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ABSTRACT

Label noise refers to the presence of inaccurate target labels in a
dataset. It is an impediment to the performance of a deep neural net-
work (DNN) as the network tends to overfit to the label noise, hence
it becomes imperative to devise a generic methodology to counter
the effects of label noise. FSDnoisy18k is an audio dataset collected
with the aim of encouraging research on label noise for sound event
classification. The dataset contains∼42.5 hours of audio recordings
divided across 20 classes, with a small amount of manually verified
labels and a large amount of noisy data. Using this dataset, our work
intends to explore the potential of modelling the label noise distri-
bution by adding a linear layer on top of a baseline network. The
accuracy of the approach is compared to an alternative approach of
adopting a noise robust loss function. Results show that modelling
the noise distribution improves the accuracy of the baseline network
in a similar capacity to the soft bootstrapping loss.

Index Terms— Audio tagging, noisy labels, noise adaptation
layer, noise robust loss function.

1. INTRODUCTION

Audio tagging refers to the classification task which involves pre-
dicting the presence of one or more acoustic events in a particu-
lar audio recording. Humans are able to perform this task effort-
lessly, however modelling this cognitive process through computa-
tional methods is non-trivial [1] and is an active research area which
has received increased attention in recent years. The majority of
current approaches to the problem involve supervised training of a
deep neural network (DNN) on the labels associated with each au-
dio recording [2],[3]. The basic assumption that comes along with
these approaches is that the label provided with the audio recording
is correct, i.e. the presence of the acoustic event associated with
the label corresponding to the audio recording has been manually
verified. This assumption does not always hold true as manual ver-
ification of data labels is a costly affair, effectively limiting the size
of the data sets.

As described in [4], a large amount of audio data accumulation
comes at the cost of imprecise labels, especially in cases such where
labels have been inferred based on user provided metadata, i.e. tags.
As the labels are noisy, there is a high probability of misleading
information, which in turn subverts the training of a DNN. Recent
studies [5], [6] have shown that the generalization capability of a
DNN reduces on datasets with noisy labels, i.e. the model overfits
the training data.

In this paper, we explore the FSDnoisy18k dataset [4] for sound
event classification, which contains a small subset (10%) of accu-
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rately labelled data and a large subset (90%) consisting of data sam-
ples with noisy labels. We use a linear noise distribution modelling
layer approach and compare its performance on the test set with that
of the baseline model and also with the soft bootstrapping loss func-
tion approach [7]. Both approaches have been implemented for the
problem of noisy labels in computer vision [6], [7], however to the
authors’ knowledge, experiments on audio data with a linear noise
modelling layer is yet to be explored. We adopt the MobilenetV2 ar-
chitecture as our baseline model without any pretrained weights and
train the network on the training set of FSDnoisy18k. The model
weights with the least categorical cross entropy loss (CCE) on the
validation set are selected and a dense layer with softmax activation
is placed on top of the network and re-trained on the training set.
The purpose of the re-training is to learn the weight parameters of
the noise modelling layer. The noise modelling layer is removed
during prediction on the test set. We observed that the noise mod-
elling layer approach improves the accuracy of the baseline net-
work on test set by approximately 2% and the soft bootstrapping
loss function approach improves the accuracy score of the baseline
network by approximately 1.5%.

The paper is organized as follows. Section 2 introduces related
work, Section 3 discusses the characteristics of the dataset used in
this paper, Section 4 discusses the type of label noise present in the
dataset, Section 5 details the MobilenetV2 architecture, Section 6
discusses the two approaches to the problem, Section 7 covers the
experimental setup and the evaluation metrics adopted for the paper,
Section 8 discusses the results, and Section 9 concludes the paper
and discusses future work.

2. RELATED WORK

Various approaches have been proposed to deal with the problem of
noisy labels in the computer vision domain. One line of approach
involves modelling the distribution of noisy and true labels using
DNNs [6], [8]. The noise model is used to infer the true labels from
the noisy labels. These methods explicitly require a small subset of
the data with trustworthy labels. The true label is considered to be
a latent random variable and the noise processes is modelled by a
linear layer with unknown parameters. Reasoning for using a linear
layer is explained in section 6. The expectation-maximization (EM)
algorithm [9] is applied to find the parameters of both the linear
layer and the neural network to find the correct labels.

A different line of approach involves the soft bootstrapping loss
function [7], where the target label is dynamically updated to a con-
vex combination of the original noisy label and the label predicted
by the model at that point in time. The updated target label is used
for calculating the CCE loss against the predicted label. The un-
derlying concept behind the custom loss function is that label noise
causes high deviation between the label predicted by the model and
the observed label, due to which the loss is artificially inflated and
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to reduce this loss component, the model memorizes the noisy label,
hence to rectify this situation, current model prediction is added as
a consistency objective to the observed label and as learning pro-
gresses during training, the predictions of the network tend to be-
come more reliable, negating the effect of label noise to an extent.
The soft and hard bootstrapping methods have been evaluated in [4]
using audio data and have shown to improve the accuracy of the
network. To the authors’ knowledge, [4] is the only work in the au-
dio domain with a soft bootstrapping loss function implemented for
noise robustness.

3. DATASET

The FSDnoisy18k dataset [4] consists of audio recordings un-
equally distributed across 20 acoustic event classes: Acoustic guitar,
Bass guitar, Clapping, Coin-dropping, Crash cymbal, Dishes pots
and pans, Engine, Fart, Fire, Fireworks, Footsteps, Glass, Hi-hat,
Piano, Rain, Slam, Squeak, Tearing, Walk, Wind, and Writing.

Audio recordings are of varying lengths, ranging from 30ms
to 300ms and can be broadly divided into two categories of labels -
noisy and clean. The proportion of noisy/clean labels in terms of the
number of audio recordings is 90%/10% and in terms of duration,
the proportion is 94%/6%.

The training set consists of 17,585 clips whereas the test set
comprises 947 clips. The test set has been formed entirely from
the clean label dataset, with the remaining data forming the training
set. The number of clips per class ranges from 51 to 170 in the clean
subset and 250 to 1000 in the noisy subset. The dataset contains a
single label per audio recording.

4. LABEL NOISE

Label noise can either be synthetically injected into the dataset [7]
or can already be present in the dataset (real world noise). FS-
Dnoisy18k [4] contains real world label noise since the class la-
bel have been annotated based on the associated user tags from
freesound [10]. Before elucidating the label noise types, it is impor-
tant to discuss the data collection and annotation process adopted
for the dataset. First a number of freesound user-generated tags
were mapped to classes based on Audio set ontology definition
[11], post which, for each class, audio clips were selected from
freesound, tagged with at least one of the selected user tags. This
process generated a number of potential annotations, each of which
indicated the presence of a particular class in the given audio record-
ing. The potential annotations were verified via a validation task
hosted on FSD online platform [10], where users were required to
validate the presence or absence of each of the potential annotations
by choosing one of the following options [10]:

1. Present & Predominant (PP) - The sound event is clearly
present and predominant.

2. Present but not predominant (PNP) - The sound event is
present, but the audio recording also contains other types of
sound events and/or background noise.

3. Not Present (NP) - The sound event is not present in the au-
dio recording.

4. Unsure (U) - Note sure if the sound event is present or not.

The audio recordings with annotations rated as PP by a majority
of users were included in the training set with curated labels and the
test set. The remaining audio clips are included in the training set

with noisy labels. The label noise types found in the dataset can be
characterized into the following categories:

1. Incorrect/out of vocabulary (OOV) - The accurate label de-
scribing the sound event does not correspond to any of the
Audio set [11] classes.

2. Incomplete/OOV - Some audio clips contain acoustic events
in addition to their accurate labels, however only one sound
event is mentioned in the label since the other sound events
do not belong to any of the Audio set [11] classes.

3. Incorrect/In vocabulary (IV) - This type of noise consists of
classes which are closely related to each other, (e.g. ”wind”
and ”rain” ) and have been interchanged.

4. Incomplete/In vocabulary (IV) - Two sound events are co-
occurring on the audio recording, despite only a single label
reported.

5. Ambiguous labels - It is not clear whether the label is correct
or not.

The distribution of label noise types in random 15% of per class
data in the dataset is shown in Table1. The analysis of noisy labelled
training dataset revealed that approximately 60% of the labels con-
tain one or multiple types of label noise and 40% of the labels are
correct [4]. As can be seen from Table1, OOV noise constitutes a
major portion of the label noise across different classes, either in
form of incorrect labels or incomplete labels.

5. BASELINE MODEL

MobilenetV2 [12] is selected as the baseline model. It builds upon
the MobilenetV1 [13] architecture which uses depth wise separable
convolution layers as the building block. MobilenetV1 consists of
a single convolutional layer followed by 13 separable convolution
layers. An average pooling layer follows the last separable convolu-
tion layer. In separable convolution, the kernel step is divided into
depthwise and pointwise convolution operations. A depthwise con-
volution acts on each channel independently, post which a pointwise
convolution acts across all the channels. This factoring reduces the
weights of each layer, making the model compact without loss of
accuracy. The MobilenetV2 architecture has two new features on
top of its predecessor:

1. Linear bottleneck between layers,
2. Residual connection between the bottlenecks.

A pointwise convolution operation in a separable convolution layer
leads to an increase in the number of channels. A linear bottleneck
layer does the exact opposite. It reduces the amount of data flowing
through the network. The residual connection between the linear
bottlenecks work in the same manner as Residual Nets [14], where
the skip connection serves to assist the flow of gradients through
the network. MobilenetV1 was used as the baseline network for the
DCASE 2019 Challenge Task 2 [15], a multi label audio tagging
task with a large amount of noisy labelled training data and a small
amount of manually curated training data. The test data was free of
label noise. The source of the manually curated training dataset and
test data was the Freesound dataset [10]. This inspired us to explore
the MobilenetV2 architecture for our experiments.

6. METHODS

We explore the approaches proposed in [6] and [4] for our experi-
ments on audio tagging with noisy labels.
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Table 1: The table has been adopted from [4] and depicts the
distribution of label noise types in a random 15% of the noisy data
of FSDnoisy18k. The most predominant noise type is Incorrect
OOV which refers to the noise type where user tags were not
mapping to any existing class.

Label noise type Amount
Incorrect/OOV 38%
Incomplete/OOV 10%
Incorrect/IV 6%
Incomplete/IV 5%

Ambiguous labels 1%

6.1. Noise modelling with linear layer

This approach intends to find the latent clean label from the noisy
labels [6]. A linear noise modelling layer is added on top of the
softmax layer. The parameters of the noise layer are denoted by:

θ(i, j) = p(z = j|y = i). (1)

z is the observed noisy label and y is the latent clean label. i and
j belong to the class set {1, 2....k}. This parameter representation
denotes the probability of observing a noisy label z = j given the
latent true label y = i. The equation assumes that the noise gen-
eration is independent of the input vector and only depends upon
the latent clean labels. This is a simple version of the noise adap-
tion layer and can be implemented using a dense layer with softmax
activation.

For the complex version of the noise adaptation layer, given the
input vector x, network parameters w, noisy label z, noise distribu-
tion parameter θ defined in equation (1) and number of classes n,
the probability of observing noisy label z given the feature vector x
can be denoted by the equation:

p(z = j|x;w, θ) =
n∑

k=1

p(z = j|y = i; θ)p(y = i|x;w) (2)

The block diagram of the noise adaptation layer approach is shown
in Fig. 1. h in the figure denotes the non linear function h = h(x)
applied on the input x. wnoise refers to the weights of the noise
modelling layer. For our model, which is identical to the simple
model proposed in [6], the weights are initialized from the predic-
tion output of the baseline model on the training set and are learnt
along with the weights of the neural network (w) during the training
phase. The linear noise modelling layer is not used during the test
phase.

The experimental procedure is as follows: First, the baseline
network (MobilenetV2) is trained on the training set containing
both noisy and clean labels. The weights of the model are learnt
from scratch during the training phase. The prediction output of the
baseline network on the training set is used to initialize the weights
of the noise modelling layer which is basically a dense layer with
softmax activation. The noise modelling layer is added on top of
the baseline network and retrained on the training set to learn the
weights of the noisy channel.

The noise modelling layer is removed during prediction on the
test set, the reason being that we want to see how the transformed
baseline network performs on the test set as compared to the original
baseline architecture.

Figure 1: The figure has been adapted from [6]. It is an illustration
of the architecture for the training phase (above) and the test phase
(below).

6.2. Soft bootstrapping loss

The soft bootstrapping loss was originally introduced in [7] and has
been implemented in the audio domain in [4]. The loss function
dynamically updates the target labels based on the models’ current
output. The idea is to pay less attention to the noisy labels, in favour
of the model predictions, which are more reliable as the learning
progresses. This approach can be expressed by:

Lsoft = −
n∑

k=1

[βyk + (1− β)ŷk] log(ŷk), β ∈ [0, 1] (3)

ŷk is the k’th element of the network predictions (the predicted
class probabilities), and n is the number of classes. The parame-
ter β is used to assign the weightage of each component in the total
loss. The updated target label is a convex combination of the current
model’s prediction and the (potentially noisy) target label.

7. EXPERIMENTAL SETUP AND METRICS

In this section we discuss the experimental setup and the evaluation
metrics adopted for the paper.

7.1. Experimental Setup

Given the nature of the dataset with noisy labels, we are interested
in exploring how well the baseline and baseline & linear noise mod-
elling layer would perform on the dataset. The incoming audio is
transformed to a 128 band log-mel spectogram using a window size
of 1764 (44100(sampling rate) x 0.04(40 ms for a frame)), samples
and a hop length of 882 (44100 *0.02(20 ms for overlap)) samples.
Since each audio recording is of different length, the duration of
each recording is fixed to 2s. The longer recordings were clipped
whereas the shorter ones were replicated to obtain a uniform length
across the dataset. Both the training set and the test set are scaled
using the mean and standard deviation of the training set, post which
the class distribution is balanced by oversampling the classes with
less samples using the oversampling function from the imblearn li-
brary [16].

Data augmentation is also applied as a part of preprocessing.
We use mix up data augmentation [17] where new samples are cre-
ated through a weighted linear interpolation of two existing sam-
ples. (xi, yi) and (xj , yj) are two samples randomly selected
from the training set and a convex combination using the param-
eter λ ∈ [0, 1] which decides the mixing proportions. A new pair of
samples (xk, yk) is formed using the equations:

xk = λxi + (1− λ)xj (4)
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yk = λyi + (1− λ)yj (5)

The training data is split into training and validation sets with
the entire manually verified data used as validation set. The cross
entropy loss is used in all experiments except one, where the soft
bootstrapping loss is used. An initial learning rate of 0.001 and
batch size of 64 samples is used. Each model is trained for 250
Epochs.

The following experimental scenarios are evaluated:

1. Using the baseline network without data augmentation.

2. Using the baseline network with data augmentation.

3. Using the best model from step 2 and adding a dense layer
with softmax activation on top of the network. The new net-
work is retrained on the training data with the same setup
for training and validation. The weights of the linear layer
are initialized using the prediction output from the baseline
network. This is in line with the simple model proposed in
[6].

4. Training the baseline network from scratch using the soft
bootstrapping loss.

7.2. Evaluation Metrics

Classification accuracy was used as the evaluation metric for all the
experiments and the results for training, validation and test accuracy
have been reported in the results section.

8. RESULTS

Table 2 presents the results of all the experimental approaches men-
tioned in Section 7.1. Adding a linear noise modelling layer in-
creases the accuracy of the baseline network by approximately 2%.
The soft bootstrapping loss function approach also improves the ac-
curacy of the baseline model by approximately 1.5%, indicating that
both the approaches are to an extent, helpful in dealing with label
noise.

Table 2: Results
Approach Test Accuracy
Baseline w/o data augmentation 0.649
Baseline with data augmentation 0.667
Baseline with linear noise layer 0.686
Baseline with soft bootstrapping loss 0.6825

As can be seen from Fig. 2, the noise modelling approach
improves the performance of the baseline network in certain
classes such as Coin dropping, Dishes and pots and pans,Crash
cymbal,Wind,fireworks,Hi-hat and Writing, however the accuracy
either decreased or was equivalent to the baseline accuracy for
Walk or footsteps,Rain,Engine,Glass,Fire,Fart and Tearing. From
analysing the FSDnoisy18k [4], it can be inferred that the noise
modelling layer improved accuracy in certain classes with signifi-
cant amount of noisy labels, such as clapping (68% noisy labels),
coin dropping (71% noisy labels), crash cymbal (86% noisy la-
bels) and wind (75% noisy labels), however this is not the case
with all the classes with high label noise. For some labels such
as piano (60% noisy labels), Engine (68% noisy labels), Fire (89%
noisy labels), the accuracy score of the noise modelling layer ei-
ther dropped or stayed constant as compared to the baseline model.

Figure 2: Classwise accuracy score for baseline model(blue) and
noise modelling layer (green) is shown. Both graphs have been
merged for the purpose of comparison. For all the classes with only
blue bars, the accuracy achieved by the noise modelling layer is
either equivalent or less than the baseline model and the green bar
is a visual indication of the classes where the noise modelling layer
was able to improve the accuracy of the baseline model.

This inconsistency in performance improvement indicates towards
the hypothesis that the noise modelling approach might only be ef-
fective against certain label noise types and not so much against
other types. We intend to explore this hypothesis in a more detailed
manner in the future.

9. FUTURE WORK & CONCLUSION

In this work, we experimented with an intuitive approach to model
the noise distribution of dataset labels and compared it with a noise
robust loss function approach. The accuracy increase over the base-
line model is encouraging, however we believe that a higher accu-
racy can be obtained by further tuning of the network and imple-
menting the complex model from [6]. Although the accuracy of the
system is lower than the one reported in [4], we consider this our
first step in exploration of modelling label noise distribution and
hope to achieve better results in the future.

From a future work perspective, we intend to understand as to
why the noise modelling layer only can rectify certain kinds of la-
bel noise and fails to do so on other kinds of noise, post which
we intend to implement the complex model from [6] to evaluate its
performance against the baseline model, baseline with simple noise
modelling layer and the soft bootstrapping loss model. Our future
road map also includes implementing the approach on a multi-label
noisy audio dataset and evaluate the performance of the model from
different evaluation metrics other than accuracy to gain a better un-
derstanding of the underlying concepts.

237



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

10. REFERENCES

[1] M. D. P. T. Virtanen and D. Ellis, Computational Analysis of
Sound Scenes and Events. Springer, 2018.

[2] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous,
B. Seybold, M. Slaney, R. J. Weiss, and K. W. Wilson, “CNN
architectures for large-scale audio classification,” in Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017.

[3] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory,
J. Pons, and X. Serra, “General-purpose tagging of freesound
audio with audioset labels: Task description, dataset, and
baseline,” in Proceedings of the Detection and Classification
of Acoustic Scenes and Events 2018 Workshop (DCASE2018),
2018.

[4] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, and
X. Serra, “Learning sound event classifiers from web audio
with noisy labels,” in Proceedings of ICASSP 2019, 2019.

[5] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio,
M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Ben-
gio, and S. Lacoste-Julien, “A closer look at memorization in
deep networks,” in Proceedings of the 34th International Con-
ference on Machine Learning, 2017.

[6] J. Goldberger and E. Ben-Reuven, “Training deep neural-
networks using a noise adaptation layer,” in ICLR, 2017.

[7] S. E. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and
A. Rabinovich, “Training deep neural networks on noisy la-
bels with bootstrapping,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Workshop Track Proceedings, 2015.

[8] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. J.
Belongie, “Learning from noisy large-scale datasets with min-
imal supervision,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 839–847.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,” Jour-
nal of the royal statistical society, series B, 1977.

[10] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Fer-
raro, S. Oramas, A. Porter, and X. Serra, “Freesound datasets:
a platform for the creation of open audio datasets,” in Proceed-
ings of the 18th International Society for Music Information
Retrieval Conference (ISMIR 2017), 2017.

[11] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in Proc. IEEE ICASSP 2017, 2017.

[12] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “Inverted residuals and linear bottlenecks: Mobile
networks for classification, detection and segmentation,” in
CVPR, 2018.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets:
Efficient convolutional neural networks for mobile vision
applications,” CoRR, vol. abs/1704.04861, 2017. [Online].
Available: http://arxiv.org/abs/1704.04861

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[15] “DCASE 2019 Task2.” [Online]. Available: http://dcase.
community/challenge2019/task-audio-tagging

[16] “Imbalanced learning.” [Online]. Available: https:
//imbalanced-learn.readthedocs.io/en/stable/api.html

[17] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” in Interna-
tional Conference on Learning Representations, 2018.

238


