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ABSTRACT 

This paper describes our approach to the DCASE 2019 challenge 

Task 2: Audio tagging with noisy labels and minimal supervision. 

This task is a multi-label audio classification with 80 classes. The 

training data is composed of a small amount of reliably labeled 

data (curated data) and a larger amount of data with unreliable 

labels (noisy data). Additionally, there is a difference in data dis-

tribution between curated data and noisy data. To tackle these dif-

ficulties, we propose three strategies. The first is multitask learn-

ing using noisy data. The second is semi-supervised learning us-

ing noisy data and labels that are relabeled using trained models’ 

predictions. The third is an ensemble method that averages mod-

els trained with different time length. By using these methods, our 

solution was ranked in 3rd place on the public leaderboard (LB) 

with a label-weighted label-ranking average precision (lwlrap) 

score of 0.750 and ranked in 4th place on the private LB with a 

lwlrap score of 0.75787. The code of our solution is available at 

https://github.com/OsciiArt/Freesound-Audio-Tagging-2019. 

Index Terms— Audio-Tagging, Noisy Labels, Multitask Learn-

ing, Semi-supervised Learning, Model Ensemble 

1. INTRODUCTION 

An automatic general-purpose audio tagging system can be useful 

for various usages, including sound annotating or video caption-

ing. However, there are no such systems with adequate perfor-

mance because of the difficulty of this task. To build such a sys-

tem using machine learning techniques, an audio dataset with re-

liable labels is required.  However, it is difficult to obtain large-

scale dataset with reliable labels because manual annotation by 

humans is time-consuming. In contrast, it is easy to infer labels 

automatically using metadata of websites like Freesound [1] or 

Flickr [2] that collect audio and metadata from collaborators. 

Nevertheless, automatically inferred labels are inevitable to have 

a certain amount of label noise. 

DCASE 2019 challenge Task 2: Audio tagging with noisy la-

bels and minimal supervision [3] is a multi-label audio classifica-

tion task with 80 classes. The FSDKaggle2019 dataset was pro-

vided for this challenge. The main motivation of this task is to fa-

cilitate research of audio classification leveraging a small amount 

of reliably labeled data (curated data) and a larger amount of data 

with unreliable labels (noisy data) with a large number of catego-

ries. 
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This task has three main challenges. First, this is a multi-label 

classification task, which is more difficult than a single-label clas-

sification task. Second, most of the training data labels are so un-

reliable that the performance of a classification model trained with 

them would be lower than a one trained without them. Third, there 

is a difference in data distribution between curated data and noisy 

data because they come from different sources. Therefore, domain 

adaptation approaches would be required. 

2. OUR PROPOSALS 

2.1. MULTITASK LEARNING 

In this task, the curated data and noisy data are labeled in a differ-

ent manner, therefore treating them as the same one makes the 

model performance worse. To tackle this problem, we used a mul-

titask learning approach [4, 5], in which a model learns multiple 

tasks simultaneously. The aim of multitask learning is to get a 

more generalized model by learning representations shared be-

tween 2 tasks. We treated learning with curated data and noisy 

data as different tasks and performed multitask learning. In our 

proposal, a convolution layer architecture learns the feature rep-

resentations shared between curated and noisy data, and the two 

separated sequences of full-connect (FC) layers learn the differ-

ence between the two data (Fig. 1). In this way, we can get the 

advantages of representation learning from noisy data and avoid 

the disadvantages of noisy label perturbation. We set the loss 

weight ratio of curated and noisy as 1:1. 

2.2. SEMI-SUPERVISED LEARNING 

Because treating the noisy labels the same as the curated labels 

makes the model performance worse, it may be promising to do 

semi-supervised learning [6] (SSL) using the noisy data without 

the noisy labels. However, this task is different from the data that 

SSL is generally applied in two points. The first, there is a differ-

ence in data distribution between labeled data and unlabeled data. 

It is reported that applying SSL to such data makes model perfor-

mance worse [6]. The second, this is a multi-label classification 

task. Most of SSL methods are for single-label classification task. 

We tried Pseudo-Label [7], Mean Teacher [8], and MixMatch [9] 

and all of them were not successful in improving lwlrap score. In 

the original Pseudo-Label, guessed labels are made from predic-

tions of the training model itself, but we made guessed labels from 

trained models because it is a popular approach. 

https://doi.org/10.33682/0avf-bm61
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Therefore, we propose an SSL method that is robust to data 

distribution difference and can handle multi-label data (Fig. 1). For 

each noisy data sample, we guess the label using trained models. 

The guessed label is processed by a sharpening function [9], which 

sharpens the predicted categorical distribution by adjusting the 

“temperature.” We call this soft pseudo label. The basic Pseudo-

Label is a hard label with only one positive label so that it cannot 

apply to multi-label data. In contrast, the soft pseudo label is sharp-

ened label distribution and suits for multi-label data. The soft 

pseudo label is expected to be more robust to data distribution dif-

ference because it is smoother than the hard label. Learning with 

soft pseudo labels is performed in parallel with multitask learning. 

As the temperature of the sharpening function, we tried a value of 

1, 1.5, and 2. A value of 2 was the optimum. The predictions used 

for the guessed labels were obtained from a ResNet model with 

multitask learning (Table 1 #4) using Snapshot Ensembles [10] 

and 5-fold cross validation (CV) averaging with all the folds and 

cycle snapshots of 5-fold CV. We used mean squared error (MSE) 

as a loss function. We set loss weight of SSL as 20. To get the 

benefit of mixup [11] more, we mixed curated data and its label to 

soft pseudo label data with a ratio of 1:1. 

2.3. ENSEMBLE 

To obtain the benefit of ensemble, we prepared models 

trained with various conditions and averaged the categorical dis-

tribution predicted by the models with weighted ratio (model av-

eraging). As the variety of models, we employed 5-fold CV aver-

aging, Snapshot Ensembles [10] and models trained with wave-

form or log mel spectrogram. K-fold CV averaging is averaging 

of predictions of all the models of k-fold CV on the test data. 

Snapshot Ensembles is averaging of predictions of model snap-

shots which is model weights of each cycle's end in model training 

with cyclic cosine learning rate [12]. As an approach specific to 

this competition data, we averaged models trained with different 

cropping length of time, we call this cropping length averaging. 

There is a difference in time length average among classes. There-

fore, models trained with different time length are expected to be-

come experts for different classes, and they give a variety to the 

model ensemble. 

3. METHODOLOGY 

3.1. DATASET 

The FSDKaggle2019 dataset was provided for this challenge [3]. 

This dataset consists of four subsets: curated train data with 4,970 

audio samples, noisy train data with 19,815 samples, public test 

data with 1,120 samples, and private test data with 3,361 samples. 

Each audio sample is labeled with 80 classes, including human 

sounds, domestic sounds, musical instruments, vehicles, and ani-

mals. Curated train data and test data are collected from Freesound 

dataset [1] and labeled manually by humans. Noisy train data is 

collected from Yahoo Flickr Creative Commons 100M dataset 

(YFCC) [2] and labeled using automated heuristics applied to the 

audio content and metadata of the original Flickr clips. All audio 

samples are single-channel waveforms with a sampling rate of 

44.1kHz. In curated data, the duration of the audio samples ranges 

from 0.3 to 30 second, and the number of clips per class is 75, 

Figure 1: Overall architecture of our proposed model. The model 

is trained with three methods concurrently. (1) Basic classification 

(2) Soft pseudo label (3) Multitask learning with noisy label. 

Conv: convolution layer, GMP: global max pooling, FC: full-con-

nect layers, BCE: binary cross-entropy, MSE: mean squared error. 

 

 

except in a few cases. In noisy data, the duration of the audio sam-

ples ranges from 1 to 15 second, and the number of clips per class 

is 300, except in a few cases. 

3.2. PREPROCESSING 

We used both waveform and log mel spectrogram as input data. 

These two data types are expected to compensate for each other. 

3.2.1. Waveform 

We tried a sampling rate of 44.1 kHz (original data) and 22.05 kHz, 

and we found that 44.1 kHz was better. Each input data was regu-

larized into a range of from -1 to +1 by dividing by 32,768, the full 

range of 16-bit audio. 

3.2.2. Log mel spectrogram 

For the log mel spectrogram transformation, we used 128 mel fre-

quency channels. We tried 64 and 256, but model performance 

decreased. We used the short-time Fourier transform hop size of 

347 that makes log mel spectrogram 128 Hz time resolution. Data 

samples of the log mel spectrogram were converted from power 

to dB after all augmentations were applied. After that, each data 

sample was normalized with the mean and standard deviation of 

each single data sample. Therefore, the mean and standard devia-

tion values change every time, and this works as a kind of aug-

mentation. Normalization using the mean and standard deviation 

of all the data decreased model performance. 

3.3. AUGMENTATIONS 

3.3.1. Augmentations for log mel spectrogram 

Mixup/BC learning [11, 13] is an augmentation that mixes two 

pairs of inputs and labels with some ratio. The mixing rate is se-

lected from a Beta distribution. We set a parameter α of the Beta 

distribution to 1.0, which makes the Beta distribution equal to a 

uniform distribution. We applied mixup with a ratio of 0.5. 

SpecAugment [14] is an augmentation method for log mel 

spectrogram consists of three kinds of deformation. The first is 

time warping that deforms time-series in the time direction. The 

other two augmentations are time and frequency masking, 
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modifications of Cutout [15], that masks a block of consecutive 

time steps or mel frequency channels. We applied frequency mask-

ing, and masking width is chosen from 8 to 32 from a uniform 

distribution. Time warping and time masking are not effective in 

this task, and we did not apply them to our models. We applied 

frequency masking with a ratio of 0.5. 

For training, audio samples which have various time lengths 

are converted to a fixed length by random cropping. The sound 

samples which have short length than the cropping length are ex-

tended to the cropping length by zero paddings. We tried 2, 4, and 

8 seconds (256, 512, and 1024 dimensions) as a cropping length 

and 4 seconds scores the best. Averaging models trained with 4-

second cropping and 8-second cropping achieved a better score. 

Expecting more strong augmentation effect, after basic crop-

ping, we shorten data samples in a range of 25 - 100% of the basic 

cropping length by additional cropping and extend to the basic 

cropping length by zero padding. For data samples with a time 

length shorter than the basic cropping length, we shorten data 

samples in a range of 25 - 100% of original length by additional 

cropping and extend to the basic cropping length by zero paddings. 

We applied this additional cropping with a ratio of 0.5. 

As another augmentation, we used gain augmentation with a 

factor randomly selected from a range of 0.80 - 1.20 with a ratio 

of 0.5. We tried scaling augmentation and white noise augmenta-

tion, but model performance decreased. 

3.3.2. Augmentations for waveform 

We applied mixup to waveform input. We used a parameter α of 

1.0 for the Beta distribution as same as the case of log mel spec-

trogram. 

We applied cropping to waveform input. We tried 1.51, 

3.02, and 4.54 seconds (66,650, 133,300, and 200,000 dimen-

sions) as a cropping length, and we found that 4.54 seconds is 

optimal. Averaging models trained with 3.02-second cropping 

and 4.54-second cropping achieved a better score. 

We used scale augmentation with a factor randomly selected 

from a range of 0.8 - 1.25 and gain augmentation with a factor 

randomly selected from a range of 0.501 - 2.00. 

3.4. MODEL ARCHITECTURE 

3.4.1. ResNet 

We selected ResNet [16] as a log mel spectrogram-based model 

because it is a widely-used image classification model and rela-

tively simple. We compared ResNet18, ResNet34 and SE-

ResNeXt50 [17] and ResNet34 performed the best. The number 

of trainable parameters, including the multitask module is 

44,210,576. We applied a global max pooling (GMP) after con-

volutional layers to make a model adaptive to various input length. 

3.4.2. EnvNet 

We selected EnvNet-v2 [13] as a waveform-based model because 

it is state of the art of a waveform-based model. The number of 

trainable parameters, including the multitask module is 4,128,912. 

As same as ResNet, we applied a GMP after convolutional layers 

to allow variable input length. 

3.4.3. Multitask module 

For multitask learning, two separate FC layer sequences follow 

after convolution layers and GMP. The contents of both se-

quences are the same and consist of FC (1024 units) - ReLU - 

dropout [18] (drop rate = 0.2) - FC (1024 units) - ReLU - dropout 

(drop rate = 0.1) - FC (80 units) - sigmoid. Sigmoid is replaced by 

softmax in model E and F of EnvNet (Table 2). 

3.5. TRAINING 

3.5.1. ResNet 

We used Adam [19] for optimization. We used cyclic cosine 

learning rate for learning rate schedule. In each cycle, the learning 

rate is started with 1e-3 and decrease to 1e-6. There are 64 epochs 

per cycle. We used a batch size of 32 or 64. We used binary cross-

entropy (BCE) as a loss function for basic classification and mul-

titask learning with noisy data. We used mean squared error as a 

loss function for the soft pseudo label. The model weights of each 

cycle’s end were saved and used for Snapshot Ensembles. 

3.5.2. EnvNet 

We used stochastic gradient descent (SGD) for optimization. We 

used cyclic cosine learning rate for learning rate schedule. In each 

cycle, the learning rate is started with 1e-1 and decrease to 1e-6. 

There are 80 epochs per cycle. We used binary cross-entropy as a 

loss function for the model using sigmoid and Kullback-Leibler 

divergence for the model using softmax. We used a batch size of 

64 for the model using sigmoid and 16 for the model using soft-

max. 

3.6. POSTPROCESSING AND ENSEMBLE 

Prediction using the full length of audio input scores better than 

prediction using test time augmentation (TTA) with cropped au-

dio input. This may be because essential components for classifi-

cation is concentrated on the beginning part of audio samples. Pre-

diction with cropping of the beginning part scores better than pre-

diction with cropping of the latter part. In order to speed up the 

calculation, audio samples with similar lengths were grouped, and 

the lengths of samples in the same group were adjusted to the 

same length by zero paddings and converted to mini-batches. The 

patience for the difference of length within a group (patience rate) 

was adjusted based on the prediction speed. 

We found that padding augmentation is effective TTA. Padding 

augmentation is an augmentation method that applies zero pad-

dings to both sides of audio samples with various length and av-

erages prediction results. In the training phase, we applied pad-

ding to input data to make the sample size the same. Because there 

is a correlation between time length and class, models are thought 

to learn that there is a correlation between padding length and 

class. We think that padding augmentation reduces this bias and 

gives better predictions. 

 For model averaging, we prepared models trained with var-

ious conditions, as mentioned in section 2.3. In order to reduce 

prediction time, the cycles and padding lengths used for the en-

semble were chosen based on CV (For more details, please refer 
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# condition CV lwlrap 

1 1 × 512, Crop = 512, BS = 64 0.724 

2 1 × 512, Crop = 512, BS = 64, Augs 0.829 

3 8 × 64, Crop = 512, BS = 64, Augs 0.829 

4 8 × 64, Crop = 512, BS = 64, Augs, 

 MTL (model A) 

0.849 

5 7 × 64, Crop = 512, BS = 32, Augs, AC,  

MTL, 5-fold SPL, use #1 weights as  

pretrained weights (model B) 

0.870 

6 7 × 64, Crop = 512, BS = 32, Augs, AC, 

MTL, 1-fold SPL, use #1 weights as  

pretrained weights 

0.858 

7 6 × 64, Crop = 1,024, BS = 64, Augs, 

MTL (model C) 

0.840 

Table 1: Comparison of each learning condition of ResNet34. CV 

lwlrap is calculated based on the best epoch of each fold in 5-fold 

CV. m × x: m cycles of n epochs, Crop: cropping length, BS: batch 

size, Augs: MixUp, frequency masking, and gain augmentation, 

MTL: multitask learning, AC: additional cropping, SPL: soft 

pseudo label. 

 

# condition CV lwlrap 

8 1 × 400, Crop = 133,300, BS = 16, 

Augs, MTL, softmax 

0.809 

9 3 × 80, Crop = 133,300, BS = 64, Augs, 

MTL, sigmoid, use #8 weights as pre-

trained weight (model D) 

0.814 

10 5 × 80, Crop = 133,300, BS = 16, Augs, 

MTL, softmax, use #8 weights as pre-

trained weight (model E) 

0.818 

11 10 × 80, Crop = 200,000, BS = 16, 

Augs, MTL, softmax (model F) 

0.820 

Table 2: Comparison of each learning condition of EnvNet-v2. CV 

lwlrap is calculated based on the best epoch of each fold in 5-fold 

CV except for #8, which is calculated based on the final epoch. 

Augs: MixUp, gain, and scaling augmentation. 
 

 

to our repository). For the final submission, we used the predic-

tions of model A – F with 5-fold averaging, Snapshot Ensembles, 

and padding augmentation. The weights of model averaging are 

model A:B:C:D:E:F = 3:4:3:1:1:1, which is chosen based on CV. 

The total number of predictions is 170 (submission 1). In the sim-

plified version submission, we omitted padding augmentation, 

and the total number of predictions is 95 (submission 2). 

4. RESULT 

Table 1 and 2 show the results of each learning condition. The 

score is lwlrap of 5-fold CV. By multitask learning, the CV lwlrap 

improved from 0.829 to 0.849 (Table 1 #3 and #4) and score on 

the public LB increased + 0.021. By soft pseudo labeling, The CV 

lwlrap improved from 0.849 to 0.870 (Table 1 #4 and #5). On the 

other hand, on the test data (private LB), improvement in score 

was smaller (+0.009). We used predictions of all fold of models 

to generate soft pseudo label so that high CV is maybe because of 

indirect label leak. However, even if we use labels generated by 

only the same fold model, which has no label leak, CV was im-

proved as compared to one without SSL (Table 1 #4 and #6). 

Table 3 shows the results of each model averaging condition. 

# condition CV lwlrap 

1 model A, cycle = 1-8, Pad = 8, 32 0.868 

2 model B, cycle = 1-7, Pad = 8, 32 0.886 

3 model C, cycle = 1-6, Pad = 8, 32 0.862 

4 model D, cycle = 1-3, Pad = 8k, 32k 0.815 

5 model E, cycle = 1-5, Pad = 8k, 32k 0.818 

6 model F, cycle = 5-10, Pad = 8k, 32k 0.820 

7 model A + C 0.876 

8 model A + B + C 0.890 

9 model D + E + F 0.836 

10 submission 1 0.896 

11 submission 2 0.895 

Table 3: Comparison of model averaging. Pad: padding augmen-

tation. 

 

In every condition, we employed 5-fold CV averaging and Snap-

shot Ensembles. By Snapshot Ensembles and padding augmenta-

tion, the CV lwlrap increased +0.039 (Table 1 #4 and Table 3 #1). 

By cropping length averaging, the CV lwlrap increased +0.008 

(Table 3 #1 and #7). By averaging models trained with log mel 

spectrogram and waveform, the CV lwlrap increased +0.008 (Ta-

ble 3 #8 and #10). 

On the public LB, submission 1 was ranked in 3rd place with 

a lwlrap score of 0.750. On the private LB, submission 2 was 

ranked in 4th place with a lwlrap score of 0.75787. 

5. DISCUSSION 

Our proposed methods showed meaningful results in the task, but 

there is room for improvement. First, we used shared convolution 

layers and separated FC layers for multitask learning, but we did 

not evaluate whether this model architecture is optimal. The opti-

mized architecture may get more benefit from multitask learning. 

Second, soft pseudo label failed to achieve reliable CV be-

cause of implicit label leak from soft pseudo label. The procedure 

of soft pseudo label is very similar to model distillation [20], 

which uses averages of trained models’ predictions for training in 

the purpose of transferring knowledge of trained models to a sin-

gle smaller model. Therefore, soft pseudo labels obtained from 

models trained with other CV folds have knowledge of labels of 

out-of-fold, and this can be label leaks. Establishing the way of 

reliable CV would make soft pseudo label more useful. 

Third, we found that model averaging using models trained 

with different time length improves the score. This result suggests 

that training a single model with various time length would be 

successful and contributes to reducing the number of models.  

Fourth, zero padding in training time makes models learn 

that there is a correlation between zero values and classes. Full-

length prediction and padding augmentation can reduce this un-

preferable bias. However, to avoid zero padding and concatenate 

several clones of the sound file instead may be more promising. 

6. CONCLUSION 

This paper describes our approach to the DCASE 2019 challenge 

Task 2, which is a difficult task because of multi-label and noisy 

label. We propose three strategies, multitask learning with noisy 

data, SSL with soft pseudo label and ensemble of cropping length 

averaging. By using these methods, our solution ranked in 4th 

place on the private LB. 
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