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ABSTRACT
Automated analysis of complex scenes of everyday sounds might
help us navigate within the enormous amount of data and help us
make better decisions based on the sounds around us. For this pur-
pose classification models are required that translate raw audio to
meaningful event labels. The specific task that this paper targets
is that of learning sound event classifier models by a set of exam-
ple sound segments that contain multiple potentially overlapping
sound events and that are labeled with multiple weak sound event
class names. This involves a combination of both multi-label and
multi-instance learning. This paper investigates two state-of-the-
art methodologies that allow this type of learning, low-resolution
multi-label non-negative matrix deconvolution (LRM-NMD) and
CNN. Besides comparing the accuracy in terms of correct sound
event classifications, also the robustness to missing labels and to
overlap of the sound events in the sound segments is evaluated. For
small training set sizes LRM-NMD clearly outperforms CNN with
an accuracy that is 40 to 50% higher. LRM-NMD does only mi-
norly suffer from overlapping sound events during training while
CNN suffers a substantial drop in classification accuracy, in the or-
der of 10 to 20%, when sound events have a 100% overlap. Both
methods show good robustness to missing labels. No matter how
many labels are missing in a single segment (that contains multiple
sound events) CNN converges to 97% accuracy when enough train-
ing data is available. LRM-NMD on the other hand shows a slight
performance drop when the amount of missing labels increases.

Index Terms— Multi-label learning, multi-instance learning,
weak labels, non-negative matrix deconvolution, convolutional neu-
ral networks, overlapping sound events, polyphonic classification,
sound event classification.

1. INTRODUCTION

We are surrounded by complex acoustic scenes made up of many
potentially overlapping sound events. For example, in a busy street
we may hear engine sounds in cars, footsteps of people walking,
doors opening, or people talking. Large amounts of recorded sound
clips are also being uploaded into audio and multimedia collections
of clips on the internet, creating an explosive growth in this audio
data. In recent years, research into content analysis for complex au-
dio has found increasing attention in the research community [1]. It
has lead to algorithms based on machine learning that automate the
analysis of the complex audio of everyday sounds, to help us nav-
igate within the enormous amount of data and help us make better
decisions based on the sounds around us.

In this work we specifically focus on the task of learning sound
event classifier models by a set of sound segments that contain mul-
tiple potentially overlapping sound events and that are labeled with

multiple weak sound event class names. Such setup involves a
combination of multi-label and multi-instance learning. Multi-label
refers to the fact that a single sound segment has multiple labels.
When strong labels are used the labelled sound events are all active
for the full (small, e.g. 50ms) sound segment. Weak labelled sound
events are active on undefined positions in the considered (larger,
e.g. 10s) audio segment. Hence, the learning strategy should have
the ability to identify multiple instances that are present within an
audio fragment. For example learning sound event models based on
YouTube movies that have meta information (that could be automat-
ically transformed into some predefined set of class labels) could be
considered as a multi-label multi-instance learning task.

The literature concerning the classification of overlapping
sounds is mainly divided into two separate streams. Either the over-
lapping events are separated first using source separation methods
[2, 3] or region extraction methods such as [4] prior to detection or
the overlapping events are directly classified via a unifying classfi-
cation scheme [5, 6], with the latter being the most successful. In
this work we compare two methods that belong to this category.
Particularly convolutional neural networks (CNN), potentially with
some recurrent layers added, have shown good performance with
respect to the considered task [5, 7]. In [8] the authors developed a
convolutive modeling technique that combines a sound source sepa-
ration strategy based on non-negative matrix devonvolution (NMD)
with weak supervision to enable the option to perform classifica-
tion. In this paper we will compare both methods not only in terms
of classification accuracy but also in terms of robustness to missing
labels and the amount of overlap of sound events that are present in
the sound segments used during the learning stage.

The literature concerning missing labels in weak labelled data
is rather limited. While research into noisy labels has recently been
growing [9, 10], the impact of missing labels specifically has not yet
been investigated to the best of our knowledge. This is backed up by
the statement in [11] that the theme of noisy labels was completely
missing from the literature.

This paper is organized as follows. In Section 2 we briefly intro-
duce the two methods that are being compared. Section 3 describes
the data set that was used and the experimental setup. The results
are discussed in Section 4. Final conclusions and future directions
are given in Section 5.

2. METHODS

2.1. Non-negative Matrix Deconvolution

NMD is an extension of non-negative matrix factorization (NMF)
and is capable of identifying components with a temporal struc-
ture [12, 13]. The main objective of NMD is to decompose an
all-positive observation data matrix Y[o] ∈ RB×F

≥0 , e.g. a time-
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frequency magnitude spectrogram in case of acoustic processing,
into the convolution between a set of temporal basis matrices A[o]

t ∈
RB×L

≥0 , with t ∈ [1, T ], and its activation pattern over time XL×F
≥0 .

The general form of NMD is expressed by

Y[o] ≈ Ψ[o] =

T∑

t=1

A[o]
t

(t−1)−→
X , (1)

where Ψ[o] ∈ RB×F
≥0 denotes the reconstructed data and

t−→
(·) a ma-

trix shift of t entries to the right. Columns that are shifted out at
the right are discarded, while zeros are shifted in from the left. The
complete set of basis data, i.e. also called ’dictionary’ or ’sound-
book’ is described by combining all temporal basis matrices A[o]

t

into a global three-way tensor A[o] ∈ RB×L×T
≥0 . Each l-th slice of

A[o] then contains the temporal basis data of the lth-component over
time t and can be interpreted as one of the additive time-frequency
elements describing the underlying structure in Y[o].

The general form of NMD given by Equation 1 factorizes the
observations in a blind fashion. In [8] we have proposed an exten-
sion to NMD, called low-resolution multi-label non-negative matrix
deconvolution (LRM-NMD), where both the observation data and
the available labelling information are used during the factorization
process. More specifically, let us assume that Y[o] is supported by
a multi-label vector y[s] ∈ {0, 1}C , with C denoting the number
of classes, indicating the sound events that have occurred without
describing beginnings nor endings. In the other words weak labels
are employed. The objective of LRM-NMD is still to decompose
Y[o] as is given in Equation 1 but with respect to

y[s] ≈ ψ[s] = A[s]X1, (2)

with A[s] ∈ {0, 1}C×L acting as a labelling matrix for A[o] and 1
being an all-one column vector of length F . Hence, the cost func-
tion of LRM-NMD is expressed by

min
A[o],A[s],X

J∑

j=1

[
D(Y[o]

j ‖Ψ
[o]
j ) + λ‖Xj‖1 + ηD(y[s]

j ‖ψ
[s]
j )
]
, (3)

where D(v‖w) denotes the Kullback-Leibler divergence between
v and w, λ being the sparsity penalty parameter and η the trade-
off parameter between the observation data and the labelling infor-
mation. The cost function can be minimised using the method of
multiplicative updates as discussed in [8]. LRM-NMD favours de-
compositions that have a balanced performance in terms of recon-
struction error and classification performance. More specifically,
LRM-NMD encourages that the sound events in segment Y[o], la-
belled by y[s], are described by a linear combination of a subset of
sound book elements in A[0] each assigned to a specific sound event
class by the labelling matrix A[s]. Two crucial advantages of LRM-
NMD are: a) that it can deal directly with overlapping sound events
in the observation data, i.e. because of the additive behaviour due to
the non-negativity constraint, and b) that not all events in an acous-
tic segment must be labelled and thus that it can cope with missing
labels enabling a semi-supervised learning strategy that learns the
model parameters from both labelled and unlabelled data.

Classifying an unseen sample is done by decomposing the test
data under the fixed learned basis data A[o] and performing a global
average pooling on the corresponding activations X.

2.2. Convolutional Neural Network

Convolutional neural networks (CNNs) have become the current
state-of-the-art solution for many different machine learning tasks
and are already widely discussed in the literature. CNNs usually
consist of several pairs of convolutional and pooling layers as a fea-
ture extractor. The extracted features are usually flattened using a
flatten layer and are then followed by one or more fully connected
layers that act as a classifier.

In this study we used a basic CNN architecture, using the afore-
mentioned layers. To accommodate for variable sized input frames,
we changed the flatten layer to a global average pooling layer. This
change allows training on segments with a different size compared
to those that are being used in the testing phase. While we could
train on different length segments, we padded all segments to the
length of the longest segment during training for batching purposes.
This padding is done, for each mel band, by sampling from a nor-
mal distribution with the mean and standard deviation derived from
the considered mel band values from the training data.

3. EXPERIMENTAL SETUP

3.1. Dataset

Both methods are validated using the publicly available NAR-
dataset. This dataset contains a set of real-life isolated domestic
audio events, collected with a humanoid robot Nao, and is recorded
specifically for acoustic classification benchmarking in domestic
environments [14, 15]. In total 42 different sound classes were
recorded and can be categorised into ’kitchen related events’, ’of-
fice related events’, ’non-verbal events’ and ’verbal events’. The
verbal events are not used in this research which reduces the dataset
to a total of 20 sound classes each containing 20 or 21 recordings.

The training, validation and test sets are created by randomly
sampling instances from the NAR-dataset with a ratio of 50% for
training, 25% for validation and 25% for testing. The training and
validation sets are further processed into so-called acoustic observa-
tion segments for the multi-instance multi-label learning task. More
specifically, the acoustic segments are generated by randomly draw-
ing five events, sorting them with increasing time duration, and
combining them into a single stream with 0%, 25%, 50%, 75%
and 100% overlap1. In total 10000 training and 2000 validation
segments were generated per degree of overlap. The test set was
not altered since the envisioned task of the experiments later is sim-
ply a classification problem. The previous process was repeated
four times resulting in a final dataset containing 4 folds each made
up of 10000 training segments, 2000 validation segments, and 100
isolated test samples (5 per sound class) for classification.

3.2. Features

The so-called mel-magnitude spectrograms [16] have shown to be
a good choice of acoustic features having the properties of non-
negativity and approximate additivity. The mel-magnitude spectro-
grams that span 40 bands are computed using a Hamming window
with a frame length of 25 ms and a frame shift of 10 ms as proposed
in [17]. The used filter bank is constructed such that the begin fre-
quency of the first mel-filter and the end frequency of the last mel-

1The amount of overlap is defined by the amount of overlapping samples
between two successive events, based on the first event. Special case is
100% where all events in the acoustic segment have the same onset time.

160



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

filter correspond to the frequency range of the microphone, i.e. 300
Hz and 18 kHz.

3.3. Experiments

In this paper two main experiments were carried out. The first ex-
periment investigates the influence of the number of training seg-
ments (ntr) on the classification performance of LRM-NMD and
CNN for different degrees of assigned labels (nlbl). The number of
training segments are increased offline from 50 to 10,000 and the
amount of assigned labels varies between nlbl = 1 (4 missing la-
bels per segment) and nlbl = 5 (no missing labels). The second ex-
periment investigates the influence of overlapping sound events on
the classification performance of LRM-NMD and CNN for a fixed
number of training segments. The investigated degrees of overlap
(novl) vary between novl = 0% and novl = 100%. The amount
of assigned labels varies again in the range nlbl = {1, 2, 3, 4, 5}.
In both experiments, the objective is to predict a single label for an
event while training on multi-label segments.

The set of dictionary elements in A[o] for LRM-NMD was ini-
tialized with one example per sound class and one additional dic-
tionary element with small positive noise for acoustic background
modelling. Hence, the overall dimensions of A[o] are B = 40,
L = 21, and T = 40. The labelling matrix A[s] was initialised by
an identity matrix augmented with an all zeroC long column vector
for the background dictionary element. The used hyperparameters
are λ = 5 and η = 5 and where selected from the results in [8].

The network used for CNN starts with 3 convolutional layers
using (5,5) filter shapes and 64 filters, similar to what was proposed
in [5], each convolutional layer is followed by a batchnormalization
[18] layer, a relu activation and a pooling layer. The pooling layers
used maxpooling with (5,1), (3,1), (2,1) as shapes respectively. Af-
ter these layers a globalaveragepooling layer is added, followed by
a hidden fully connected layer of 64 neurons, with a relu activation,
and an output layer of 20 neurons, the same amount as the number
of output classes. Between all convolutional layers dropout [19] is
used with a drop rate of 0.5. During training the output layer has
a sigmoid activation, due to the multi-label nature of this problem,
and during inference this activation is changed to a softmax since
a single label is required. Since this is a multi-label problem with
binarized labels, binary-crossentropy is used as the loss function.
Adam was used as optimizer with a learning rate of 0.001.

4. RESULTS

In this section the results of both experiments are discussed. Firstly,
we will discuss the effect of missing labels and the amount of train-
ing samples on the performance of both methods. Secondly, we will
discuss the impact overlap in training segments has in both meth-
ods. Finally, while this is not the main focus of this study, we will
do a short comparison of our results to the results of other studies
which used the NAR-dataset.

4.1. Missing labels

The results of this experiment for CNN and LRM-NMD are pre-
sented in Figure 1. The LRM-NMD model was trained with at most
ntr = 2000, while the CNN was trained up to ntr = 10000, how-
ever we assume that the results of LRM-NMD will not have a large
improvement with a higher ntr based on the trend in the results.

From these results we can see that LRM-NMD substantially
outperforms CNN in cases where there is little data available.
The latter is mainly the result of the exemplar based initialization
of LRM-NMD resulting in a bootstrapped model structure. At
ntr = 50, CNN achieves accuracies ranging from 53.8 ± 6.1%
to 11.2 ± 8.2% for 5 labels and 1 label, respectively. In compari-
son, for the same ntr , LRM-NMD achieves accuracies ranging from
89.0± 3.4% to 66.5± 4.4%.

When considering the results when more training segments are
added, we can see that CNN begins to achieve similar accuracies as
LRM-NMD when a few labels are missing. At ntr = 1000, CNN
achieves accuracies ranging from 95.5± 1.1% to 64.5± 9.1% for
5 labels and 1 label, respectively. For the same ntr LRM-NMD
achieves accuracies ranging from 94.5 ± 2.5% to 76.0 ± 2.4%.
These numbers confirm our statement that CNN achieves similar ac-
curacies as LRM-NMD when few labels are missing, if more train-
ing data is added.

If further training data is added, so ntr = 10000, we see that
the achieved accuracies converge around 97% across all nlbl. From
this we can state that CNN sligthly outperforms LRM-NMD, if
a large amount of training data is available. Note that compared
to CNN, LRM-NMD uses less model parameters and has no non-
linear modeling option available.

Another observation is that while LRM-NMD has a good per-
formance for a small ntr , it does not improve as much compared
to CNN when ntr increases. Note that the LRM-NMD hyperpa-
rameters i.e. η and λ, were selected and kept fixed in a model se-
lection procedure in which all labels were present for each training
segment (hence no missing labels). This choice is probably sub-
optimal since the amount of provided labels influences the balance
between the supervision and reconstruction error terms in 3.

4.2. Overlap of events in segments

In this experiment we used ntr = 10000 for CNN and ntr = 500
for LRM-NMD. These amounts were chosen based on the classifi-
cation accuracies and the time needed to train the models. For CNN
the accuracies converged for ntr = 10000 and for LRM-NMD they
started stagnating for ntr = 500. The results of the experiment are
presented in Figure 2.

For novl = 0% we can see that CNN outperforms LRM-NMD,
this can be attributed to the increase in ntr , as described in 4.1.
CNN is converged around 97% accuracy, while the accuracies
achieved by LRM-NMD range from 93.5± 3.1% to 75.5± 3.9%.

At novl = 50% the accuracies achieved by CNN start to di-
verge slightly, ranging from 96.8± 1.3% to 94.5± 2.7%. In com-
parison, LRM-NMD achieves accuracies ranging from 92.5±3.7%
to 66.3± 1.5%. At this point CNN still outperforms LRM-NMD.

However, when we look at novl = 100%, we see that CNN has
a drop in classification accuracy. The classification accuracy ranges
from 80.2±1.3% to 67.5±5.7%, while the classification accuracy
of LRM-NMD ranges from 90.0± 3.2% to 67.3± 7.5%.

From these results, we conclude that for up to novl = 75%
CNN outperforms LRM-NMD. However, if novl gets closer to
100%, LRM-NMD starts to achieve higher accuracies than CNN.
A possible explanation for this could be that, due to the nature of
the generation of the overlap in the segments, the filters of CNN
are smaller than the non-overlapping part of the events for less than
100% overlap. This could lead to the CNN still being able to rec-
ognize the events in this non-overlapping area, while the rest of the
event is overlapped with the next event.
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Figure 1: The obtained classification results for CNN and LRM-
NMD in function of the number of training segments (ntr) and the
number of labelled events per segment (nlbl). Note that ntr = 5000
and ntr = 10000 are not evaluated for LRM-NMD due to the com-
putational complexity of the multiplicative updates and the stagna-
tion of the results.

An important aspect to note here is that the CNN had more
training data. With a smaller training set size, the performance of
CNN is worse.

4.3. Comparison with other papers

This paragraph compares the results of this study with other studies
using the NAR-dataset. For this comparison we used the best results
achieved in the studies, i.e. 96.0% in [14], 97.0% in [15], 98.36%
in [20], and 100.0% in [21], and for LRM-NMD and CNN we used
the best results with no missing labels and 0% overlap, 94.5% and
97.0% respectively. Note that in the other studies the learning is
done using single strong labels, while in this study multi weak la-
bels were used. This makes a direct comparison unfair due to the
different natures of learning, however, based on the results, we can
cautiously state that we approach state-of-the-art performance.

5. CONCLUSION

In this work two experiments that compare the classification per-
formance of a CNN-based and a LRM-NMD-based approach for
acoustic event classification using weakly multi-labelled data were
performed.

The first experiment was done to examine the influence of the
amount of training data on the classification performance for dif-
ferent amounts of missing labels. In this experiment we observed
that for a low amount of data LRM-NMD clearly outperforms CNN
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Figure 2: The obtained classification results for CNN and LRM-
NMD in function of the degree of overlap (novl) and the number of
labelled events per segment (nlbl). Note that CNN uses the setting
of ntr = 10000 and LRM-NMD ntr = 500.

with an accuracy that is 40 to 50% higher, on each amount of miss-
ing labels. However, if enough training data is added, CNN slightly
outperforms LRM-NMD and converges to 97% accuracy for all
amounts of missing labels. Results from this experiment indicate
that, with large training set sizes and with a uniform probability of
a label being absent over classes, missing labels have a very limited
effect on the classification performance of a CNN.

In the second experiment we examined the impact of overlap
on the classification performance. This experiment was done using
ntr = 500 and ntr = 10000 for LRM-NMD and CNN respec-
tively which gave the best models in the former experiment for 0%
overlap of both approaches. We conclude that for up to 75% overlap
CNN outperforms LRM-NMD and converges to 97% while LRM-
NMD reaches 95% accuracy. However, if the amount of overlap
increases further, LRM-NMD starts to outperform CNN, with up
to 10% higher accuracies for different amounts of missing labels.
In this experiment we have also seen that overlap has a relatively
limited impact on LRM-NMD.

In future work we also target to develop a neural network al-
ternative to the LRM-NMD algorithm that we proposed in [8]. In
this way we can benefit from the modelling flexibility (e.g. the abil-
ity to include non-linearity in the modelling process) that comes
with neural networks allowing for several extensions and general-
izations, while also keeping the capabilities of LRM-NMD (e.g. be-
ing able to use unlabelled data in addition to weak labelled data and
the robustness to overlap). Moreover, a more detailed benchmark-
ing of the considered methods will be performed on other publicly
available data sets.
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