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ABSTRACT

In this paper we address the problem of detecting previously
unseen novel audio events in the presence of real-life acoustic
backgrounds. Specifically, during training, we learn subspaces
corresponding to each acoustic background, and during testing the
audio frame in question is decomposed into a component that lies
on the mixture of subspaces and a supergaussian outlier component.
Based on the energy in the estimated outlier component a decision
is made, whether or not the current frame is an acoustic novelty.
We compare our proposed method with state of the art auto-
encoder based approaches and also with a traditional supervised
Nonnegative Matrix Factorization (NMF) based method using a
publicly available dataset - A3Novelty. We also present results
using our own dataset created by mixing novel/rare sounds such
as gunshots, glass-breaking and sirens, with normal background
sounds for various event to background ratios (in dB).

1. INTRODUCTION

1.1. Background
Novel audio event detection has a number of important applications.
For example, in surveillance systems, detecting unusual events
using audio can nicely complement video based approaches. This is
especially true in cases where there is not sufficient illumination, or
in the presence of visual occlusions where the performance of video
surveillance is impaired. But novelty detection poses interesting
challenges as well.

One difficulty is that not all potential audio events can be pre-
determined, pre-recorded and labeled. We need to deal with unseen
novel sounds and transients. But most of the current literature we
have seen on audio surveillance systems [1, 2, 3] propose fully
supervised learning methods: along with acoustic background data
they also require labeled audio examples corresponding to audio
events. We have also seen applications of this supervised audio
event detection in consumer products, for example Alexa Guard
1: this feature enables Echo devices to detect specific sounds
that the user selects such as smoke alarm, glass breaking sound,
carbon monoxide alarms etc. But these fully-supervised systems
can not detect unseen novel audio events. Therefore, researchers are
working on unsupervised techniques as well to detect novel audio
events [4, 5, 6, 7, 8].

1.2. Related Work
Even though novelty detection is a relatively new problem in
the audio signal processing community, this topic has been well-

1https://www.cnet.com/news/alexa-guard-goes-live-lets-your-echo-
listen-for-trouble-amazon-home-security/

researched in other data modalities and fields such as medical
diagnosis [9, 10], damage inspection [11, 12] electronic IT
security [13], and video surveillance systems [14]. In [15,
16] authors grouped several novelty detection techniques in two
major categories - statistical approaches and neural network based
approaches.

Statistical approaches depend on properties of the normal
background audio data, and, during training, either fit a model or
a probability distribution function over the data. During testing
they exploit this pre-trained model to determine if a test sample
belongs to the learned distribution or not. These methods have been
well researched and have been applied to several novelty detection
applications successfully such as in handwriting detection, the
recognition of cancer, failure detection in jet engines, and fMRI
analysis. In the context of acoustic novelty detection, in [7],
the authors have introduced Gaussian Mixture Model (GMM) and
Hidden Markov Model (HMM) based methods for detecting audio
novelties in realistic acoustic backgrounds such as in 1) smart-
home environments, 2) ATM settings, and 3) general-purpose
security settings. In [4] authors proposed a one-class Support
Vector Machine (OC-SVM) based unsupervised method for real-
time detection of novel events in the context of audio surveillance.
Recently in [17], the authors proposed a non-negative matrix under-
approximation (NMU) method to perform novel-sound detection
for unhealthy machineries.

Neural network based approaches, specifically autoencoder
based approaches, have recently gained attention for novelty
detection in both audio and in other modalities. The main working
principle of these approaches lies in training an autoencoder using
normal/expected data, and during testing checking if the network
is struggling to encode and decode the test data accurately. I.e., if
the system produces a high reconstruction error compared to some
threshold, it is then considered novel input. In [18], the authors
proposed a denoising autoencoder structure using both feedforward
units and LSTM units for acoustic novelty detection task and
showed significant improvement of performance over both GMM
and OC-SVM based methods.

1.3. Contribution
In this article, we propose a robust non-negative block sparse coding
based technique to detect novel sounds, such as gunshots, glass-
breaking, sirens etc, in different real life acoustic backgrounds,
such as in a bus, cafe, beach, city center, metro station and
grocery store. During training, we learn subspaces corresponding
to each acoustic background using supervised Nonnegative Matrix
Factorization (S-NMF). During testing the audio frame in question
is decomposed into a component that lies on the mixture of
subspaces and a supergaussian outlier component. Because we
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use a separate estimator for the outlier modeled as a supergaussian
random variable, our approach is robust to minor deviations in
learned acoustic backgrounds and also actual backgrounds during
testing unlike in [17], where no such constraint has been imposed
on novel sound estimate. We also create a challenging dataset by
mixing novel sounds with real life acoustic scenes for different
event to background ratios. Finally, we compare the results of
our method, with state-of-the-art methods using a publicly available
dataset: A3Novelty. We also compare them using our own dataset
and show that our proposed method either matches the performance
of the state-of-the-art methods or outperforms them in different
cases.

The rest of the article is organized as follows: In Section 2
the proposed method is presented in detail, in Section 3 a brief
description of both the datasets, that have been used in this article
is given, in Section 4 we present evaluation results of our proposed
method and other competing methods over previously mentioned
two datasets and finally Section 5 concludes the paper and talks
about some future research directions.

2. PROPOSED METHOD

2.1. Training Stage: Learning Background Subspaces

First, an offline training stage is needed to learn the corresponding
dictionaries as subspaces, for D different types of acoustic
backgrounds such as in a bus, in a cafe, in a city center etc., by
solving the following optimization problemD times, for d = 1...D.

WNd ,HNd = arg min
W≥0,H≥0

KL(Nd|WH) + µ|H|1, (1)

where Nd ∈ K(number of bins) × L(number of frames) is
the magnitude of the dth training background sound STFT
representation, and KL(·|·) denotes the KL divergence. This
optimization problem can be solved in an iterative manner using
multiplicative updates [19]. To avoid scaling indeterminacies,
normalization constraint is applied, such that columns of WNd

have unit norm. After the training stage, the mixture of subspaces
corresponding to D different types of acoustic backgrounds can
be represented by the concatenated dictionary matrix, W =
[WN1 , ...,WNd , ...,WND ].

2.2. Testing Stage: Robust Non-negative Sparse Coding
2.2.1. Basic Model

During testing stage, we will decompose the ith test frame STFT
magnitude in the following manner,

vi = Whi + ri, (2)

where, vi ∈ K(number of bins) × 1 is the magnitude of the ith

frame STFT representation, ri ∈ K(number of bins) × 1 is the
outlier term and hi ∈ M (number of bases in W) × 1 is the ith

activation vector.

2.2.2. Structured Sparsity in Activation

Since W is an overcomplete dictionary, a sparseness constraint
over the activation vector hi is typically employed, leading to a
standard sparse coding framework. Since we are operating on STFT
magnitude feature space, non-negativity constraint over hi will
also be employed. During testing, it is reasonable to assume that

the acoustic background is not changing drastically, hence instead
of solving the above mentioned sparse coding problem for every
frame, we will solve for L = 5 frames simultaneously. Hence the
model will become,

V = WH + R (3)

where V,H,R are matrices now with L = 5 columns/ frames.
For our problem in hand, a more structured sparsity constraint

has been identified as useful. Since our acoustic background
dictionary W is essentially a concatenated version of D
subdictionaries, we argue that similar block structure can also
be expected in each frame of the activation matrix, i.e., H(:,l).
Intuitively, this represents the fact that during testing if a basis
vector of a specific subdictionary contributes to represent the testing
frame, the other basis vectors of that specific subdictionary will
also contribute. Hence in the lth activation vector, a block sparsity
structure can be expected. To impose this structural constraint,
following regularization term is included in the cost function,

Ψ(H) =
∑

l=1,..5

∑

gi∈G
log(||H(gi,l)||1 + ε) (4)

where, G = [g1, ..., gD] represents the D background subspaces.
In literature, this regularization term is also known as the log-
`1 measure [20]. We will also assume that since the acoustic
background is not changing within 5 frames the same subdictionary
will be used to explain the data over these 5 frames. Hence,
structured regularizer over the activation matrix will become,

Ψ(H) =
∑

gi∈G
log(||vec(H(gi,:))||1 + ε). (5)

Where, vec(H(gi,:)) is the vectorized format of submatrix H(gi,:).
In our work, we keep the hyperparameter ε = 10−4 fixed for all our
experiments.

2.2.3. Structured Sparsity in Outliers

As discussed above, we employ a supergaussianity/ sparse
constraint on the outlier term R, to capture the novel event.
This intuition of using a supergaussian random variable to model
outliers is motivated from several well known literatures on robust
regression [21, 22, 23], which have used heavytailed/supergaussian
distributions, such as student’s t distribution, to model the outliers
in the data.With the supergaussianity assumption, we make sure the
that the model mismatch error (tends to be smaller) will not get
absorbed in our outlier estimate. For the outlier matrix R, we will
again employ log-`1 regularizer with group sparsity constraint, but
in this case each frame/ column of R will be a group. This can be
interpreted as, if one frame is representing a novel event, all of the
frequency bins of that frame will have the opportunity to be active.
Hence, the regularizer on R is,

Π(R) =
∑

l=1,..,5

log(||R(:,l)||1 + ε). (6)

2.2.4. Derivation of Multiplicative Updates

After combining the model mismatch error, and the two regularizers
on activation matrix and outlier matrix, resulting cost function that
we will minimize is,

Ĥ, R̂ = arg min
H≥0,R≥0

‖V−WH−R‖2F+λΨ(H)+µΠ(R). (7)
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To solve the optimization problem with the non-negativity
constraint on H and R, we follow the block co-ordinate descent
framework based multiplicative update rules proposed in [24] and
derive the following update rules,

Ht+1 = Ht ⊗ WTV

WT (WHt + Rt) + λ
St+ε

, (8)

where, St(gi,l) = ||vec(Ht
(gi,:)

)||1, for l = 1, ..., 5 number of
frames.

Rt+1 = Rt ⊗ V

WHt+1 + Rt + µ
Pt+ε

, (9)

where, Pt
(k,l) = ||Rt

(:,l)||1, for k = 1, ....,K and l = 1, ..., 5
number of frames.

These multiplicative updates are performed for 100 iterations,
and the estimated value of the outlier matrix R is further used for
an adaptive thresholding based decision function, discussed in the
next subsection. We refer to our proposed approach as Robust Non-
negative Block Sparse Coding (RNBSC) in later sections.

A similar robust NMF formulation has been considered before
in [25], where the authors used a similar framework to learn robust
subspaces for a face recognition task. But they did not consider any
sparsity on the activation matrix H and furthermore, no structured
sparsity constraint was considered on outlier matrix R.

2.3. Adaptive Thresholding

For the adaptive thresholding step, we compute outlier estimate
and model mismatch error estimate for each frame, i.e. for ith

frame, outlier estimate r(i) = ‖R(:, i)‖2 and model mismatch
error, e(i) = ‖V(:, i) −WH(:, i) − R(:, i)‖2. We also perform
causal moving average of both e and r over previous 10 frames to
smoothen the estimates.

Since the background level can vary a lot, instead of using a
single value as the outlier threshold, we use an adaptive threshold
concept, where θ = β×median(e(1 : N)) is the threshold for each
audio clip, whereN is the total number of frames in each audio clip
during evaluation. Finally, threshold θ is applied over time series
of outlier estimate r, to obtain a binary signal, i.e. novelty or no
novelty.

3. DATASETS

3.1. A3Novelty Database
The A3Novelty corpus2 consists of 56 hours of recording and
was recorded in a laboratory of the Univerita Politecnica delle
Marche. These recordings were performed during both day and
night time to account for different acoustic backgrounds. A variety
of novel sounds, such as screams, falls, alarms, breakages of objects
etc., were played back randomly using a loudspeaker during these
recordings to generate backgrounds with novel sounds.

In the original A3Novelty database the audio recordings were
segmented in sequences of 30 seconds. Authors of [8], randomly
selected 300 sequences from the background material to construct
the training set (150 minutes) and 180 sequences from background
with novel sounds to compose the evaluation set (90 minutes). We
have used the same database for our evaluation purposes which is
publicly available3.

2http://www.a3lab.dii.univpm.it/research/a3novelty
3http://a3lab.dii.univpm.it/webdav/audio/

3.2. Own Evaluation Database (OED)
Since the A3Novelty database was recorded indoors, it does not
account for highly non-stationary acoustic backgrounds, hence,
detecting impulsive novel sounds from a stationary acoustic
background becomes comparatively easier. To tackle this issue,
we created our own database by mixing novel audio events
i.e. gunshots, glass breaking and sirens (obtained from publicly
available resources4) with acoustic background audio recordings
obtained from DCASE 2016 challenge [26], which has 6 different
acoustic backgrounds: beach, bus, cafe, grocery store, city center
and metro station. In our application, Event to Background ratio
(EBR) is defined globally, i.e., the gain is computed from the
average energy over the whole background (10 secs clip) and the
event signal, to raise a global EBR. As discussed in [4], by using
this approach we created signals which are good representative of
real life audio events. We created these mixtures for different EBRs:
0, 5, 10, 15, 20 dB.

For each of the acoustic background (total: 6) we created 60
audio clips with 3 different type of novel sounds (gunshot, glass
breaking, siren). Each clip is of length 10 s, resulting in total
of 60 mins of test audio for each EBR. We also included 300
audio clips (each of 10 s) of just acoustic background. During
mixing of the audio events, we generated the true labels where
the resolution is 1 s, i.e., for each 10 s long clip we generate a 10
dimensional vector as true label. Along with the evaluation set,
for training purposes we randomly selected segments of acoustic
background recordings (disjoint of evaluation set) from the same
DCASE challenge recordings, totaling to 90 mins of training data.

4. EXPERIMENTAL RESULTS

4.1. Competing Methods
In [18, 8], it has been shown that recently proposed Autoencoder
(AE) based approaches perform significantly better than previously
proposed statistical model based approaches such as GMM [7],
HMM [7], and OC-SVM [4]. Hence, we choose to compare our
proposed method with two AE based methods. We also compare
against S-NMF based approach to illustrate the usefulness of robust
outlier term in Equation 3. Since methods, that use any look ahead
information will not be feasible for real time novelty detection
application, we don’t compare with structures with BLSTM units.

• DAE-MLP: Denoising AE with Feed Forward structure 257-
512-257 and input is corrupted with Gaussian noise (std: 0.1).

• DAE-LSTM: Denoising AE with LSTM units in hidden layer
(257-512-257) and input is corrupted with Gaussian noise (std:
0.1).

• S-NMF: Supervised NMF based approach, where the
thresholding is done on mismatch error, i.e., e(i) = ‖V(:
, i)−WH(:, i)‖2.

• RNBSC: Proposed approach.

For a fair comparison, same adaptive thresholding approach has
been employed for all competing algorithms.

4.2. Setup
We use Short Time Fourier Transform (STFT) based time-
frequency representation of the audio clips and operate on STFT

4https://freesound.org/
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Table 1: Results over A3Novelty Dataset (1 sec)
Methods Precision (%) Recall (%) F Score (%)
DAE-MLP 95.00 97.43 96.20
DAE-LSTM 97.49 100 98.73
S-NMF 97.22 89.74 93.33
RNBSC (Proposed) 100 97.43 98.70

Table 2: Results over OED (10 secs)
Methods Precision (%) Recall (%) F Score (%)
DAE-MLP 80.00 82.22 81.09
DAE-LSTM 74.29 80.27 77.17
S-NMF 78.51 76.11 77.29
RNBSC (Proposed) 84.34 85.28 84.81

magnitude spectra feature space. For OED we use frame size of 32
ms and a frame step 8 ms. All the audio materials have sampling
fequency of 16 KHz. We use FFT size of 512, hence our feature
space is 512

2
+ 1 = 257 dimensional. For A3Novelty database

following [8], 30 ms frame length and frame step of 10 ms are used.
For AE based approaches we have also tried Compression AE

structures i.e., with less number of hidden units than input units.
But we found out that Denoising AE structures perform better than
traditional AEs, supporting results presented in [8]. Hence we only
include results for DAEs. For our proposed method RNBSC, all the
hyper parameters have been chosen empirically by maximizing F-
score over a small held out dev set (10 % of test set) and they are
as follows: λ = 0.001, µ = 0.01, β = 4. For each subdictionary,
representing one acoustic background, 50 basis vectors was used.

For all our experiments we use segment based performance
metrics i.e., Precision, Recall and F-score, following the standard
scoring techniques to evaluate sound event detection systems
presented in [27]. For A3Novelty database, we use segment size
of 1 s to evaluate all the algorithms, whereas for OED we use both
1 s segment and 10 s segment to score the system outputs. We
found out that for EBR higher than 0 dB, recall of all the systems
significantly improves. Further tuning/ increasing of β is required
for those cases to reduce the false positives (increase precision). For
that reason for evaluations on OED we only include testing material
of 0 dB EBR. Proposed method and the competing methods have
been trained separately for two datasets.

4.3. Results
In Table 1, we report the evaluation results of all competing
algorithms over A3Novelty corpus. As discussed above, the lack
of variability in acoustic background makes this corpus relatively
easier to detect novelties, hence all the competing algorithms
produce F-score over 90%. DAE-LSTM and our proposed method
RNBSC performs the best among 4 methods (DAE-LSTM does
slightly better (0.03%) than the proposed method). Our results
using DAE-LSTM is also comparable (our reported result is better)
to what was reported in [18] using DAE-LSTM structure for this
corpus.

In Table 2 and Table 3 we report evaluation results over OED
for all competing methods using 10 s segment and 1 s segment
respectively. For both the cases, our proposed approach RNBSC
performs the best and outperforms AE based approaches. We
also report results using S-NMF and show the usefulness of the
robustness, i.e., the extra supergaussian outlier term.

Fig. 1 shows the outlier estimate (r) and model mismatch error
(e) for an audio clip with cafe acoustic background, and a novel
gunshot sound. We highlight in Fig. 1, the position of the gun

Table 3: Results over OED (1 sec)
Methods Precision (%) Recall (%) F Score (%)
DAE-MLP 72.31 74.72 73.49
DAE-LSTM 70.95 70.55 70.75
S-NMF 75.08 67.78 71.24
RNBSC (Proposed) 77.17 81.67 79.35

shot in the spectrogram. In the bottom figure of Fig. 1, we clearly
see that the novel sound is being captured in the outlier estimate
and not leaking in to the model mismatch error. Because of the
supergaussian/sparse constraint, for all other times energy of the
outlier term is close to zero.

Figure 1: Spectrogram (top), Outlier and Mismatch Error estimate
using RNBSC (Bottom) for an audio clip in cafe with Gunshot
(novel sound)

Figure 2: F Score using RNBSC over OED (1 sec) for different
EBR

Finally in Fig. 2, we show F score measures of our proposed
method for different Event to Background Ratio.

5. CONCLUSION

We have presented a novel unsupervised approach for acoustic
novelty detection, using robust non-negative block sparse coding.
Previous state-of-the-art autoencoder based approaches solve the
problem by modeling only the normal acoustic background, and
they detect novel sounds only when the reconstruction/ model
mismatch error is above a certain threshold. Our approach on the
other hand explicitly models the novel sound using a supergaussian
random variable and thresholds on the energy of the expected value
of that random variable to detect acoustic novelties. This makes
our system much more robust in highly non-stationary acoustic
backgrounds, as shown by our empirical results over OED, which
has 6 different acoustic backgrounds.
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