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ABSTRACT
In this paper we present our audio tagging system for the DCASE
2019 Challenge Task 2. We propose a model consisting of a con-
volutional front end using log-mel-energies as input features, a re-
current neural network sequence encoder and a fully connected
classifier network outputting an activity probability for each of the
80 considered event classes. Due to the recurrent neural network,
which encodes a whole sequence into a single vector, our model is
able to process sequences of varying lengths. The model is trained
with only little manually labeled training data and a larger amount
of automatically labeled web data, which hence suffers from label
noise. To efficiently train the model with the provided data we use
various data augmentation to prevent overfitting and improve gen-
eralization. Our best submitted system achieves a label-weighted
label-ranking average precision (lwlrap) of 75.5% on the private test
set which is an absolute improvement of 21.7% over the baseline.
This system scored the second place in the teams ranking of the
DCASE 2019 Challenge Task 2 and the fifth place in the Kaggle
competition “Freesound Audio Tagging 2019” with more than 400
participants. After the challenge ended we further improved perfor-
mance to 76.5% lwlrap setting a new state-of-the-art on this dataset.

Index Terms— audio tagging, label noise, data augmentation

1. INTRODUCTION
Environmental sound recognition has recently attracted increased
interest, not only in academia. Numerous commercial applications
can benefit from a reliable acoustic scene analysis, such as ambient
assisted living, autonomous driving and various monitoring and di-
arization tasks. Within environmental sound recognition the tasks of
Sound Event Detection (SED), Audio Tagging and Acoustic Scene
Classification (ASC) [1] can be distinguished, which differ in the
level of detail obtained about the acoustic environment. While SED
makes predictions at frame level, Audio Tagging and ASC make
predictions at sequence level.

Because frame level annotations (so-called strong labels) are
difficult and time-consuming to obtain, current large-scale datasets,
such as Google’s AudioSet [2], only provide sequence level la-
bels (weak labels). Further, for many applications frame level pre-
dictions are not required, which, together with the availability of
weakly labeled large-scale datasets, results in an increased popular-
ity of Audio Tagging.

Although weak annotations are easier to obtain than strong
annotations, they still require human annotators. To avoid this
necessity completely, one line of research is devoted to develop
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semi-supervised approaches which directly benefit from unlabeled
data [3, 4], which is abundant. However, there are also tremendous
amounts of data coming with other modalities and meta-data, which
can potentially be exploited to derive labels automatically. In the
dataset considered in this contribution, labels had been generated
for the web data using video-level predictions. Note, that those au-
tomatically generated labels certainly contain errors, which is why
they are called noisy labels. Until now there are only few works
addressing the impact of noisy labels for sound recognition [5].

Data augmentation is another common approach to increase the
amount of labeled training data and improve generalization. It has
been shown to improve classifier performance on many tasks, in-
cluding speech recognition [6] and audio classification [7, 8, 9].

In this contribution we tackle the DCASE 2019 Challenge
Task 2 [10], where the main research objective is the following:
How can we train a high performance Audio Tagging system given
relatively little data with reliable labels but a larger amount of mis-
matched data with noisy labels? We primarily tackle this by explor-
ing different methods for data augmentation, while we spend less
time on neural network architecture tuning. We show that frequency
warping and time and frequency masking for data augmentation sig-
nificantly improve performance. Further, our experiments tend to
suggest, that our model is robust against label noise, as it achieves
state-of-the-art performance without any particular treatment of la-
bel noise. While the methods investigated for dealing with label
noise did individually not result in classifier improvements, they
nevertheless increased the diversity of the models trained, resulting
eventually in performance improvement through system combina-
tion. Please note that our system is publicly available on github.1

The rest of the paper is structured as follows. After briefly de-
scribing the considered task in Section 2, we outline our neural net-
work architecture in Section 3. After presenting the data augmenta-
tion methods in Section 4, our training procedure and experiments
are given in Sections 5 and 6, respectively. Conclusions are drawn
in Section 7.

2. TASK DESCRIPTION
The DCASE 2019 Challenge Task 2 “Audio Tagging with noisy
labels and minimal supervision” [10] is a follow-up of the
DCASE 2018 Challenge Task 2 “General-purpose audio tagging
of Freesound content with AudioSet labels” [11]. As in the 2018
edition the challenge was hosted on Kaggle2 with more than 400
participants. The provided dataset “FSDKaggle2019” consists of
two subsets: a small curated set of 4970 manually labeled audio
clips and a noisy set of 19815 audio clips where labels were au-
tomatically derived from video-level predictions from a variety of

1https://github.com/fgnt/upb_audio_tagging_2019
2https://www.kaggle.com/c/freesound-audio-tagging-2019
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pre-trained audio models. A vocabulary of 80 sound events is used
where multiple events can be active at a time resulting in a multi-
label classification problem.

3. MODEL
3.1. Feature Extraction
First, we perform an STFT with a frame length of 40ms (1764
samples) and a hop size of 20ms (882 samples) on the provided
44.1 kHz audio signals without resampling. For each frame we
then extract 128 log-mel-band-energy features with fmin=50Hz
and fmax=16kHz. Lastly, we substract the global mean of each
feature and then divide by the global standard deviation over all
features.

3.2. Neural Network Architecture
Our proposed deep learning based model is outlined in Table 1. The
neural network consists of a convolutional (conv.), a recurrent, and
a fully connected module. We expect a four dimensional input to
our model of shape B×C×F×Nm with B,C, F,Nm being the
mini-batch size, number of channels, number of features and num-
ber of frames in them-th input signal, respectively, whereC=1 and
F=128 are fix. In the following the signal index m is neglected.

The convolutional module combines a 2d CNN and a 1d CNN.
The 2d CNN consists of five conv. blocks, with each block compris-
ing one or two conv. layers and a max pooling layer. While the first
four blocks have two conv. layers the last block only has a single
one. In each block the number of channels is doubled starting from
16 while the number of features are halfed by max pooling. The
number of time steps are also halfed in the first three blocks while
being unchanged in the last two blocks. This results in an output of
shape B×C′×F ′×N ′ with C′=256, F ′=4 and N ′ =

⌈
N
8

⌉
. Each

2d conv. layer uses a kernel size of 3×3 and is followed by batch
normalization and ReLU activation.

While the 2d CNN is meant to extract high-level feature
maps from the log-mel-band-energy spectrogram, the 1d CNN (or
TDNN) is meant to provide holistic representations by jointly pro-
cessing all frequencies and channels of adjacent frames. Therefore
it takes the reshaped output (B × C′·F ′ × N ′) of the 2d CNN as
input and applies three 1d conv. layers with 256 hidden channels
each. Each 1d conv. layer uses a kernel size of 3 and is followed by
batch normalization and ReLU activation.

The output of the CNN is then fed into a recurrent sequence
encoder. We use two layers of Gated Recurrent Units (GRUs) with
256 units per layer. Only the last output vector of each sequence in
a batch is forwarded to the classification network.

The fully connected classification network conists of one hid-
den layer with 256 hidden units and ReLU activation function
and the final classification layer with Sigmoid activation outputting
scores between 0 and 1 for each of the 80 target event classes.

4. DATA AUGMENTATION
Because there is only little data available, efficient data augmen-
tation is crucial to prevent overfitting and improve generalization
capabilities of the system. In the following we outline the data
augmentation methods that we combined during model training.
All augmentation methods are performed on the fly during training
yielding an extremely large number of possible training samples.

4.1. Mixup
Mixup [12] is a data augmentation technique originating from clas-
sification tasks where a new training sample is generated as a

Table 1: Convolutional Recurrent Neural Network for Audio Tag-
ging with output shapes of each block. Each ConvXd uses a kernel
size of three and a stride of one and includes BatchNorm and ReLU.

Block output shape
LogMel(128) B×1×128×N
GlobalNorm B×1×128×N

2×Conv2d(16) B×16×128×N
Pool2d(2×2) B×16×64×dN/2e

2×Conv2d(32) B×32×64×dN/2e
Pool2d(2×2) B×32×32×dN/4e

2×Conv2d(64) B×64×32×dN/4e
Pool2d(2×2) B×64×16×dN/8e

2×Conv2d(128) B×128×16×dN/8e
Pool2d(2×1) B×128×8×dN/8e
Conv2d(256) B×256×8×dN/8e
Pool2d(2×1) B×256×4×dN/8e

Reshape B×1024×dN/8e
3×Conv1d(256) B×256×dN/8e

2×GRU(256) B×256
fcReLU(256) B×256
fcSigmoid(80) B×80

weighted average of two samples from the dataset:

x̃i = λxi + (1− λ)xj , λ ∈ [0, 1].

Similarly their one-hot encoded targets are combined to a soft target
vector:

ỹi = λyi + (1− λ)yj .

Although for classification tasks mixup results in ambiguous sam-
ples (which probably wouldn’t make a lot of sense to a human ei-
ther) it has shown to improve generalization and robustness of the
trained classifier networks. Mixup has successfully been used for
general purpose audio tagging, e.g., in [9] in the DCASE 2018 Chal-
lenge.

For audio tagging (as opposed to classification) the input audio
may already be a superposition of multiple sources. Thus, mixing
two or more audio signals together yields a new valid audio signal
with an increased number of active events. Therefore, instead of
building a weighted average we superpose two waveforms as fol-
lows:

x̃i(t) = λ0xi(t) + γλ1
max(|xi|)
max(|xj |)

xj(t− τ)

with
γ ∼ B(2/3),
τ ∼ U(max(−Tj , Ti − 30 s),min(Ti, 30 s− Tj)),

Tj ≤ 1.1 · Ti,

λm = a2bm−1
m ; am ∼ U(1, 2); bm ∼ B(1/2); m∈{0, 1}

where B denotes the Bernoulli distribution. Putting this equation
into words we
• perform mixup only with a probability of 2/3,
• only mixup signals which are shorter than 1.1 times the base

signal xi,
• allow mixup to lengthen the signal as long as it does not exceed

the maximum length of 30 s,
• normalize signals to the maximum value of the base signal xi,
• attenuate or amplify each normalized signal by a random fac-

tor.
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We also do not build a weighted average of the individual tar-
gets, but simply combine all tags into a single n-hot encoded tar-
get ỹi.

4.2. Frequency Warping
Recently, SpecAugment [13] was introduced as a simple yet effi-
cient augmentation method of log-mel spectrograms for automatic
speech recognition. It uses three different distortions namely time
warping, frequency masking, and time masking. In our experi-
ments, however, we found that for audio tagging warping the spec-
trogram on the frequency axis yielded better performance than time
warping. Hence, we exchange the time warping by frequency warp-
ing in our version of SpecAugment which is explained in this and
the following two sections.

We consider the log-mel spectrogram as an image here with
width T and height F . Warping the vertical (frequency) axis of the
image is controlled by the cutoff frequency

fc ∼ E(0.5 · F ),

where E denotes the exponential distribution parameterized by the
scale β = 0.5 · F , and by the warping factor

α = (1 + u)2s−1; u ∼ E(0.07); s ∼ B(1/2).
Fig. 1 shows the resulting piece-wise linear warping function.
Note that fc can be larger than F , which results in pure stretch-
ing/compressing the whole spectrogram.

It is worth noting that the frequency warping performed here is
very similar to Vocal Tract Length Pertubation [14].

forig

fscaled

fc F

α

Figure 1: piece-wise linear frequency warping function.

4.3. Frequency Masking
We randomly mask H consecutive mel frequencies in the range
[f0, f0+H], whereH and f0 are drawn from uniform distributions

H ∼ U(0, Hmax)

f0 ∼ U(0, F −H)

with Hmax = 16.

4.4. Time Masking
We randomly mask W consecutive time frames in the range
[n0, n0 + W ], where W and n0 are drawn from uniform distri-
butions

W ∼ U(0,min(Wmax, p ·N))

n0 ∼ U(0, T −W )

with Wmax = 70 and p = 0.2.

5. TRAINING
5.1. Data
For training we use both the data with curated labels as well as the
data with noisy labels.

As the provided train portion with noisy labels primarily con-
tains audio signals of length 15 s and our model processes whole
sequences, there is a bias towards sequences with a length of 15 s.
To overcome this bias, we generate, before starting training, new
audio excerpts of varying lengths by randomly splitting each of the
audio signals with noisy labels into two at length rm · Tm with Tm

being the length of the m-th signal and rm ∼ U(0.1, 0.9). This
results in audio excerpt lengths which are approximately uniformly
distributed between 1 s and 13.5 s. As mixup data augmentation
may lengthen audio signals, mixup of the noisy excerpts yields sig-
nals distributed between 1 s and 27 s. Each audio excerpt copies the
event tags of the original audio, which results in some additional
label noise. The random splitting is performed three times result-
ing in three different datasets which we refer to as splits 0-2 in the
following3.

We mixup curated only data which we refer to as the curated
portion in the following as well as we mixup combined curated and
noisy data which we refer to as the noisy portion in the following.
In each training epoch the curated portion is repeated an integer
number of times to prevent training from being dominated by noisy
labels. The ratio of noisy labels to the total number of labels in one
epoch is referred to as R=Mnoisy

Mtotal
.

5.2. Optimization
The training criterion is the binary cross entropy between the model
predictions ŷ and the n-hot target vector ỹ:

L(ŷ, ỹ) = −
K−1∑

k=0

(
ỹk log(ŷk) + (1− ỹk) log(1− ŷk)

)

with K = 80 denoting the number of target event classes.
We randomly sample mini batches of size 16 from the training

data such that
1. no signal in the mini batch is padded by more than 20%,
2. no example in the mini batch includes the same events as

another example in the same minibatch,
and compute gradients of the average loss in the mini batch. We clip
gradients at a threshold of 15. Adam [15] was used for optimization.
Training is performed for 200K iterations with a learning rate of
3 · 10−4 .

We perform Stochastic Weight Averaging (SWA) [16] for the
last 50K iterations with a frequency of 1K iterations. At the end of
training we exchange the model weights for the averaged weights.
Finally we update the statistics of all batch normalization layers by
making a forward pass on our (unaugmented) training data using
the SWA model. SWA has shown to improve generalization and
hence performance on unseen data [16]. Another advantage is that
with SWA there is no need for held-out data to determine the best
performing checkpoint.

6. EXPERIMENTS
In the following we evaluate the usefulness of the proposed data
augmentation techniques and different methods for label noise han-
dling. While Section 6.1 and Section 6.2 only report the perfor-
mance of single model systems (which were trained on split 0),

3The generated splits are available at https://github.com/fgnt/
upb_audio_tagging_2019
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Section 6.3 presents performance of ensembles combining models
trained on different splits.

System performance is measured in terms of label-weighted
label-ranking average precision (lwlrap) evaluated on the private
test set. The lwlrap metric measures the capablity of the model to
rank active events over non-active events (see [10] for details). The
reported scores are one-shot results and were obtained from (late)
submissions on the Kaggle competition website.

6.1. Data Augmentation
To evaluate the different data augmentation methods we trained sin-
gle model systems using curated and noisy labeled data using the
provided labels. In this section, all models were trained with a noisy
label rate of R=0.56. Table 2 shows the performance gains due to
adding the proposed data augmentation methods. It can be seen that
each augmentation method significantly increases the model perfor-
mance in terms of lwlrap on the private test set.

Table 2: Performance when gradually adding data augmentation
methods.

Data Augmentation lwlrap
- 0.611
Mixup 0.665
+ Freq. Warp. 0.701
+ Freq. & Time Mask. 0.721

6.2. Label Noise Handling
In this Section we evaluate different methods for dealing with label
noise when using all proposed data augmentation techniques. While
for our challenge submission we used relabeling, which is explained
first, we adopted Multi Task Learning [17] from the winning team
after the challenge has ended, which is explained second.

6.2.1. Relabeling
For each of the three splits (as explained in Section 5.1) we trained
models on five different folds using a noisy label rate of R = 0.5.
This results in a total of 15 different models which were all com-
bined into an ensemble to make predictions for the noisy excerpts
from all three splits. Here the event scores of the individual models
were averaged to obtain the ensemble output scores.

For each event we then determined the decision threshold yield-
ing the best error rate jointly evaluated on the set of all noisy ex-
cerpts from all splits. These decision thresholds were used to re-
label the noisy excerpts, where excerpts without any active event
were discarded.

We then used the whole relabeled data of a split for training a
new model as we do not need held-out data to determine the best
checkpoint due to SWA.

6.2.2. Multi Task Learning
The winning team of the DCASE 2019 Challenge Task 2 proposed
Multi Task Learning (MTL) to deal with noisy labels [17]. Here
different classifier layers are used during training to predict cu-
rated and noisy labels, respectively. After the challenge ended we
adopted this approach for our model, i.e., we trained different fully
connected layers (the last two layers in Table 1) for curated and
noisy labels. At test time only the classifier layers trained on the
curated labels were used to make predictions.

6.2.3. Results
Results for the different methods of label noise handling are shown
in Table 3. It can be seen that using the noisy labels results in a
significant performance gain. However, using relabeling and MTL
yield only small improvement of the lwlrap. In the next section
these methods are further evaluated when performing ensembling.

Table 3: Performance for different treatments of label noise.
Method R lwlrap

Curated only 0.00 0.687
Provided labels 0.56 0.721

Relabeled 0.62 0.722
MTL 0.56 0.724

6.3. Ensembling
Finally, we evaluate ensembles of different models. In particular,
we combine models trained on different splits and with different
noisy label rates. System combination is achieved by averaging the
output scores of the contributing systems. Each row in Table 4-6
adds three models which were trained on the three different splits.
The results marked by an asterisk in Table 5 represent our submis-
sions to the challenge. It can be seen that neither relabeling nor
multi-task learning individually improve performance over the pro-
vided labels. Combining all the models from Tables 4-6 into a large
ensemble of 27 models, however, raises performance to 76.5% lwl-
rap, setting a new state-of-the-art for this task as shown in Table 7.
Do note that this ensemble has a total excecution time < 2 h using
CPU, which meets the challenge constraints.

Table 4: Provided labels
#models R lwlrap

3 0.56 -
+3 0.64 -
+3 0.75 0.759

Table 5: Relabeled
#models R lwlrap

3 0.62 0.746∗

+3 0.77 0.755∗

+3 0.53 0.757

Table 6: MTL
#models R lwlrap

3 0.56 -
+3 0.64 -
+3 0.75 0.759

Table 7: System Comparison

System lwlrap
Baseline [10] 0.537

DCASE winner [17] 0.758
Kaggle winner4 0.760

Our best subm. [18] 0.755
Our best late subm. 0.765

7. CONCLUSIONS

In this paper we presented our system for the DCASE 2019 Chal-
lenge Task 2. Our experiments carried out on the “FSDKag-
gle2019” data highlight the importance of data augmentation tech-
niques for achieving high classification performance. On the other
hand, particular consideration of the label noise did not prove effec-
tive in our case. Furthermore, performance was boosted by system
combination raising the performance from 0.724 lwlrap of our best
single model system to 0.765 by combining a total of 27 models,
setting a new state of the art for this task.

4https://www.kaggle.com/c/freesound-audio-tagging-
2019/leaderboard
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