPs derived from verbs (Baking is fun).

S-Syntax These seven features mark various un-
related syntactic constructions, including dislo-
cated phrases (The boy left who was here earlier);
movement related to focus or information struc-
ture (This I’ve gotta see ); coordination, subor-

4Following standard notation in linguistics, the ‘*’ pre-
cedes sentences that are not grammatically acceptable.



dinate clauses, and ellipsis (I can’t); or sentence-
level adjuncts (Apparently, it’s raining).

Determiner These four features mark various
determiners, including quantifiers, partitives (two
of the boys), negative polarity items (I *do/don’t
have any pie), and comparative constructions.

3.3 Correlations

These features are overlapping and in many cases
are correlated, so not all results from using this
analysis set will be independent. We analyzed
the between-feature pairwise Matthews Correla-
tion Coefficient (MCC; Matthews, 1975) of the 63
minor features (giving 1953 pairs), and of the 15
major features (giving 105 pairs). MCC is a spe-
cial case of Pearson’s r for Boolean variables.5

These results are summarized in Table 3. Regard-
ing the minor features, 60 pairs had a correlation
of 0.2 or greater and 15 had a correlation of 0.5
or greater. Turning to the major features, 6 pairs
had a correlation of 0.2 or greater, and 2 had an
anti-correlation of greater magnitude than -0.2.

We can see at least three reasons for these ob-
served correlations. First, some features have
overlapping definitions; for example EXPLETIVE

is a strict subset of ADD ARG because expletive ar-
guments (e.g. There are birds singing) are by def-
inition non-canonical. Similarly, the strong anti-
correlation between SIMPLE and the two features
related to argument structure, ARGUMENT TYPES

and ARG ALTERN, follows from the definition of
SIMPLE, which explicitly excludes sentences with
unusual argument structure. Second, grammati-
cal facts of English drive the correlation between,
for instance, QUESTION and AUX, because main-
clause questions in English require subject-aux
inversion. Third, the unusually high correlation
of, for example, EMB-Q and ELLIPSIS/ANAPHOR,
can be attributed largely to a bias in a particular
source in CoLA, Chung et al. (1995), which is an
article about the sluicing construction involving
ellipsis of an embedded interrogative (e.g. I saw
someone, but I don’t know who). This third case
highlights a limitation of this analysis set. The
set of examples associated with a particular feature
is not a controlled set designed to test knowledge

5MCC measures correlation of two binary distributions,
giving a value between -1 and 1. On average, any two unre-
lated distributions will have a score of 0, regardless of class
imbalance. This is contrast to metrics like accuracy or F1,
which favor classifiers with a majority-class bias.

Label 1 Label 2 MCC

Major Features

Argument Types Arg Altern 0.406
Question Auxiliary 0.273
Question S-Syntax 0.232
Predicate N, Adj 0.231
Auxiliary S-Syntax 0.224
Question N, Adj 0.211
Simple Arg Altern -0.227
Simple Argument Types -0.238

Minor Features

PP Arg NP/AP Rel NP 0.755
by-Phrase Passive 0.679
Coord Ellipsis/Anaphor 0.634
VP Arg NP/AP Trans Adj 0.628
NP Adjunct Compx NP 0.623
Oblique High Arity 0.620
RC Compx NP 0.565
Expletive Add Arg 0.558
CP Arg NP/AP Trans NP 0.546
PP Arg NP/AP Rel Adj 0.528

Table 3: Correlation (MCC) of features in the anno-
tated analysis set. We display only the correlations with
the greatest magnitude.

of that particular construction, but rather a sam-
ple of sentences from the linguistics literature, and
as such may not be full representative of the con-
struction in question. However, this cost comes
with the advantage that results on the analysis set
can be directly connected to relevant linguistics lit-
erature.

4 Models Evaluated

We train MLP acceptability classifiers for CoLA
on top of three sentence encoders: (1) CoLA’s
pretrained BiLSTM baseline encoder, (2) OpenAI
GPT, and (3) BERT. We use publicly available pre-
trained sentence encoders.6

LSTM Encoder: CoLA Baseline The CoLA
baseline model is the sentence encoder with the
highest performance on CoLA from Warstadt et al.
The encoder uses a BiLSTM, which reads the sen-
tence word-by-word in both directions, with max-
pooling over the hidden states. Similar to ELMo
(Peters et al., 2018), the inputs to the BiLSTM
are the hidden states of a language model (only a
forward language model is used in contrast with

6CoLA baseline: https://github.com/
nyu-mll/CoLA-baselines
OpenAI GPT: https://github.com/openai/
finetune-transformer-lm
BERT: https://github.com/google-research/
bert

https://github.com/nyu-mll/CoLA-baselines
https://github.com/nyu-mll/CoLA-baselines
https://github.com/openai/finetune-transformer-lm
https://github.com/openai/finetune-transformer-lm
https://github.com/google-research/bert
https://github.com/google-research/bert


Figure 1: Performance (MCC) on our analysis set by major feature. Dashed lines show mean performance on the
entire CoLA development set. Error bars mark the mean ±1 standard deviation. From left to right, performance
for each feature is given for the CoLA Baseline, OpenAI GPT, and BERT.

ELMo). The encoder is trained on a real/fake
discrimination task which requires it to identify
whether a sentence is naturally occurring or au-
tomatically generated. We train acceptability clas-
sifiers on CoLA using the CoLA baselines code-
base with 20 random restarts, following the origi-
nal authors’ transfer-learning approach: The sen-
tence encoder’s weights are frozen, and the sen-
tence embedding serves as input to an MLP with a
single hidden layer. All hyperparameters are held
constant across restarts.

Transformer Encoders: GPT and BERT In
contrast with recurrent models, GPT and BERT
use a self attention mechanism which combines
representations for each (possibly non-adjacent)
pair of words to give a sentence embedding. GPT
is trained using a standard language modeling
task, while BERT is trained with masked language
modeling and next sentence prediction tasks. We
use BERTLARGE. For each encoder, we train 20
random restarts on CoLA feeding the pretrained
models published by these authors into a single
output layer, using code which will be released
upon publication. Following the methods of the
original authors, we fine-tune the encoders during
training on CoLA. All hyperparameters are held
constant across restarts.

5 Results

5.1 Overall CoLA Results

The overall performance of the three sentence en-
coders is shown in Table 4. Following Warstadt
et al., performance on CoLA is measured using
MCC. We present the best single restart for each

Mean (STD) Max Ensemble

CoLA 0.320 (0.007) 0.330 0.320
GPT 0.528 (0.023) 0.575 0.567
BERT 0.582 (0.032) 0.622 0.601

Human 0.697 (0.042) 0.726 0.761

Table 4: Performance (MCC) on the CoLA test set, in-
cluding mean over restarts of a given model with stan-
dard deviation, max over restarts, and majority predic-
tion over restarts. Human agreement is measured by
Warstadt et al..8

encoder, the mean over restarts for an encoder, and
the result of ensembling the restarts for a given en-
coder, i.e. the majority classification for a given
sentence, or acceptable if tied.7 For BERT results,
we exclude 5 out of the 20 restarts because they
were degenerate (MCC=0).

Across the board, BERT outperforms GPT,
which outperforms the CoLA baseline. However,
BERT and GPT are much closer in performance
than they are to CoLA baseline. While ensemble
performance exceeded the average for BERT and
GPT, it did not outperform the best single model.

5.2 Analysis Set Results
The results for the major and minor features are
shown in Figures 1 and 2, respectively. For each
feature, we measure the MCC of the sentences in-
cluding that feature. We plot the mean of these
results across the different restarts for each model.

Comparison across features reveals that the
presence of certain features has a large effect on
performance, and we comment on some patterns

7Because we use the development set for analysis, we do
not use it to weight models for weighted ensembling.



Figure 2: Performance (MCC) on our analysis set by minor feature. Dashed lines show mean performance on the
entire CoLA development set. Error bars mark the mean ±1 standard deviation. From left to right, performance
for each feature is given for the CoLA Baseline, OpenAI GPT, and BERT.

below. Within a given feature, the effect of model
type is overwhelmingly stable, and resembles the
overall difference in performance. However, we
observe several interactions, i.e. specific features
where the relative performance of models does not
track their overall relative performance. In inter-
preting these results, we caution against drawing
strong conclusions from rare minor features. For
this reason, we do not discuss any results for fea-
tures appearing in fewer than 50 sentences. Fur-
thermore, we cannot conclude with certainty that
any particular mode of success or failure reflects
what the information in the pretrained encoder,
rather than what sorts of contrasts are easy or hard
to learn from the CoLA training data. However,
we consider results for major features more likely
to be reliable due to the large number and variety
of sentences with each label.

Comparing Features Among the major fea-
tures (Figure 1), performance is universally high-
est on the SIMPLE sentences, and is higher than
each model’s overall performance. Otherwise we

find that a model’s performance on sentences of
a given feature is on par with or lower than its
overall performance, reflecting the fact that fea-
tures mark the presence of unusual or complex
syntactic structure. Performance is also high (and
close to overall performance) on sentences with
marked argument structures (ARGUMENT TYPES

and ARG(UMENT) ALT(ERNATION)), indicating
that argument structure is relatively easy to learn.

Comparing different kinds of embedded con-
tent, we observe higher performance on sentences
with embedded clauses (major feature=COMP

CLAUSE) embedded VPs (major feature=TO-VP)
than on sentences with embedded interrogatives
(minor features=EMB-Q, REL CLAUSE). Inter-
rogatives are quite challenging in general (ma-
jor feature=QUESTION). Sentences with question-
like syntax may be difficult because they usually
involve extraction of a wh-word, creating a long-
distance dependency between the wh-word and its
extraction site, which may be difficult for models
to recognize.



Figure 3: Performance (MCC) on the CoLA analysis
set by sentence length.

Comparing Models Comparing within-feature
performance of the three encoders to their overall
performance, we find they have differing strengths
and weaknesses. BERT and GPT generally far
outperform the CoLA baseline, with BERT per-
forming best in most cases. BERT and GPT
have a particularly large advantage in sentences
involving long-distance dependencies. They out-
perform the CoLA baseline by an especially wide
margin on BIND:REFL, which involves establish-
ing a dependency between a reflexive and its an-
tecedent (Bo tries to love himself), as well as
DISLOCATION, in which expressions are sepa-
rated from their dependents (Bo practiced on the
train an important presentation). The advantage
of BERT and GPT may be due in part to their use
of the Transformer architecture. Unlike the BiL-
STM used by the CoLA baseline, the Transformer
uses a self-attention mechanism that associates all
pairs of words regardless of distance.

In some specific instances, we do not observe
the usual pattern of BERT outperforming GPT and
both far outperforming the CoLA baseline, reveal-
ing possible idiosyncrasies of the sentence repre-
sentations they output. For instance, the CoLA
baseline performs on par with the others on the
major feature ADJUNCT, especially considering
the minor feature PARTICLE (Bo looked the word
up).

5.3 Length Analysis

For comparison, we analyze the effect of sentence
length on acceptability classifier performance.
The results are shown in Figure 3. The results for
the CoLA baseline are inconsistent, but do drop

off as sentence length increases. For BERT and
GPT, performance decreases very steadily with
length. Exceptions are extremely short sentences
(length 1-3), which may be challenging due to
insufficient information; and extremely long sen-
tences, where we see a small (but somewhat unre-
liable) boost in BERT’s performance. BERT and
GPT are generally quite close in performance, ex-
cept on the longest sentences, where BERT’s per-
formance is considerably better.

6 Conclusion

Using a new grammatically annotated analysis set,
we identify several syntactic phenomena that are
predictive of good or bad performance of current
state-of-the-art sentence encoders on CoLA. We
also use these results to develop hypotheses about
why BERT is successful, and why Transformer
models outperform sequence models.

Our findings can guide future work on sen-
tence representation. Transformer models appear
to have an advantage over sequence models with
long-distance dependencies, but still struggle with
these constructions relative to more local phenom-
ena. It stands to reason that this performance
gap might be widened by training larger or deeper
Transformer models, or training on longer or more
complex sentences. This analysis set can be used
by engineers interested in evaluating the syntactic
knowledge of their encoders.

Finally, these findings suggest possible con-
trolled experiments that could confirm whether
there is a causal relation between the presence of
the syntactic features we single out as interesting
and model performance. Our results are purely
correlational, and do not mark whether a particu-
lar construction is crucial for the acceptability of
the sentence. Future experiments following Et-
tinger et al. (2018) and Kann et al. (2019) can
semi-automatically generate datasets by manipu-
lating, for example, length of long-distance de-
pendencies, inflectional violations, or the presence
of interrogatives, while controlling for factors like
sentence length and word choice, in order to deter-
mine the extent to which these features impact the
quality of sentence representations.
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