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ABSTRACT

The Sound Event Classification (SEC) task involves recognizing the
set of active sound events in an audio recording. The Sound Event
Detection (SED) task involves, in addition to SEC, detecting the
temporal onset and offset of every sound event in an audio record-
ing. Generally, SEC and SED are treated as supervised classifica-
tion tasks that require labeled datasets. SEC only requires weak
labels, i.e., annotation of active sound events, without the temporal
information, whereas SED requires strong labels, i.e., annotation
of the onset and offset times of every sound event, which makes
annotation for SED more tedious than for SEC. In this paper, we
propose two methods for joint SEC and SED using weakly labeled
data: a Fully Convolutional Network (FCN) and a novel method that
combines a Convolutional Neural Network with an attention layer
(CNNatt). Unlike most prior work, the proposed methods do not as-
sume that the weak labels are active during the entire recording and
can scale to large datasets. We report state-of-the-art SEC results
obtained with the largest weakly labeled dataset — Audioset.

Index Terms— Convolutional neural network, sound classifica-
tion, sound event detection, weakly supervised learning

1. INTRODUCTION

Sound Event Classification (SEC) is the task of recognizing the set
of active sound events in a given audio recording. Additionally, de-
tecting the temporal activity of each sound event, i.e., onset and off-
set times, is referred to as Sound Event Detection (SED). SEC and
SED can be helpful in query based multimedia retrieval [1], acoustic
scene analysis [2, 3], and bio-diversity monitoring [4–6]. The SED
task requires datasets that are strongly labeled [7–9], i.e., annotation
of active sound events and their respective onset and offset times.
On the other hand, the SEC task requires weakly labeled datasets,
that only provide annotation of the set of active sound events for ev-
ery recording [5, 10, 11]. In terms of complexity, it is more tedious
to annotate strongly labeled datasets than weakly labeled datasets.

The SEC task has traditionally been approached with Convolu-
tional Neural Network (CNN) architectures [5, 10, 12]. Whereas for
the SED task, which requires temporal localization of sound events,
the joint architecture of CNNs with recurrent neural networks, re-
ferred to as Convolutional Recurrent Neural Network (CRNN) [8,
13], has shown consistently good results across SED datasets. Re-
cently, it was shown in [9] that on large SED datasets, the perfor-
mance of CNN architectures is comparable to CRNN architectures
when the detection is happening at one-second resolution. In this
paper, we aim to perform SED at a similar resolution using a large
dataset. Given that the training time of CNN architectures is rel-
atively faster than comparable CRNN architectures, we focus on
CNN architectures.

*This work was performed during an internship at Facebook.

Recently, methods have been proposed to jointly learn SEC and
SED from just the weakly labeled data [14–18], in order to over-
come the complexity of annotating strongly labeled datasets. Prior
work in [14] used multiple established CNN architectures from the
computer vision domain and applied them to this task, but these
methods assumed that the weak labels were active throughout the
recording during training, and is hereafter referred to as Strong La-
bel Assumption Training (SLAT). This assumption leads to poor
SEC performance, as shown in [17]. As an alternative to SLAT,
the authors in [16] proposed a Fully Convolutional Network (FCN)
based method that enabled learning from the weakly labeled dataset
without assuming the presence of weak labels active throughout the
recording; such a training approach is hereafter referred to as Weak
Label Assumption Training (WLAT). Similar FCN based WLAT
methods were also proposed in [17, 19], but all of these meth-
ods have only been evaluated on small datasets, and their perfor-
mance on large datasets is unknown. In this paper, we study the
performance of FCN on the largest publicly available dataset —
Audioset [20].

In addition to the FCN-based approach, an alternative WLAT
method is proposed that combines CNN and an attention layer (CN-
Natt). The attention layer enables the CNNatt to automatically learn
to attend to relevant time segments of the audio during inference.
Thus, in the current task, given a weak label, an attention layer can
identify the relevant time segments in the audio where the weak la-
bel is active, and consequently provide strong labels.

To summarize, we study the performance of FCN for the task
of joint SEC and SED from a large weakly labeled dataset, and fur-
ther propose a novel CNNatt for the same task. The contributions
of this paper are as follows. We present, for the first time since the
benchmark work in [14], a study using the complete Audioset. Un-
like [14], which used SLAT, the two methods in this paper, FCN and
CNNatt, use WLAT to jointly perform SEC and SED. Finally, since
Audioset provides just the weak labels, we only present the quanti-
tative results for the SEC performance and compare them with the
recently published baselines [14, 21, 22]. The SED performance is
evaluated subjectively by visualizing the outputs and manual listen-
ing inspection.

2. METHOD

The input for the two methods — FCN and CNNatt — is a single
channel audio recording. A feature extraction block produces F -
band log mel-band energies for each of the T frames of input audio.
The feature sequence of dimension T×F for each recording is then
mapped to the C classes (SEC) as a multi-class multi-label classifi-
cation task. Additionally, as an intermediate output, both studied
methods generate frame-wise results for the C classes (SED) of
dimension TN × C. The time-dimensionality of the SED output
TN is smaller than the input T as a result of multiple max pool-
ing operations. During training, only the audio recording and its
respective weak label(s) — one-hot encoded — are used. During
inference, given an input audio, both methods produce two outputs

https://doi.org/10.33682/fx8n-cm43
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Figure 1: The Fully Convolutional Network (FCN) and Convolu-
tional Neural Network with attention layer (CNNatt) methods for
joint learning of SEC and SED from weakly labeled dataset.

in sequence: first, the strong labels (SED), followed by the weak
labels (SEC). These outputs are the respective class probabilities in
the continuous range of [0, 1]. A value closer to one signifies that
the sound class is active, and closer to zero signifies that it is absent.
The details of the feature extraction and the two methods studied are
presented below.

2.1. Feature Extraction
The log mel-band energy features are extracted for each frame of
1024 samples with 50% overlap using a 1024-point fast Fourier
transform. A total of 40 bands are extracted in the frequency range
of 0-8000 Hz from an audio recording sampled at 16 kHz. For a
10 s audio input, the feature extraction step produces a sequence of
T = 320 frames and F = 40 features.

2.2. Neural Network
2.2.1. Fully Convolutional Network (FCN)

Figure 1 presents the overall structure of the FCN. The input is a
T × F dimension sequence of the extracted features. The initial
layers of the network consist of 2D convolutional layers that learn
local shift-invariant features. Each of the convolutional layers has
filters with a 3 × 3 receptive field, with the output dimension kept
the same as the input dimension using zero padding. Batch nor-
malization [23] is performed on this output, followed by a Recti-
fied Linear Unit (ReLU) activation and a dropout layer [24]. The
audio features dimensionality is reduced by performing max pool-
ing after every second convolutional layer, such that the temporal-
and feature-dimensionality in the final convolutional layer N with
CN filters is reduced to TN and FN , respectively. In the reduced
dimensionality, each frame in TN represents one second of input
audio and FN = 1. These multi-layered convolutional layers are,
hereafter, referred to together as the CNN block, and its output ot

is an embedding of dimension CN × TN , as seen in Figure 1.
The embedding from the CNN block is fed to a single 2D con-

volutional layer with C filters (equal to the number of classes in
the dataset), a receptive field of dimension 1 × 1 and sigmoid ac-
tivation to support multi-class multi-label classification. Given the

CNN block embedding of dimension CN × TN , the newly added
layer produces SED results of dimension TN ×C. Further, the SEC
results are obtained from the SED results by performing a global
average pooling across TN . The FCN was tuned as described in
Section 3.4.

2.2.2. Convolutional Neural Network with attention layer (CN-
Natt)

The overall structure of the CNNatt is shown in Figure 1. Given a
feature sequence of T × F dimension, a CNN block similar to the
FCN generates output ot of dimension CN × TN . This is fed to an
attention layer identical to that described in [21, 22]. The attention
layer performs the following operation on it:

at = cls(ot)� (atn(ot)/

T∑

t=0

atn(ot)), (1)

where � signifies element-wise multiplication. The atn() function
guides the network to be attentive to certain time frames, while the
cls() function performs the classification for each input time frame
t. The atn() and cls() functions are implemented as 2D convolu-
tional layers with C filters each and a receptive field of dimension
1× 1. The atn() function employs a softmax activation, while the
cls() function is implemented with a sigmoid activation. The out-
put of the attention layer at produces the frame-wise SED results
of dimension TN × C. Further, the SEC results are obtained from
at by adding the activations across TN and feeding them to a fully
connected dense layer with C units and sigmoid activation. The
CNNatt was tuned as described in Section 3.4.

The proposed implementation of the two methods enables them
to operate on input audio of variable length, but with a minimum
length criterion arising from the multiple max pooling operations
employed. Both methods were trained for 100 epochs using binary
cross entropy loss calculated between the predicted SEC output and
the weak labels in the reference annotation of the dataset. As the
optimizer, we employ Adam [25], a first-order adaptive variant of
stochastic gradient descent, with the parameters introduced in [25],
α = 0.001, β1 = 0.9, and β2 = 0.999. Early stopping was used
during training to avoid overfitting. The training was stopped if
the mean Average Precision (mAP) score (see Section 3.2) did not
improve for 25 epochs. The methods were implemented using Py-
Torch and trained in data parallel mode over eight GPUs.

3. EVALUATION3.1. Dataset
We used the complete dataset, Audioset [20], in this paper. The
dataset provides a pre-defined development and evaluation split. At
the time of this study, only about 94% of the YouTube videos of
Audioset were active. The audio recordings for these videos were
pre-processed to have a sampling rate of 16 kHz, and a single chan-
nel. Although the two methods are invariant to the length of the
input audio, the Audioset recordings used are of a constant length
of ten seconds. The complete Audioset has C = 527 classes with a
highly imbalanced distribution (see [20] for more details).

3.2. Metrics
The mean Average Precision (mAP) metric is used to evaluate the
performance of our methods for SEC, due to class imbalance, simi-
lar to that in prior studies on Audioset [20–22]. The mAP is defined
as the mean of the area under the precision-recall curve across the
C classes,

mAP =
1

C

C∑

i=1

M∑

m=1

Pm,i(Rm,i −Rm−1,i), (2)
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Figure 2: The mAP scores obtained with respect to different number
of convolutional layers of FCN and CNNatt.

where Pm,i and Rm,i are the precision and recall values of class i
at M different threshold values.

Finally, since the strong labels of Audioset are unavailable, we
only visualize and manually inspect the SED performance.

3.3. Baseline Methods
We compare the performance of the two methods with four baseline
methods [14, 21, 22]. Note that the dense method in [14] is the only
method that was trained using the complete Audioset dataset; the
other three baseline methods [14, 21, 22] study the performance
on the Audioset embeddings obtained using a network trained on a
dataset larger than Audioset.

The first method proposed in [14] uses log mel-band energy
features similar to those used in this paper. A 64-band feature is
mapped to 527 classes of Audioset using a multi-layered fully con-
nected dense network with SLAT.

Among the methods using Audioset embeddings, the embed-
dings used in the second method proposed in [14] are different from
the ones used in [21] and [22]. The embeddings in [14] were ob-
tained using a ResNet-50 network and SLAT on a much larger YT-
100M dataset (20× larger than Audioset — not available publicly).
This network was then used as a feature extractor to generate em-
beddings from each of the Audioset recordings, hereafter referred
to as ResNet embeddings. Finally, the benchmark scores on the
ResNet embeddings were obtained using a multi-layered fully con-
nected dense network similar to the one described above.

In comparison, the two recent methods — single attention [21]
and multiple attention [22] — use embeddings that were generated
using a VGGish network instead of a ResNet-50 and SLAT on a
YT-8M dataset instead of a YT-100M dataset. This is referred to
as VGGish embeddings hereafter and is publicly available. Unlike
YT-100M, the YT-8M dataset is publicly available, but the exact
splits used to learn the VGGish embeddings described above are
unknown. The single attention method [21] uses multiple layers of
a fully connected dense network, followed by an attention layer as
the classification layer, whereas the multiple attention method [22]
uses multiple attention layers located between fully connected lay-
ers, and concatenates the output of these attention layers to perform
the final classification.

3.4. Experiments
Hyper-parameter tuning of both methods is performed to identify
the best configuration for Audioset. Since the attention and dense
layers of CNNatt and the final classification convolutional layer of
FCN are dependent on the output number of classes, the only tun-
able part is the CNN block. In order to restrict the number of pos-
sible options to tune, we made sure that the number of filters in a
convolutional layer doubles after every two layers. For example,
C2 = 2C1 in Figure 1. The number of layers in the CNN block was
tuned randomly [26] in the range of five to twenty with the number
of filters in the first layer varying in the set ∈ {16, 32, 64}. In order
to study the effect of regularization, the dropout layer was tuned in
the set ∈ {0, 0.15, 0.3, 0.5, 0.75}.

Table 1: The mAP scores on Audioset with different methods
Methods on Audioset recordings mAP
Random chance 0.005
Dense [14] 0.137
FCN 0.324
CNNatt 0.330

Method on Audioset ResNet embeddings*+

Dense [14] 0.314

Method on Audioset VGGish embeddings*#

Single attention [21] 0.327
Multiple attention [22] 0.360

*Embeddings from network trained on dataset larger than Audioset.
+The YT-100M dataset used to train the ResNet is not publicly available.

#The YT-8M dataset used to train the embeddings network is publicly
available, but the exact splits used to produce the embeddings are unknown.

The SEC performance is evaluated on the evaluation split of
Audioset and compared with the existing baselines using Audioset
recordings [14] and embeddings [14, 21, 22].

Finally, since the Audioset dataset lacks strong labels, we only
perform a subjective analysis of SED through manually listening
and visualizing the SED output of the two methods on a subset of
Audioset examples.

4. RESULTS AND DISCUSSION

The best configuration for the FCN that obtained the highest mAP
score had 16 convolutional layers including the (last) classifica-
tion convolutional layer, with the first layer having 16 filters. The
best CNNatt configuration had 12 convolutional layers in the CNN
block, starting with 16 filters in the first layer, and followed by an
attention and dense layer. Further, using zero dropout gave the best
results for both methods. In terms of the number of parameters,
the CNNatt uses only about 20% of the 25M parameters in FCN.
The performance for other configurations of FCN and CNNatt when
the first convolutional layer had 16 filters is visualized in Figure 2.
Here, it can be observed that the CNNatt achieves better mAP scores
than FCN with just 10 convolutional layers.

A classifier generating random results on Audioset obtains a
mAP score of 0.005, as seen in Table 1. In comparison, the base-
line dense method [14] trained on Audioset recordings obtained a
mAP score of 0.137. This is a 27× improvement over the random
results generating classifier. The FCN improved 2.36× over the
dense method [14] and obtained a mAP score of 0.324. In fact,
this score is higher than the dense method using ResNet embed-
dings [14], which obtained a mAP score of 0.314. This suggests
that the FCN with WLAT outlearns the ResNet-50 with SLAT on a
much larger YT-100M dataset.

The second method, CNNatt, obtained a best mAP score of
0.330. This is a significant result considering that the CNNatt learns
to perform SEC better than FCN using only 20% of FCN’s param-
eters. In fact, CNNatt performs better than the single attention
method [21] trained using VGGish embeddings obtained from a
VGG network and SLAT on a dataset larger than Audioset. This
makes CNNatt the state-of-the-art for SEC using the complete Au-
dioset recordings. The class-wise average precision score obtained
with CNNatt on the evaluation split, and the corresponding num-
ber of examples in the development split is visualized in Figure 3.
Among the top 30 frequent classes in Fig 3a we observe that the
CNNatt performs better on sound event classes (E.g. Speech, Mu-
sic, Car, Guitar, and Dog), and poorly on sound scene classes such
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Figure 3: Visualization of the class-wise number of training exam-
ples and the corresponding average precision (AP) scores obtained
with the CNNatt.

as Small room, Large room, Rural, and Urban classes.
The SED results obtained with the FCN for recordings in the

evaluation split of Audioset are visualized in Figures 4a, 4b, 4c, and
4d. For example, in Figure 4a according to the reference annota-
tion, the recording contains the classes: speech and heart murmur.
From the spectrogram, we can distinguish a heartbeat-like repetitive
structure in the first 2.5 s, and speech beyond 2.5 s. Similar tempo-
ral activity is observed in the overlaid class magnitude plot, which
shows the SED output from the FCN. To simplify the visualization,
we only show the classes whose SED output magnitude is greater
than 0.5 throughout the recording. In addition to the heart mur-
mur class, the FCN also recognized the first 2.5 s as heart sounds
and throbbing, which are classes that sound similar to a heart mur-
mur. Similarly, in Figure 4b, among the reference classes, the FCN
detected the speech and music classes successfully, but missed the
bang class (occurs from 1.5 s to 2.1 s) that was part of the music. In
Figure 4c, the FCN detected the reference speech and music classes
correctly, but missed the oink class (occurs from 6.3 s to 8.2 s), and
successfully detected the burping class (first 3 s) that was missing
in the reference annotation. Finally, in Figure 4d, the FCN missed
the sniff sound class but successfully detected the chewing class that
was missing in the reference annotation. Additionally, the FCN also
over-predicted the speech class beyond 4 s.

In general, although the FCN missed detection of few short du-
ration and low prior sound classes, we observe from the SED Fig-
ures 4a, 4b, 4c, and 4d a good recall of most of these low prior
(10−5) sound classes such as chewing, burping, heart sounds, and
murmur. Another observation from these figures is that the onset
and offset of the sound events are not of high precision. We believe
that this is a result of both the dimensionality reduction (max pool-
ing) operation within both methods and the limitation of learning
strong labels from a weakly labeled dataset. Similar SED results
were observed in all the recordings studied. Further, the SED per-
formance of the CNNatt was comparable to that of the FCN with
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Figure 4: Visualization of SED results from FCN, and the input
features for selected recordings from Audioset evaluation split.

no characteristic difference. This suggests that given only the weak
labels, the proposed methods can estimate their temporal activities
with good confidence.

5. CONCLUSION

In this paper, we studied two methods that perform joint SEC and
SED using weakly labeled data, and evaluated the methods on the
largest weakly labeled dataset — Audioset. The first method was
based on a Fully Convolutional Network (FCN) and obtained a
mean Average Precision (mAP) score of 0.324. The second novel
method comprised multiple convolutional layers followed by an at-
tention layer. This method was seen to perform better than the FCN
with only 20% of the 25 M parameters in the FCN, and obtained
a state-of-the-art mAP score of 0.330. In comparison to the base-
line method trained on Audioset recordings, which was the previ-
ous state-of-the-art, the two methods improve the mAP score by at
least a factor of 2.36. In fact, the two methods performed better
than methods trained on Audioset embeddings that were obtained
from learning on datasets larger than Audioset. This improvement
in performance is a result of using a more powerful classifier and not
assuming that the weak labels are active throughout the recording
during training.
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