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IDPPARCHUS'S COMPUTAnONS OF SOLAR LONGITUDES

ALEXANDER JONES, University of Toronto

The treatment of solar theory in Book III of the Almagest is the cornerstone of
Ptolemy's deduction of the models of the celestial motions. While his analysis of
the motions of the other planets - and even the fixed stars - presupposes the
possibility of computing solar positions, the solar theory can, and indeed must,
be worked out fully from solstice and equinox observations without reference to
any other heavenly body. Ptolemy draws our attention to the dependence of the
rest of his astronomy on the solar theory, and points out that it determines the
logical order of topics that his treatise must follow.' Now by his own admission
all the parameters of Ptolemy's simple eccentric model for the Sun exactly
reproduced parameters proposed by Hipparchus three hundred years earlier. So
did the whole of Hipparchus's solar theory correspond in all major respects to
Ptolemy's, and hold a similar position as the stepping-stone to Hipparchus's
other astronomical researches? Since none of Hipparchus's writings relating to
the solar and lunar theory survives, the answer must be sought in the
fragmentary reports of his works given by later authors, and above all by
Ptolemy himself

Ptolemy proceeds through the solar theory in the following stages. First (in
Almagest III, 1) he determines the length of the tropical year by a comparison of
solstice and equinox observations over long intervals, and shows that the
tropical year is constant; treating this interval by convention as the period of
one revolution of the Sun about the ecliptic, he sets out a table of mean solar
motion in longitude as a function of time (III, 2). Thereupon, he describes the
kind of model (a simple eccentre) that is appropriate for describing the Sun's
anomaly (III, 3--4), and determines longitude of the apsidalline and the ratio of
eccentricity by a trigonometric analysis of the observed lengths of the astrono­
mical seasons in his time. These parameters, Ptolemy points out, are manifestly
constant, since Hipparchus found just the same season lengths three centuries
earlier. On the basis of this now quantified model (see Figure 1), Ptolemy
constructs a table of the Sun's equation of centre as a function of its mean
elongation from the apogee (III, 5-6). The last requirement to complete the
tables (111,7) is the determination of the Sun's mean longitude at an epoch date.
After giving instructions for use of the tables (III, 8), Ptolemy closes the
discussion of solar theory with an analysis and rules for computing the equation
of time, that is, the correction of time intervals between observations to account
for the difference between mean and true solar days (III, 9).

Some of these steps had a clearly attested counterpart in Hipparchus's work,
although they were distributed among several different monographs. In treatises
entitled "On the length of the year" and "On intercalary months and days"
Hipparchus proposed a value for the length of the tropical year of 365H days,
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FIG. I. Ptolemy's and Hipparchus's solar model (r:R = 1:24).

which is exactly the value that Ptolemy adopts.' In another treatise of uncertain
title,' Hipparchus assumed either a simple eccentre model like Ptolemy's, or the
geometrically equivalent simple epicyclic model, and determined its ratio of
eccentricity (approximately 1:24) and the longitude of the apogee (24+° before
the summer solstice) from the observed intervals of 94+ days between vernal
equinox and summer solstice and 92+ days between summer solstice and
autumnal equinox: again these will be Ptolemy's parameters.' Hipparchus was
thus in possession of all the ingredients of a solar theory exactly corresponding
in every particular to Ptolemy's. Did he, therefore, produce equivalent tables
based on this theory? Most historians who have dealt with Hipparchus's solar
theory have assumed SO.5 Yet the positive evidence for such tables consists of no
more than a single allusion by the astrologer Vettius Valens (c. A.D. 170) to solar
tables "of Hipparchus"." From this source we learn that Hipparchus's tables
were supposed to be as accurate as any known to Valens, and that they set the
vernal equinox at Aries 0° (as one would expect for Hipparchus, but contrasting
with the Babylonian norms preferred by Valens).

Even if Vettius Valens had told us more about these solar tables, we would
not be justified in presuming that practical astronomical tables circulating under
Hipparchus's name in the second century of our era had come down from
Hipparchus's pen without considerable adaptation. Nor are we entirely safe in
assuming that any tables that Hipparchus did publish were based on the precise
model and parameters that Ptolemy adopts. It is clear from Ptolemy's discus-
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sion in Almagest III, 1 that Hipparchus's value of 3651 31Jo days for the length of
the tropical year was a result hard won after much uncertainty about whether
the tropical year was even of constant length; and the work "On the displace­
ment of the solsticial and equinoctial points", in which Hipparchus raised these
doubts in connection with his discovery of the precession of the equinoxes, was
written in or after - 127, late in Hipparchus's career.' Moreover, Hipparchus
was able to determine the eccentricity and apsidalline of the solar model only
for his own time, so that he had no firm grounds for assuming that the apsidal
line was tropically fixed. That he did so assume "in his theories of the Sun and
Moon" we must accept from Ptolemy's statement;" but it is also obvious that
Ptolemy is at pains to emphasise the points of agreement between his own
results and Hipparchus's, a motive that might have led him to gloss over
embarrassing inconsistencies in Hipparchus's opinions. And besides, granted
that at some stage of his life Hipparchus was working from the same model as
Ptolemy, he need not have expressed its behaviour in tables of the same
structure: a wide variety offormats was possible, as Ptolemy himself points out,?
and the numerical representation of the solar anomaly, instead of being
computed for a whole range of tabular entries by the correct trigonometric
analysis of the model, might be a simple schematic function 'fitted' to the
theoretical parameters of the model.

This much is certain, that Hipparchus did have a method or methods of
computing solar longitudes, because Ptolemy reports two or three instances
where Hipparchus used calculated solar positions in his works on lunar theory
and precession. Thus in his "On the displacement of the solsticial and
equinoctial points" Hipparchus compared the tropical longitudes of fixed stars
in the early third century and in his own time using observations of lunar
eclipses where the Moon was close to or occulted the stars. 10 Ptolemy describes
Hippar.chus's method (as applied to his own eclipse observations) as follows:

Likewise, in order to carry out the computations for the above [measure­
ments of the longitude of Spica], he adduces the spring equinoxes which he
had accurately observed in those years. This was in order that from the
latter he could find the position of the Sun at the middle of each eclipse,
from these the positions of the Moon, and from the positions of the Moon
those of the stars. I I

As Ptolemy's account shows, Hipparchus computed the Sun's progress from the
equinoctial point during the time elapsed since the observed (or, for his analysis
of Timocharis's observations, extrapolated) date of equinox. Unfortunately,
Ptolemy does not quote Hipparchus's longitudes; Hipparchus may himself have
omitted to report the details of his calculations of the stellar positions, for
Ptolemy has only tentative explanations for the source of the errors in them."

Elsewhere (V, 3 and 5), Ptolemy quotes actual figures for solar longitudes
from an unidentified work of Hipparchus, but there is some doubt whether
these longitudes were predicted or observed. They come from three late
observations (dating from -127 and -126) in which Hipparchus measured the
Moon's elongation from the Sun. 13 Ptolemy does not tell us what kind of
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instrument Hipparchus used for these observations, and the report could be
interpreted as saying either that the Sun was sighted through a diopter preset at
a predicted longitude so that the instrument would be aligned with the ecliptic
for the lunar sighting, or that the instrument was aligned by some other means,
and the Sun's and Moon's longitudes were both observed.v

Finally Ptolemy preserves for us two pairs of intervals of solar longitude
between lunar eclipses that Hipparchus used for his measurements of the lunar
eccentricity or epicycle radius. These are undoubtedly computed, since the
eclipses in question occurred long before Hipparchus lived, and the eclipse
reports gave only the times, not the longitudes. My chief purpose in this article is
to reconstruct the methods by which Hipparchus computed these intervals. The
body of data is small- a mere four numbers - and the inferences that I draw
from them about Hipparchus's procedures may seem both surprising and
unreasonably complicated: for I will argue that Hipparchus computed these
intervals of longitude by two slightly different schemes of describing solar
motion, and that these schemes, although influenced by the parameters of his
solar model, were based in their fundamental structure on the rules for solar
motion in the Babylonian System A lunar theory. Such a reconstruction could
only be regarded as conjecture so long as there remains the possibility ofa simpler
explanation ofHipparchus's figures. The first part ofmy argument will therefore
be to prove that the figures cannot be derived from any kind of tables or rules for
solar longitude plausible in this period except the kind represented by the
Babylonian System A. I will then show what simple modifications of the System
A rules are necessary to reproduce Hipparchus's intervals. The last, admittedly
speculative, part of the article will suggest reasons for the changes Hipparchus
made in the Babylonian scheme, and consider what conclusions may be inferred
concerning the purpose and course of Hipparchus's astronomical writings.

The Two Eclipse Trios

Hipparchus's lunar theory was founded on the hypothesis that the Moon
exhibits a single periodic anomaly that can be accounted for either by the
Moon's travelling uniformly along an eccentre with a revolving apsidalline, or
by supposing the Moon to revolve on an epicycle travelling along a deferent
concentric with the Earth. In the eccentric model, the period of revolution of the
apsidalline is the anomalistic month, and the Moon revolves about the eccentre
once in its sidereal period; in the epicyclic model, the Moon revolves about the
epicycle once in an anomalistic month, while the epicycle revolves about the
Earth with the sidereal period. Given these equivalences, and that the ratio of
the eccentricity to the eccentre's radius in the one model is the same as the ratio
ofthe epicycle radius to the deferent's radius in the other model, the two models
will produce geometrically identical lunar orbits, and hence identical apparent
positions as seen from the Earth. It is therefore a matter of indifference, from
the point of view of mathematical astronomy, which model is assumed in
deriving a quantitative lunar theory from observations, and this fact was
certainly known to Hipparchus."
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Nevertheless, as Ptolemy informs us in Almagest IV, II, Hipparchus made
two measurements of the ratio of circles in the lunar model, one according to an
eccentric hypothesis, the other according to an epicyclic hypothesis, and the two
measurements arrived at significantly different ratios. What is more, neither of
these ratios agrees with the ratio that Ptolemy determines in Almagest IV, 6 by a
geometrical argument that is, according to Ptolemy, substantially the same as
the procedure that Hipparchus followed." It is Ptolemy's purpose in IV, 11 to
demonstrate that the discrepancies were due to inaccuracies in Hipparchus's
data, and not to any theoretical inadequacy of the epicyclic or eccentric model.

The ratio of the circles is geometrically determined by three observations of
lunar eclipses, where the intervals of time between the eclipses, and the intervals
of longitude between the three positions of the Moon - or equivalently of the
Sun - are known. The trio of eclipses adduced by Hipparchus for his first
measurement using the eccentric hypothesis was observed in - 382/381, and,
according to Ptolemy, came from a series of eclipse observations that had been
"brought over from Babylon"; the second trio, applied to the epicyclic model,
were observed by an unidentified astronomer in Alexandria during -200/199.
Ptolemy reports the following data for the six eclipses, quoting or paraphrasing
Hipparchus: 17

(AI) "The first [of the eclipses observed at Babylon] occurred in the archonship
of Phanostratos at Athens, in the month Poseideon; a small section of the
Moon's disk was eclipsed from the summer rising point when half an hour
of night was remaining ... it was still eclipsed when it set."

(A2) "The next eclipse occurred in the archonship of Phanostratos at Athens,
in the month Skirophorion, Phamenoth 24/25 in the Egyptian calendar,
and that [the Moon] was eclipsed from the summer rising-point when the
first hour [of night] was well advanced ... the duration of the whole eclipse
is recorded as three hours ...."

(A3) "The third eclipse occurred in the archonship of Euandros at Athens, in
the month Poseideon I, Thoth 16/17 in the Egyptian calendar, and ... [the
Moon] was totally eclipsed, beginning from the summer rising-point, after
4 hours [of night] had passed."

(Bl) "The first of these [i.e. the eclipses observed at Alexandria] occurred in the
54th year of the Second Kallippic Cycle, Mesore [XII] 16 in the Egyptian
calendar. In this eclipse the Moon began to be obscured half an hour
before it rose, and its full light was restored in the middle of the third hour
[of night]." ,

(B2) "The next eclipse occurred in the 55th year of the same cycle, Mechir [VI]9
in the Egyptian calendar ... it began when 5+ hours of night had passed,
and was total."

(B3) "The third eclipse occurred in the same [55th] year of the Second Cycle, on
Mesore [XII] 5 in the Egyptian calendar, and ... it began when 6t hours of
the night had passed, and was total ... mid-eclipse occurred at about 8+
hours of night, that is, 2+ seasonal hours after midnight."

For each eclipse Ptolemy adds further data, including the year according to
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TABLE I. Ptolemy's and Hipparchus's intervals.

Eclipses

AI-A2
A2-A3
BI-B2
B2-B3

Ptolemy
M

177d 13if18
177d 2h

178d 6i>
176d .p

»;
173;28°
175;44°
180;11°
168;55°

Hipparchus
At A/...o

177d 13t" 173-to
177d It' 175to
178d 6h 180;20°
176d I+" 168;33°

the Era Nabonassar (Hipparchus had already determined at least the dates in
the Egyptian calendar), the time (if not stated in the observation report) of mid­
eclipse, and the longitudes of the Sun, the Moon, and the mean Moon according
to Ptolemy's own tables. For our purposes it will suffice to list for each eclipse
Ptolemy's calculated time interval between epoch (year I of Nabonassar, Thoth
1, noon at Alexandria) and mid-eclipse, the equivalent modern 'astronomical'
date, and Ptolemy's calculated solar longitude:

(AI) Time since epoch: 365 (Egyptian) years, 25 days, 181- (equinoctial) hours,
corrected by Ptolemy to 18t hours for the equation of time. Date: - 382
December 22/23. 1...

0
= t 28;18°.

(A2) Time since epoch: 365 years, 203 days, 8t hours, corrected to 71; hours.
Date: -381 June 18/19.1...0 = n 21;46°.

(A3) Time since epoch: 366 years, 15 days, lot hours, corrected to 91; hours.
Date: - 381 December 12/13. 1...0 = t 17;30°.

(Bl) Time since epoch: 546 years, 345 days, 7 hours, corrected to 6t hours.
Date: - 200 September 22.1...0 = T1J1 26;6°.

(B2) Time since epoch: 547 years, 158 days, 13-!- hours, no correction needed.
Date: -199 March 19. 1...

0
= )( 26;17°.

(B3) Time since epoch: 547 years, 334 days, 14t hours, corrected to 13t hours.
Date: - 199 September 11. 1...

0
= T1J115;12°.

Ptolemy next computes the intervals in time and solar longitude separating
the eclipses, which he juxtaposes with the values that Hipparchus assumed in his
calculation of the parameters of the lunar model (Table 1).

As Ptolemy points out, there are significant differences between Hipparchus's
figures and his own, both for the time intervals and for the longitudinal
intervals. Ptolemy is correct in regarding his own data as more accurate, and in
attributing Hipparchus's inconsistent results for the parameters of the lunar
model to the errors in Hipparchus's intervals. 19 But Ptolemy says nothing about
the reason why Hipparchus arrived at such bad values; nor have modern
historians put forward a satisfactory explanation." After all, since Hipparchus's
solar theory is supposed to have had exactly the same parameters as Ptolemy's,
should it not have predicted exactly the same solar longitudes?

It would be easy to dismiss the difficulty by supposing that Hipparchus made
computational errors in working out the intervals; but we should turn to this
explanation only as a last resort, since other possible causes of the discrepancies
can be tested, while casual arithmetical mistakes can seldom be traced. In the
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present case, moreover, we would have to suppose that Hipparchus made
several mistakes in calculations that should not have been particularly difficult.
In what follows I shall assume that the inaccuracies in the intervals had a
methodical origin in the way that Hipparchus computed the times and solar
longitudes for the eclipses. If this was so, then Hipparchus must have had a
procedure for predicting solar positions that was substantially different from
Ptolemy's tables of mean motion and anomaly.

The Discrepancies in Time

We know that Hipparchus successfully determined the dates of the eclipses
according to an astronomical calendar; this must have been the most arduous
stage in finding the time intervals between each pair of eclipses. The next step
was to convert the reported times of the eclipses from seasonal into equinoctial
hours; and here Hipparchus had some latitude in extracting a figure for the
seasonal hours from the imprecise wording .of some of the observational
reports." Hipparchus would probably have converted the times using a
Babylonian-style arithmetical table of seasonal day-lengths, where Ptolemy uses
a more accurate table of oblique ascensions based on spherical trigonometry."
In either kind of table, the extreme values of length of day at the solstices were a
given quantity associated with the locality, and the length of day at the
equinoxes was, of course, exactly 12 hours. For the observations in question,
which all occurred near equinoxes or solstices, only negligible discrepancies
would accrue from using an arithmetical table instead of Ptolemy's table.

The measurement of the radial ratio in the lunar model demands knowledge
of the exact time of opposition, because the Moon's longitude is only then
known, as being diametrically opposite the Sun's. But the observation reports
do not give the time of opposition, i.e. mid-eclipse, except in the case of eclipse
B3. In the case of eclipses A2 and BI the mid-eclipse is deducible from the
reported time of the beginning of obscuration and the eclipse's duration. For
the others, the time of mid-eclipse has to be estimated from the reported time of
the beginning and the eclipse's magnitude. Ptolemy assumes that the duration of
the total eclipses, A3 and B2, will have been 4 equinoctial hours, while he
ascribes a duration of H equinoctial hours to the partial eclipse AI. These
figures are to some extent arbitrary, and Hipparchus need not have made the
same estimates.

A final step that can be taken to obtain more accurate values for the time
intervals separating the middles of each pair of eclipses is the-correction for the
'equation of time', that is, the variation in the length of days caused by the solar
anomaly and the obliquity of the ecliptic with respect to the equator.P If
Hipparchus neglected this correction, errors on the order of a fraction of an
hour would have resulted, as can be seen from the corrections that Ptolemy
applied to the intervals since epoch, which are listed above.

Hipparchus's calculation of the time intervals could therefore have diverged
from Ptolemy's at several stages. In fact, one can obtain approximately the same
intervals between the eclipses as Hipparchus found, if one reduces the estimate
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AI-A2
A2-A3
81-82
82-83
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TABLE 2. A reconstruction of Hipparchus's time intervals.

Ptolemy's minus his corrected Resulting
&t equation for eclipse hypothetical

of time duration &t

177d 131f +-t' = 177d 13-t"
177d 2" -H' -t' = 177d It"
178d 6i" -1" -t' = 178d 6b"
176d f' +1" +t' = 176d 110"

Hipparchus's
&t

177d 13-t"
177d It"
178d 6"
176d If'

of the duration of the total eclipses A3 to B2 to 3-thours (which would be no less
reasonable than Ptolemy's 4 hoursj.> and neglects the equation of time. The
effect of these hypothetical modifications to Ptolemy's time-intervals is shown in
Table 2. The agreement between the hypothetically reconstructed time intervals
and Hipparchus's numbers is exact for the first eclipse triple, and fairly good for
the second triple. If one treats the seasonal hours of the reports of eclipses B1,
B2, and B3 as equivalent to equinoctial hours (a reasonable simplification since
they all fall near equinoxes), the reconstructed intervals between these eclipses
come to be 178d 6N' and 176d If!', so that only one of the four reconstructed
intervals differs from Hipparchus's, and only by a negligible fraction of an hour
at that.

In view of the success with which we have been able to 'correct' Ptolemy's
time intervals to obtain Hipparchus's, it appears highly probable that Hippar­
chus did assume a shorter duration for total eclipses than Ptolemy's four hours
when the reports gave only the time of beginning of obscuration, and that he did
not correct the intervals for the equation of time. The latter is a significant
point, since there appears to be no other evidence that Hipparchus was
conscious of the inequality of solar days (or at any rate the possibility of
correcting for it); there is even a distinct possibility that thd equation of time was
Ptolemy's discovery.> However, the explanation of the discrepancies in Hippar­
chus's time intervals casts no light on the discrepancies in the intervals of solar
longitude, since no correlation holds between the signs of the differences
applying to each pair of eclipses, and the greatest error in longitude that could
result directly from an error of -tJt would not exceed 2 minutes of arc.

Varieties of Solar Tables

A scheme of tables such as the mean motion and anomaly tables for the Sun in
Ptolemy's Almagest exhibits a format and a theoretical basis that are more or
less separable. In other words, Ptolemy's layout (tables of increments in mean
motion for various time intervals, and a table of equation of centre) is not the
only one by which longitudes could be predicted in accordance with his solar
theory. It would be possible, for example, to make a list of dates of vernal
equinoxes (when the Sun is at cy> 0°) to be used with a 'template' listing solar
longitude as a function of the time elapsed through the year following the
equinox. Given no more than a few longitudes calculated by such a set of tables,
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we would have no way to prove that they were not derived from Ptolemy's
tables. On the other hand, an identical layout might be made to present a
pattern of anomalistic motion based on quite different theoretical assumptions,
and this difference would become apparent in the longitudes predicted by means
of such tables. Hence if Hipparchus's intervals in solar longitude were not
thrown off by computational errors, there must have been a difference in
theoretical basis between his method of predicting solar longitudes and Pto­
lemy's tables. This could be for various reasons. When he was working on the
lunar theory Hipparchus may not yet have arrived at his 'final' values for the
parameters of the solar model. Alternatively, while accepting the theoretical
validity of the model just as Ptolemy preserves it, nevertheless for purposes of
calculation he may have used methods or tables that approximated the
anomalistic motion of the Sun without using the correct trigonometric formula
for the equation of centre. If we restrict speculation to the varieties of methods
attested elsewhere in ancient astronomy, the anomaly could have been repre­
sented by arithmetical series (the 'step' functions and 'zigzag' functions of
Babylonian astronomy) or by a simple trigonometric function (e.g. the equation
of centre could be proportional to the sine of the mean solar elongation from
perigee, as in some Indian traditions).

Suppose that Hipparchus computed the solar longitudes for each eclipse from
some sort of rule or table that, like Ptolemy's tables, represented solar longitude
as a function (direct or indirect) of the time since the Sun was previously at its
apogee. It will be convenient to express this time in degrees of mean solar
motion, using Ptolemy's table of mean motions in Almagest III, 2. We use the
following notations: AI' Az, A3 are the three longitudes of the Sun supposed to
have been computed by Hipparchus for the three eclipses of each eclipse trio; °1
and 0zare the two known longitudinal intervals Az-A1 and A3-Az;A,I' A,z, A,3 are the
mean solar longitudes for the three eclipses; 0, and 0z are the differences ofmean
longitude A,Z-A,I and A,3-A,Z' which can be computed using Ptolemy's table from
Hipparchus's time intervals between the eclipses; and el' ez, and e3 are the three
equations ofcentre AI-A,I' Az-A,z, and A3-A,}' The equations ezand e3 are related to
e l as follows:

ez = e, + (0,-0 1) ,

e3 = ez + (oz-Oz)·

For the first eclipse trio AI, A2, A3 we find (to the nearest second of arc)

ez = e, - 2;8,50° and
e3 = ez + 0;35,56° = e l - 1;32,54°.

Thus a difference in equation of 1;32,54° corresponds to the interval of solar
mean motion

0, + 0z = 349;32,54° = -10;27,6°.

But so great a difference over about 10° is impossible for any plausible solar
equation function. In Ptolemy's equation table, Almagest 111,6, the maximum
difference over 12° of mean motion (near perigee) is 0;32°; while the maximum
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change of equation over 10° resulting from the Babylonian System B zigzag
function for solar motion is just under 0;20°.26 Hipparchus's longitudinal
intervals for the first set of eclipses cannot have been found by taking the
differences between solar longitudes that were calculated by any scheme
expressible as a reasonably accurate mean motion corrected by an equation
function. The excess of the change of equation over what it should have been
(about 1°) suggests that the value for the length of the year implicit in
Hipparchus's calculations was too great by nearly a day, and this is hard to
believe unless the year length was not a conspicuous element in Hipparchus's
solar scheme.

Turning to the second set of eclipses, B1, B2, B3, we find

e2 = e\ + 4;38,38° and
e3 = e2 - 4;58,35° = e\ - 0;19,57°.

The difference in mean motion between Bl and B3 is 349;12,58° = -10;47,2°.
But eclipses BI and B3 occurred a few days before the autumnal equinox, so
that the Sun was just past half way between apogee (for Ptolemy and
Hipparchus, II 5;30°) and perigee. At this stage of the Sun's revolution, the
solar equation attains its maximum, and the rate of change of the equation is
small. In the corresponding part of Ptolemy's equation table, the equation
changes by a mere 0;8° over 12°of mean motion. In the scheme that Hipparchus
used to produce the longitudinal intervals for the second eclipse trio, the rate of
change of the solar equation cannot have tended to zero between the apogee and
perigee, which means that the solar velocity according to the scheme was
discontinuous. This conclusion rules out of consideration tables based on
trigonometric functions, like Ptolemy's equation table or the Indian sinusoidal
equations, as well as tables based on a linearly varying solar velocity.

The 'System A' Hypothesis

The only remaining hypothesis justified by our present knowledge of ancient
astronomical methodology is a 'step' function in which the solar velocity
assumes constant values over fixed zones of the ecliptic. Column B of the
Babylonian System A lunar ephemerides provides the obvious prototype for
such a scheme." Each line of a Babylonian lunar ephemeris represents one
synodic month; thus Column B gives the Sun's longitude for a sequence of
consecutive conjunctions or oppositions. The basic System A pattern of solar
motion is simple: over the 194° between longitudes TW 13° and )( 27° the Sun is
supposed to travel 30° per synodic month, while it travels only 28;7,30° (i.e.
28iO) per month for the 166°completing its circuit of the ecliptic (Figure 2). This
'solar model' works reasonably well because the Moon's apparent motion is so
much faster than the Sun's that the progress in longitude from one syzygy to the
next is predominantly a function of the Sun's velocity, and hence of the Sun's
longitude." Given the Sun's longitude at (say) one opposition, the longitude of
the next opposition is found simply by adding the constant prescribed for the
zone that the Sun is in, unless this addition would bring the Sun into the other
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FIG. 2. The Babylonian System A solar scheme (fast zone: 30o/syn. m., slow zone: 28to/syn. m.).

zone. In that case, one determines the fraction of the synodic month required to
bring the Sun to the boundary between zones (at the velocity for the first zone),
and applies the remaining fraction at the velocity of the second zone to find the
Sun's progress after the boundary. The length of each zone, divided by the
constant advance in longitude per synodic month for that zone, gives the
number of synodic months required to traverse the zone; hence the System A
rules imply a year length in synodic months (which is reasonably accurate):

I year = 1M + 2l~~30' that is, 12;22,8 synodic months (~ 365;15,38 days).

The midpoints of the slow and fast arcs, rr20° and t 20°, define the 'apsidal
line' of the scheme. Since the vernal equinoctial point is set at <y' 10° in System
A, the 'apogee' falls 70° after the equinoctial point (contrast Hipparchus's value
of 65+° for this interval).

An interval between eclipses must comprise a whole number of synodic
months, so that the System A rules for computing solar longitudes for
consecutive oppositions would have had an obvious convenience for Hippar­
chus's computation of the longitudes of eclipses separated by fairly short times.
He would need to find the longitude of one of the three eclipses by some other
means (e.g. proximity to an equinox or solstice), and the remaining two would
follow by simple arithmetic. Also, the occurrence of fractions of -to in Hippar­
chus's two longitudinal intervals AI-A2 and A2-A3 make it tempting to see
whether these numbers can be explained by compounding intervals of motion at
30° and at 28-t° per month over consecutive synodic months. Because of the
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times of year of the eclipses, the solar longitudes for eclipses A1 and A3 must
fall in the middle of the fast zone of the ecliptic, while the longitude for A2 falls
in the middle of the slow zone. The interval for AI-A2, 1734°, should
decompose into a certain number, a, of synodic months of motion at 30° per
month, followed by (6--a) synodic months of motion at 28-!-0 per month; and
similarly the interval for A2-A3, 175-!-0, should decompose into some number b
of months of motion at 28-!-0 per month followed by (6--b) months at 30° per
month. Hence a = 2+, and b = 2+ (exactly).

Next we determine where the boundaries between the zones of fast and slow
solar motion must fall on the ecliptic if they are to divide the six-month intervals
into sections of a, (6--a), b, and (6--b) months. During (6--a) + b months the Sun
must have travelled through the entire slow zone, which therefore has a length
of (6 + b - a) x 28-!-0, or exactly 180°.

The foregoing analysis is, of course, guaranteed to yield some division of the
ecliptic, whether or not the intervals of solar longitude on which it is based were
originally computed by a scheme dividing the ecliptic into two zones associated
with the System A solar velocities. If the intervals had been computed according
to the Babylonian scheme itself, a slow zone of exactly 166° should have been
found by our analysis, and conversely, finding such a zone would have been
strong confirmation that the Babylonian scheme was used. Intervals derived by
some other reasonably accurate method would lead to a zone division approxi­
mating the Babylonian one; for example, Ptolemy's values for the same intervals
AI-A2 and A2-A3, based on his own tables, would yield a slow zone of 162°.
What we have obtained from Hipparchus's intervals is a division that both
diverges far from the expected values, and exhibits a strikingly simple sym­
metry: two zones exactly bisecting the ecliptic. This is very unlikely to be an
accident. The conclusion is unavoidable that Hipparchus calculated the longitu­
dal intervals between eclipses AI, A2, and A3 by an adaptation of the
Babylonian System A solar scheme in which the zones were made equal, but the
Babylonian velocities associated with the zones were retained. A consequence of
this modification was that the year length embedded in the scheme was now
inaccurate:

I year = .!j!¥ + 2l~?30' that is, 12;24 syn. m. (:::::; 366;II days),

and it is precisely this wrong year length that accounts for the gross inaccuracy
of Hipparchus's first pair of longitudinal intervals.

A further datum that can be extracted from our analysis of Hipparchus's
intervals is the situation of the three solar longitudes relative to the zone
boundaries (Figure 3). The longitude of the eclipse Al was 2+ x 30° = 66°
before the boundary that begins the slow zone; that of A2 was 34- x 28-!-0 =
106 to after the same boundary; and that of A3 was 3-t x 30° = 102° after the
other boundary, or 78° before the first boundary. The interval between Al and
the midpoint of the slow arc is 156°. Now to use the (modified) Babylonian
scheme at all, Hipparchus had to have the longitude of one of the eclipses as an
initial value from which to find the others. This was probably AI, because this
eclipse occurred very close to the winter solstice, so that the Sun's longitude
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FIG. 3. Hipparchus's first scheme and eclipse trio (fast zone: 30o/syn. m., slow zone: 28to/syn. m.).

would be known as nearly MO° (Ptolemy calculates it as t 28;18°). If
Hipparchus chose a longitude ofabout MO°for AI, then the midpoint of the slow
arc of his scheme would have fallen at about rr6°, and this is in good agreement
with the longitude that Hipparchus found for the solar apogee, rr 5;30°. It thus
appears that Hipparchus's adaptation of the System A solar scheme was made
after his determination of the solar eccentricity and apsidal line, and that his
modification of the zone boundaries was partly motivated by a wish to line the
zones up with his apsidalline, while also moving the equinoctial points from "Y'
10° and === 10° (the System A convention) to the beginning of their signs.

The Second Trio of Eclipses

There are reasons for doubting whether Hipparchus's two measurements of the
lunar radial ratio were carried out in a single work. Ptolemy tells us that the first
calculation, using the eclipses of - 382/381, was made according to the eccentric
hypothesis, and the second, using the eclipses of -200/199, according to the
epicyclic hypothesis." Now if the point of doing the calculation twice was to
confirm the constancy of the ratio (and hence the validity of the hypothesis),
there would have been no sense in using different versions of the hypothesis each
time; while if Hipparchus's purpose was to show the equivalence of the eccentric
and epicyclic hypotheses in a concrete way, he should have used the same
eclipses both times.v We also know that Hipparchus adopted the second
measurement in his work "On the sizes and distances", so that it appears that he
considered the second measurement to have superseded the first." Even the
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form in which Hipparchus expressed the longitudinal intervals in the two
calculations is different: in the first, they display the conspicuous fractions of -to
that gave away their derivation from the System A speeds, while in the second,
they are given as conventional degrees and minutes. It is not surprising,
therefore, to find that the second pair of longitudinal intervals was not
computed by the flawed solar scheme used for the first set. This is obvious from
the interval BI-B2, 180;20°, which exceeds the 180° that the Sun could progress
in six synodic months at a speed of 30° per month. Nevertheless our earlier
analysis of the intervals of the second trio into differences of mean motion and
equation of centre led to the conclusion that these too had to be computed by a
method with a discontinuously varying equation of centre, i.e. some sort of
'System A' scheme with zones of constant speed.

In approaching Hipparchus's longitudinal intervals for the second trio of
eclipses, we set out with the simplest hypothesis, that his method was substan­
tially the same as for the first trio, except that he used different values for the
Sun's fast and slow velocities in the two halves of the ecliptic. We want to findf
and s, the number of degrees per synodic month that the Sun is supposed to
travel in the fast and slow zones, which we assume to begin at 1l}' 5;30° (i.e.
155;30°) and )( 5;30° (i.e. 335;30°) respectively. Let 1.\ be the Sun's assumed
longitude at the first eclipse, BI, which should fall within the fast zone. The
differences of solar longitude for the six-month intervals BI-B2 and B2-B3 are
180;20° and 168;33° respectively. These data give rise to the following
equations:

(335;30°-1.\) + (180;20°-335;30° + 1.\) = 6
f s '

(360°+ 155;30°-1.2) + (168;33°-155;30°+1.) = 6
sf'

where 1.2 = 1.\ + 180;20°. The same equations may be restated thus:

(335;30°-1. 1) s + (204;50° + A}-3600)f = 6fs,

(193;23°+A}-3600) s + (335;100-A\)f = 6fs,

so that

_ 335;300-A} (204;50° + A)-3600)(142;7°-2A} + 360°)
f - 6 + 6(130;20°-21.\ + 360°) ,

_ (130;20°-21.\ + 3600 )f
s - 142;7°-21.\ + 3600 .

Eclipse BI occurred approximately four days before the autumnal equinox.
Assuming, therefore, that 1.\ ~ 176°, we findf ~ 30;21,so, and s ~ 27;58,8°.
These speeds are nearly in the same ratio as the maximum and minimum
apparent speeds that would result from Hipparchus's measurement of the solar
eccentricity as 14 the radius of its orbit:

f ~ 1.085,
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FIG. 4. Hipparchus's second scheme and eclipse trio (fast zone: -30;21 0(syn. m., slow zone:
-28;58°(syn. m.).

1+14 ~ 1.087.

1-14
They also imply an approximation of the length of the year that is satisfactory
for computations over the fairly short intervals that Hipparchus is working
with.v

180 180
30'215 + 27'58 8 ~ 12;21,59 syn. m. (~ 365;12 days).

" "
Hipparchus's second set of longitudinal intervals thus determines a 'System A'
solar scheme with speeds in approximate agreement with the eccentricity of his
solar model, where these speeds are supposed to apply over 180° zones centred
on the apsidalline that he established for the Sun's eccentre '(Figure 4). If his
figures had been originally computed in a radically different way, it is unlikely
that such plausible speeds and so accurate a year length would have resulted
from this analysis. For example, if we tried to explain Ptolemy's intervals,
180;II ° and 168;55°, as products of such a scheme, we would arrive at speeds of
about 30;19° and 28;2° per synodic month (hencefls ~ 1.081), and a year length
of about 12;21,39 synodic months (~ 364;59 days). The reconstruction of the
scheme behind Hipparchus's second pair of longitudinal intervals cannot be
regarded as certain in every respect; too many of the factors involved are known
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only approximately (including the intervals themselves, which Hipparchus
probably truncated to the nearest minute). But we have established (I) that the
second set was calculated according to a solar scheme that assumed zones of
constant speed, (2) that this scheme was not identical to the scheme used for the
first set of intervals, and (3) that the second scheme was probably a simple
modification of the first (as the first was a modification of the Babylonian rules)
to bring it into still closer accord with Hipparchus's solar model and (inciden­
tally) to eliminate the systematic error in the first scheme.

The Observations of - 127/126

Let us now return to the three Hipparchian observations of the Moon's
elongation from the Sun that Ptolemy quotes in V,3 and V,5:

(Cl) He [i.e. Hipparchus] says that he made the observation in the fifty-first
year of the Third Kallippic Cycle, Epiphi [XI] 16 in the Egyptian calendar
[-127 August 5], when i-of the first hour had passed. "The [lunar] speed
was [that of day] 241", he says, "and while the Sun was sighted in S(, 8f1°
the apparent position of the Moon was ti 12to

, and its true position was
approximately the same"."

(C2) Now Hipparchus records that he observed the Sun and the Moon with his
instruments in Rhodes in the 197th year from the death of Alexander,
Pharmouthi [VIII] 11 in the Egyptian calendar [-126 May 2], at the
beginning of the second hour. He says that while the Sun was sighted in ti
7+°, the apparent position of the centre of the Moon was )( 2!i-°, and its
true position was )( 2H + to.34

(C3) Similarly, ... we have again selected from the. distances [between Sun and
Moon] observed by Hipparchus, as already mentioned, in Rhodes, the
observation he made in the same year [as the preceding one], being the
197th year from the death of Alexander, Payni [X] 17 in the Egyptian
calendar [-126 July 7], at 9t hours. He says that while the Sun was
sighted at Q1j 10f0° the apparent position of the Moon was S(, 29°.35

The question we have to settle concerning these observations (which Ptolemy
says that he excerpted from a series of such lunar elongations observed by
Hipparchus) is whether Hipparchus computed or measured the solar longitudes
at which the Sun was 'sighted'. The variations on the System A rules described
above are designed to generate solar longitudes only for a sequence of
consecutive conjunctions or oppositions, but of course it would be an easy
matter to adapt them to the problem of daily motion by dividing the progress
per synodic month prescribed for the two zones by the length of the synodic
month in days. The proof that Hipparchus did not do this to compute these
longitudes is easy. If they were computed according to a scheme with two zones
of constant speed, the solar longitudes of all three observations would fall
within the slow zone. Let the dates of the observations be tl' t2, and t3, and the
corresponding longitudes AI' A2, and A3" We can replace the date t l of CI with a
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date t,' one year (i.e. approximately 365-!- days) later when the Sun had the same
longitude, so that the three longitudes are brought into a single traversal of the
zone. The differences between the longitudes should then be proportional to the
differences between their dates; and they clearly are not:

(AI-A]) 27;41° 057 320/d
(t/-t]) ::::::; 28;52 days::::::; ;, ay,

(A]-A2) 63;9° 057 40/d
(t]-t

2
) ::::::; 66;24 days::::::; ;, ay.

Nor can a plausible scheme assuming continuously varying solar speed
explain Hipparchus's numbers. According to Hipparchus's solar model, the Sun
reaches its apogee (II 5;30°) approximately 67-j- days after the vernal equinox,
and any tables that make the Sun's daily motion vary continuously between the
maximum and minimum dictated by the model would predict a longitude of II
5;30° at about this many days past equinox. Hipparchus observed the vernal
equinox as having occurred on -127 March 23 at sunset, and he would have
predicted (if he did not also observe) the recurrence of the equinox on -126
March 23/24 at midnight." Hence we know both the elongations of the three
solar longitudes AI' A2, A] from the apogee, and the intervals separating tl' t2, and
t] from the date when the Sun was at apogee:

A -65·30°) 65·5°(t,-67;40 days) '" 66;50 days::::::; 0;58,26°/day,

(A -65·30°) 27·45°
(t

2
-67;40days) ::::::; 28;24 days::::::; 0;58,38°/day,

(A-65·30°) 35·24°
(t

3
-67;40days) ::::::; 38 days::::::; 0;55,54°/day.

The quotients, which should represent the mean solar daily motion between the
apogee and the date of observation, obviously do not behave as they should: the
speed ought to increase gradually with increasing elongation, and here it
appears to drop abruptly between 27;45° and 35;24° from apogee. All in all, it
seems most probable that at least one of Hipparchus's solar longitudes was
observed rather than predicted."

Retrospect

That Greek astronomers, and specifically Hipparchus, had access to elements of
Babylonian mathematical astronomy has been known since Kugler found the
fundamental parameters of Hipparchus's lunar theory in the System B ephe­
merides." Until recently it appeared safest to assume that only a handful of
parameters, period relations, and simple schemes were transmitted from Baby­
lonian to Greek astronomy. But since the discovery of a Greco-Egyptian
papyrus fragment from the Roman period that contains what can only be
interpreted as part of a Babylonian System B lunar ephemeris.v it must now be
conceded that the most complex systems of the Babylonian ephemerides were
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substantially transmitted, and moreover that the Babylonian procedures were
actually in use centuries after this transmission must have taken place. Yet at
the same time there is no evidence to suggest that the Greeks possessed more
than a superficial knowledge of the rationale or the empirical bases behind the
Babylonian schemes, or even of the meaning of every column.

Babylonian astronomy thus comes to figure more and more prominently in
the background of Hipparchus's work. In his efforts to establish quantitative
geometrical models for the celestial motions, Hipparchus was able to draw not
just on a body of observation reports, both Greek and Babylonian, but also on
an already existing quantitative theory that, while obviously not founded on
right geometric principles, nevertheless furnished impressively accurate predic­
tions of the observable phenomena. Babylonian theory could serve as a guide
indicating what to look for in observations, and when to look; and if
observations were lacking, the theory could even serve as a 'vicarious hypothe­
sis' simulating observed data. For example, in his Commentary on the Pheno­
mena of Aratus and Eudoxus, where Hipparchus wishes to refute the notion
(apparently common in earlier Greek astronomy) that the Sun has a latitudinal
motion with respect to the ecliptic, he appeals to the lunar eclipse predictions of
the "astrologoi", which, he says, presuppose no solar latitude and yet are
generally accurate to within two digits of eclipse magnitude. The only methods
of eclipse prediction that were known in Hipparchus's time and to which his
description could apply are the Babylonian procedures."

The solar theory has always appeared to be one area where Babylonian data
did not enter into Hipparchus's calculations. As Ptolemy portrays it, Hippar­
chus's theory was derived solely from observations of solstices and equinoxes by
himself and by previous Greek astronomers (Meton and Euctemon, Aristar­
chus, Archimedes). Yet it may be wondered, given the difficulty of making
precise equinox and (especially) solstice observations, whether Hipparchus, or
any other Greek astronomer, could have discovered the inequality of the seasons
and the solar anomaly by this route. Recently it has been pointed out that
Hipparchus's allegedly observed value, 94+ days, for the time between the
vernal equinox and the summer solstice can be derived from the Babylonian
System A speed for the slow zone in which this season entirely falls, combined
with the System B length of the synodic month that Hipparchus is known to
have used:"

90
0

x 29;31{50,8,20 days = 94;29,52, ... days ~ 94-!- days.
2810 !syn. m. syn. m.

Although it cannot be proved that Hipparchus obtained his interval in this way,
the hypothesis of Babylonian derivation is supported by the fact that, while
Hipparchus's observed vernal equinoxes (reported in A/magest III, 1) are all
reasonably accurate, the summer solstices actually fell about t day earlier. Our
having shown above that Hipparchus knew and used an adaptation of the
System A solar scheme adds still further plausibility to this conjecture. In fact,
Ptolemy never actually attributes a solstice observation to Hipparchus;? and
even if Hipparchus did attempt to observe one or more summer solstices, the
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expectation that the summer solstice would occur 941 days after the vernal
equinox could have biased his measurements.

Hipparchus must have written the work in which he determined the para­
meters of the solar model, using the observed dates of the vernal and autumnal
equinox and the problematic summer solstice, after -145, the first year for
which he had observations of both equinoxes (the last such year, according to
Ptolemy's list of his observations, was - 142).43 His deduction of the eccentricity
and longitude of the apogee was along similar lines to Ptolemy's in Almagest III,
4, but sufficiently different in its details to justify Ptolemy's decision "to display
the theorem worked out according to our own numerical solution't.t' At this
time Hipparchus did not compose tables of solar motion. His solar model was
ostensibly incomplete: he had no confirmed measure of the exact length of the
year, and no observational evidence that the season lengths (and hence the
apsidalline) remained fixed over long periods. The testimony of the Babylonian
lunar systems was open to two interpretations. On the one hand, these systems
operated on the assumption that the pattern of solar speed maintained a fixed
pattern with respect to the zodiac (exactly in System A, with its fixed zones, very
nearly in System B, where the longitude corresponding to the minimum solar
speed shifts by a few seconds of arc per year). On the other hand, the season
lengths predicted by the Babylonian systems, as well as the longitudes that
should have corresponded to the solar apogee, did not match Hipparchus's
data. When subsequently Hipparchus needed to extrapolate the behaviour of
the solar model to observations before his own time, he adopted the Babylo­
nians' theoretical supposition that the Sun's anomalistic period coincided with
the year, instead of deducing a (spurious) long-term shift by comparison of the
specific predictions of the Babylonian theory with his own observations.

Essentially the same fundamental theorem underlies both Hipparchus's
measurement of the ratio of radii in the lunar model and his determination of
the solar model; if the periods of the revolutions in a simple eccentric or
epicyclic model are approximately known, and the apparent longitude of the
body is given at three given times, the relative dimensions and configuration of
the model can be determined. The first application of this theorem to the lunar
model (which at this time Hipparchus chose to think of as a simple eccentre)
came probably not long after the establishment of the solar model. Hipparchus
had at his disposal the three Babylonian eclipse reports of - 382/381, from
which he was able to find the times of three oppositions. To obtain the
corresponding longitudes, he first had to extrapolate the dates of the equinoxes
and solstices back to these years. My guess is that he took the date of the winter
equinox predicted by his model for (say) -145,45 and counted back by 236 years
of exactly 365t days:

Vernal equinox observed -145 March 24 = Nabonassar 602 VI 27, ",6 a.m.;
winter solstice predicted 90t days earlier = Nabonassar 602 11127, '" 3 a.m.;
236 years = 236 x 365t days = 236 years + 59 days;
winter solstice predicted Nabonassar 366 I 28, '" 3 a.m.

Since this predicted solstice practically coincides with the time of mid-eclipse of
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the first eclipse Al (Nab. 366 I 27, ",6 a.m.). Hipparchus simply assumed that
the Sun's longitude was approximately ~oo.

Now to find the other two longitudes, Hipparchus did not, of course, work
out a set of solar tables from his solar theory; he took over the standing (and
reasonably reliable) procedure of System A for predicting longitudes of
consecutive oppositions. But Hipparchus knew that the Babylonian conven­
tions for reckoning longitudes were different from his own,and furthermore he
had himself determined the longitude of the solar apsidalline, which should act
as a line of symmetry in the pattern of solar speeds along the ecliptic. It must
have seemed to Hipparchus a minimum and obvious adjustment to change the
zones of the System A scheme so that they would be centred on his own apsidal
line; and at the same time, he made the zones equal. Either Hipparchus did not
realize that the latter modification (motivated, we must suppose, by consider­
ations of simplicity and symmetry) would introduce a systematic error in the
predicted longitudes, or he thought any resulting inaccuracy would be neglig­
ible. The mistake is more comprehensible if we recall that Hipparchus's
adaptation of the System A rules was probably designed specifically for this one
application to the lunar theory.

In his new arrangement of the zones, the estimated longitude for eclipse Al
falls about 5+°before the end of the fast zone. Hipparchus took this interval as a
round 6°, which makes for easier computation. The longitudes for A2 and A3
would have resulted from the following calculations:

longitude at Al 269+°
2 syn. m. + 60° = 2 x 30°/syn. m.

329+°
progress to boundary +6° = +syn. m. x 30°/syn. m.

335+°
remainder of syn. m. +22+° = 1syn. m. x 28to/syn. m.

358°
3 synodic months + 84io = 3 syn. m. x 28to/syn. m.

longitude at A2 82to (= 1734° past AI)
2 syn. m. +56t° = 2 x 28to/syn. m.

138+°
progress to boundary + 16t° = i-syn. m. x 28to/syn. m.

155+°
remainder of syn. m. + 12° = -t syn. m. x 30°/syn. m.

167+°
3 synodic months +90° = 3 syn. m. x 30°/syn. m.

longitude at A3 257+° (= I75to past A2).
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Using the longitudinal intervals found between the three eclipses, Hipparchus
calculated the eccentricity in the lunar model by a method corresponding in its
broad outlines to Ptolemy's method in Almagest IV, 6, arriving at the ratio
327+:3144.46

The reasons why Hipparchus decided to publish a second measurement of the
radial ratio in the lunar model (now treated as the epicycle radius in an epicyclic
model) can only be guessed. Perhaps Hipparchus had subsequently come across
the reports of the three eclipses observed at Alexandria in -200jI99, and
judged them to be superior to the Babylonian reports. Or he might have found
ways to improve the accuracy of the calculation of the ratio." By this time,
Hipparchus had probably confirmed the Babylonian period relations that
determined the periods of revolution in his lunar model (though precise values
for these periods are not necessary in the measurement of the radial ratio)."

In any case, Hipparchus had to dust off his adapted System A method of
computing the solar longitudes for the new application, and at this point he
realized that, in addition to realigning the zones according to his theoretical
apsidalline, he ought to make the speeds prescribed for the zones correspond to
the eccentricity of his model. Exactly what speeds he chose, and how he derived
them, is not certain. I suggest that he assumed that the apparent solar speed was
in inverse proportion to its' distance from the Earth, and assigned to the two
zones the maximum and minimum speeds resulting from an eccentricity of
1:24. These would have turned out to be approximately 30;22°jsyn. m. and
27;56°jsyn. m. (the exact values would depend on the number ofsynodic months
assumed to be in one year). In the analysis of Hipparchus's longitudinal
intervals, we found 30;21,5° jsyn. m. and 27;58,8°jsyn. m. as possible values for
the zone speeds, on the supposition that he assigned a longitude of Tijl 26° to
eclipse B1, so I will use these speeds in the following 'restoration' of Hippar­
chus's calculations:

longitude at B1 176; 0°
5 syn. m. + 151;45° = 5 x 30;21,sojsyn. m.

327;45°
progress to boundary + 7;45° = 0;15,19 syn. m. x 30;21,5°jsyn. m.

335;30°
remainder of syn. m. +20;50° = 0;44,41 syn. m. x 27;58,8°/syn. m.

longitude at B2 356;20° (= 180;20° past B!)
5 syn. m. + 139;50° = 5 x 27;58,8°jsyn. m.

136;1l0
progress to boundary + 19;19° = 0;41,26 syn. m. x 27;58,8°jsyn. m.

155;30°
remainder of syn. m. +9;23° = 0;18,34 syn. m. x 30;21,sojsyn. m.

longitude at B3 164;53° (= 168;33° past B2).

A conspicuous feature of both eclipse trios used by Hipparchus In the
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measurements of the radial ratio is that the first eclipse in each set fell near an
equinox or solstice. This may have been an accident, but it was more likely the
result of a deliberate decision to avoid the problem of computing solar daily
motion over long intervals. In the (probably later) treatise "On the displacement
of the solsticial and equinoctial points", as we have already seen, Hipparchus
used observations oflunar eclipses to measure the longitudes of fixed stars in his
own time and that of Timocharis (early third century), and not all these eclipses
would have been close to solstices or equinoxes." We must assume therefore
that by - 127 Hipparchus had devised a way of estimating solar longitudes
from the number of days since the vernal equinox. This might have been a
simple conversion of the zone scheme, with the prescribed speeds divided by the
number of days in one mean synodic month; but we have no proof of this.

The testimony of Vettius Valens still has to be taken into account. Were the
solar tables that he mentions an authentic work of Hipparchus? Again, we
simply do not know. It is doubtful whether the production of astronomical
tables was one of Hipparchus's main goals in his astronomical researches. He
possessed no planetary theory; and his lunar theory was marred by his
inconsistent values for the radial ratio and his ignorance of the second
anomaly.v Hence it is not surprising that there is no ancient evidence for either
lunar or planetary tables by Hipparchus." If he did publish solar tables, they
were probably from his last years, and as likely as not their structure will have
been closer to the Babylonian schemes than to Ptolemy's tables.

I began this article by comparing Ptolemy's deduction of the solar theory in
Almagest III with Hipparchus's contributions to the subject. Ptolemy's explicit
acknowledgements of his dependence on Hipparchus have encouraged modern
readers to infer that the whole of Almagest III was hardly more than a rewriting
of Hipparchus's lost works. It should now be clear that large parts of Ptolemy's
treatment (including the computation of the tables of solar mean motion and
anomaly in chapters 1-2 and 5-6,. the determination of an epoch position in 7,
and the discussion of the equation of time in 9) had no Hipparchian counter­
part. Hipparchus turns out to have approached the theories of the Sun and
Moon as a collection of separable problems to be solved as opportunity arose.
He had no plan of systematically developing his theories independently of the
existing Babylonian methods, for all that these methods were inconsistent with
Hipparchus's geometrical models. Ptolemy's organization of the theories of the
Sun, Moon, and planets into an apparently rigorous logical progress from
which every trace of Babylonian methodology was ruthlessly expunged, must be
seen as a radical reform of the science.
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