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ABSTRACT

In this paper, we describe our system for the Task 2 of Detection
and Classification of Acoustic Scenes and Events (DCASE)
2019 Challenge: Audio tagging with noisy labels and minimal
supervision. This task provides a small amount of verified data
(curated data) and a larger quantity of unverified data (noisy data) as
training data. Each audio clip contains one or more sound events,
so it can be considered as a multi-label audio classification task.
To tackle this problem, we mainly use four strategies. The first is a
sigmoid-softmax activation to deal with so-called sparse multi-label
classification. The second is a staged training strategy to learn from
noisy data. The third is a post-processing method that normalizes
output scores for each sound class. The last is an ensemble method
that averages models learned with multiple neural networks and
various acoustic features. All of the above strategies contribute to
our system significantly. Our final system achieved labelweighted
label-ranking average precision (lwlrap) scores of 0.758 on the
private test dataset and 0.742 on the public test dataset, winning
the 2nd place in DCASE 2019 Challenge Task 2.

Index Terms— Audio tagging, noisy label, model ensemble,
DCASE

1. INTRODUCTION

The Detection and Classification of Acoustic Scenes and Events (D-
CASE) Challenge is gaining increasing interests among researchers
with academic and industrial backgrounds. DCASE 2019 is the
fifth edition of this challenge and has been held to support the
development of computational scene and event analysis methods.
This paper describes the methods we adopted to participate in the
task 2 of DCASE 2019 Challenge.

The second task of this year’s challenge is Audio tagging
with noisy labels and minimal supervision [1]. It provides public
dataset [2] with baseline and aims to develop competitive audio
classification systems using a small set of manually-labeled data
and a larger set of noisy-labeled data.

State-of-the-art methods are based on deep neural networks,
including Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN) and Convolutional Recurrent Neural Network
(CRNN). We follow this trend and use two types of neural network
architectures: a CRNN and a variant of CNN (DenseNet).
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Data augmentation has been widely utilized in recent DCASE
Challenges. Mixup [3] strategy was adopted by top teams [4, 5]
in DCASE 2018 Challenge. Besides, a new augmentation method
named SpecAugment [6] has been proposed recently. In our work,
we used the combination of both methods.

Although this is a multi-label classification problem, most
audio clips contain only one sound event. For this reason, we
call it a “sparse multi-label classification” problem, and propose a
sigmoid-softmax activation structure to deal with this problem.

In this task, how to use noisy data is the key to achieving
competitive performance. We designed a staged training strategy
to select the most convincing samples from noisy data and train our
model using both verified data and convincing unverified data. This
new training strategy will be illustrated in the following sections.

Additionally, we did some explorations about post-processing
and found an effective way of score normalization.

The rest of this paper is organized as follows: we describe our
methods in detail in Section 2; we present our experiments and
results in Section 3; finally we conclude our work in Section 4.

2. METHODS

2.1. Feature Extraction

We used two types of acoustic features, including log-mel energies
and perceptual Constant-Q transform (p-CQT). And we also used
different parameters, such as frame length, hop length, frequency
range, mel bins. As shown in Table 1, we used three feature
configurations in total. All features are extracted using librosa [7].

Table 1: Configurations of acoustic features

Type A Type B Type C

Feature log-mel log-mel CQT
Window length 1764 2048 —

Hop length 882 511 512
Low Frequency 0 Hz 0 Hz 55 Hz
High Frequency 22050 Hz 16000 Hz —

Feature dim 80 128 128
bins per octave — — 16

2.2. Data Preprocessing

Raw feature data needs further preprocessing before being input to
neural networks. The data preprocessing procedures used in our
work include sound activity detection (SAD) and data padding.
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Figure 1: The architecture of CRNN. It consists of 4 convolutional
blocks, a bi-GRU and two dense layers. Each convolutional block
contains 2 convolutional layers. After bi-GRU, global average
pooling and global max pooling operations are applied to aggregate
temporal information, and the results are concatenated together
before being input to dense layers.

SAD has shown powerful performance in previous work [5].
We mainly used two kinds of SAD methods: 1) We ignore the silent
frames at the beginning and end of each audio. 2) We ignore the
silent frames through the whole audio.

To deal with the variable lengths of acoustic features, we set
a maximum padding length. All features shorter than the padding
length will be repeated to the padding length. And longer features
will be downsampled to align with the padding length. In our work,
the padding length is set 2000. During training, we randomly select
continuous 512 frames to feed into the neural network. For test, the
whole 2000 frames are used to get predictions.

2.3. Data Augmentation

As mentioned above, we combined mixup [3] and SpecAugment
[6] for data augmentation.

In mixup, we randomly select a pair of samples from training
data. Let x1, x2 be the features, and y1, y2 be the one-hot labels
respectively, the data is mixed as follows:

x = λx1 + (1− λ)x2 (1)

y = λy1 + (1− λ)y2 (2)

where the parameter λ is a random variable with Beta distribution
B(0.4, 0.4).

SpecAugment is implemented by time warping, frequency
masking and time masking. Detail is available in [6].

2.4. Neural Network

2.4.1. CRNN architecture

The architecture of CRNN is illustrated in Figure 1. It begins with
four convolutional blocks. Each block contains two convolutional
layers, followed by batch normalization [8], ReLU, dropout [9] and
average pooling. Next, an average pooling is adopted on frequency
axis to squeeze the frequency dimension to 1. And a bi-directional
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Figure 2: The architecture of DenseNet. Batch normalization is
applied to the input acoustic feature, followed by a convolutional
layer. The input and output of this convolutional layer are
concatenated along channels, followed by 8 DenseNet blocks.
Then, global max pooling is applied, and 2 dense layers are utilized
to output final predictions. The configuration of DenseNet block is
illustrated in the dotted box.

Table 2: The number of positive labels in training dataset

#positive labels train curated train noisy

1 4269 16566
2 627 2558
3 69 504
4 4 141
5 0 38
6 1 4
7 0 4

average #positive labels 1.157 1.211
percentage of single label 85.9% 83.6%

gated recurrent unit (Bi-GRU) is used to capture temporal context.
Then, global max pooling and global average pooling are used
on time axis to maintain various information and concatenated
together. Finally, two dense layers are applied to output prediction
scores for each class.

2.4.2. DenseNet architecture

The architecture of DenseNet is shown in Figure 2. Our module
is similar to that in [4]. In this module, the feature maps
of previous layers can propagate to later layers, which can
effectively alleviate the vanishing-gradient problem and encourage
feature reuse. In each DenseNet block, we use Squeeze-and-
Excitation Network [10], which can adaptively recalibrate channel-
wise feature responses by explicitly modelling interdependencies
between channels.

2.4.3. Choice of final activation

Since this is a multi-label and multi-class classification task,
sigmoid is naturally the primary choice of the activation in final
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Figure 3: Combination of sigmoid and softmax activation.

layer. However, as shown in Table 2, the average number of positive
labels in training dataset is very close to 1, and single-label data
takes up the majority. So we call this task a “sparse multi-label
classification” problem. In this condition, softmax is also a good
option.

In order to combine the advantages of both sigmoid and
softmax, we design a new structure named sigmoid-softmax
activation. In this structure, the output embedding before the final
layer will pass through two dense layers. As shown in Figure 3, one
dense layer with sigmoid activation will be optimized with binary
crossentropy loss, and the other dense layer with softmax activation
will be optimized with categorical crossentropy loss. The outputs
of both dense layers are ensembled to get final prediction.

2.5. Staged Training Strategy for Noisy Data

In this task, only a small amount of data is manually labeled, and
a large quantity of data contains noisy label. Since the noisy data
is not verified to have groundtruth label, we attempt to use only
the most convincing noisy data. Inspired by the batch-wise loss
masking in [4], we propose a staged training strategy to learn from
noisy data.

To make it specific, we firstly use the verified data to train
our system for several epochs. Then, we use both the verified and
unverified data. However, in order to use only the most convincing
noisy data, we adopt a loss masking similar to the work in [4]. The
difference is that we ignore the noisy samples with the top k loss
in a batch rather than set a threshold value and ignore samples with
higher loss. Finally, after training for more epochs, we abandon the
noisy data and finetune our model with only the verified data. Our
staged training strategy has made huge improvements according to
our experiments.

2.6. Score Normalization

For inference, we use score normalization strategy for further
improvements. Let xi,j be the prediction score for the i-th class
in the j-th sample. We normalize the prediction scores for each
class. The normalization procedure goes as follows:

xi =

∑N
j=1 xi,j

N
, (3)

x̂i,j =
xi,j − xi√

1
N

∑N
j=1 (xi,j − xi)

2 + ε
(4)

x̃i,j =
x̂i,j −minj x̂i,j

maxj x̂i,j −minj x̂i,j + ε
(5)

where N is the total number of samples in evaluation dataset, ε is a
sufficiently small value to avoid division by zero. For each class in
evaluation dataset, we normalize the prediction scores to zero mean
and unit variance. Then, we set min and max zoom to keep the
scores between 0 and 1. According to experimental results, score
normalization can raise the evaluation metric by approximately
0.002 on average in cross-validation and 0.007 in private test data.

3. EXPERIMENTS

3.1. Experiment Setup

Adam optimizer [11] is used for gradient based optimization. The
learning rate is 0.001 and batch size is 64. We split our training
dataset into four folds. Then we train four models using any three
folds for training and the other fold for validation.

As for the staged training, we design a data generator to
generate different proportions of training data during different
stages. In the first stage, all data comes from curated dataset. In
the second stage, the proportion of curated dataset is equal to noisy
dataset. In the third stage, only curated dataset is used. In the second
stage, the top k samples with the highest loss on noisy dataset would
be masked. In our experiments, k is 10.

For CRNN architecture, the first stage runs for 8k iterations,
the second stage runs for 12k iterations, and the third stage runs
for 3k iterations. For DenseNet architecture, the first stage runs for
5k iterations, the second stage runs for 8k iterations, and the third
stage runs for 2k iterations. The models with the best validation
performance on each fold are selected.

3.2. Evaluation Metric

The primary competition metric is label-weighted label-ranking
average precision (lwlrap). This measures the average precision
of retrieving a ranked list of relevant labels for each test clip (i.e.,
the system ranks all the available labels, then the precisions of
the ranked lists down to each true label are averaged). LRAP is
calculated as follows, and lwlrap is the macro-average of per-class
LRAP. [12]

LRAP(y, f̂) =
1

n samples

n samples −1∑

i=0

1

‖yi‖0
∑

j:yij=1

|Lij |
rankij

(6)

where Lij =
{
k : yik = 1, f̂ik ≥ f̂ij

}
, rankij =∣∣∣

{
k : f̂ik ≥ f̂ij

}∣∣∣, | · | computes the cardinality of the set,

and ‖ · ‖0 computes the number of nonzero elements in a vector.

3.3. Model Ensemble and Submissions

Model ensemble is successful in boosting the system’s perfor-
mance. We ensemble our models using geometric average as
follows:

yensemble = exp
1

N

∑

n

wn log yn (7)

whereN is the number of subsystems, yn is the output score of each
subsystem, and wn is the weight coefficient for each subsystem.

We submitted two prediction results using different weights:
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Table 3: Lwlrap scores of multiple configurations, on both cross-fold validation and private evaluation dataset. The score on cross-fold
validation dataset are the average of scores on four folds. “sig-soft” is the abbreviation of sigmoid-softmax activation structure.

Cross-fold Validation Private Evaluation
Type A Type B Type C Type A Type B Type C

CRNN sigmoid 0.8512 0.8547 0.8413 0.7253 0.7290 0.7140
CRNN softmax 0.8437 0.8479 0.8362 0.7208 0.7176 0.7094
CRNN sig-soft 0.8561 0.8613 0.8502 0.7388 0.7334 0.7203

DenseNet sigmoid 0.8219 0.8357 0.8321 0.7053 0.7017 0.6923
DenseNet softmax 0.8143 0.8235 0.8249 0.7014 0.7043 0.6837
DenseNet sig-soft 0.8246 0.8378 0.8412 0.7146 0.7141 0.7074

Table 4: The performance of systems using curated data only
and systems using both curated and noisy data. We use CRNN
architecture with three different activation functions on both
cross-fold validation and private evaluation dataset. The relative
improvement of adding noisy data using staged training strategy is
shown in the parenthesis. Type A feature is used in experiments.

Curated data Curated and noisy data

Cross-fold
Validation

sigmoid 0.8417 0.8512 (1.13% ↑)
softmax 0.8278 0.8437 (1.92% ↑)
sig-soft 0.8376 0.8561 (2.21% ↑)

Private
Evaluation

sigmoid 0.7155 0.7253 (1.37% ↑)
softmax 0.7142 0.7208 (0.92% ↑)
sig-soft 0.7207 0.7388 (2.51% ↑)

1) Zhang THU task2 1.output.csv: achieved our highest lwlrap
score of 0.742 on public leaderboard in Kaggle.

2) Zhang THU task2 2.output.csv: achieved our highest local
lwlrap scores in each cross-fold validation, with a lwlrap score of
0.739 on public leaderboard in Kaggle.

3.4. Experimental Results

In order to investigate more about proposed methods, we conducted
further experiments on private evaluation dataset after submitting to
DCASE Challenge. Our experiments were conducted on two neural
network architectures (CRNN and DenseNet), three activation
functions (sigmoid, softmax, and sigmoid-softmax activation
structure), and three acoustic features (Type A, B, C as mentioned
in subsection 2.1).

The lwlrap scores of multiple configurations, on both cross-fold
validation and private evaluation dataset, are shown in Table 3. The
score on cross-fold validation dataset is the average of scores on
four folds. As shown in Table 3, CRNN architecture with sigmoid-
softmax activation structure can achieve the best performance in
all types of features on both validation and evaluation dataset.
Besides, sigmoid-softmax activation structure can outperform
single sigmoid or softmax activation in all feature types and neural
networks. We can draw a conclusion that proposed sigmoid-
softmax can demonstrate remarkable performance in “sparse multi-
label classification” problems.

To examine the performance of proposed staged training
strategy, we also conducted some comparative experiments using
curated data only. We compare the performance of systems using
curated data only and systems using both curated and noisy data in

Table 5: Comparison of several systems, on both public leaderboard
and private leaderboard.

Lwlrap
(public LB)

Lwlrap
(private LB)

Ensemble-1 0.7423 0.7575
Ensemble-2 0.7392 0.7577
Ensemble-3 *** 0.7508
Ensemble-4 *** 0.7500

OUmed 0.7474 0.7579
Ebbers 0.7305 0.7552

Table 4. We use Type A feature as acoustic feature and CRNN as
classifier. Three types of activations are applied to verify the effects
of staged training strategy. The results show that proposed method
can make good use of noisy data to enhance the classification and
generalization capability of our models.

Furthermore, we compare the following systems in Table 5:
- Ensemble-1: the architecture generating aforementioned

Zhang THU task2 1.output.csv.
- Ensemble-2: the architecture generating aforementioned

Zhang THU task2 2.output.csv.
- Ensemble-3: the same architecture with Ensemble-1, but

without score normalization processing.
- Ensemble-4: the same architecture with Ensemble-2, but

without score normalization processing.
- OUmed: the 1st place in DCASE Challenge. [13]
- Ebbers: the 3rd place in DCASE Challenge. [14]

It can be concluded that proposed score normalization strategy
can increase lwlrap score by approximately 0.007. Compared with
other teams, our system is also very competitive.

4. CONCLUSION

In this paper, we describe our methods and techniques used in
the task 2 of DCASE 2019 Challenge. We adopted mixup and
SpecAugment for data augmentation and applied two types of deep
learning model including CRNN and DenseNet. Besides, a staged
training strategy is applied to learn from both curated and noisy
data and a sigmoid-softmax activation structure is proposed to solve
sparse multi-label classification problems. Using model ensemble
and score normalization strategies, our final system ranked the 2nd
place in DCASE 2019 Challenge.
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