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Introduction

Ptolemy’s surviving writings can be divided into two categories: treatises covering a branch of 
scientific knowledge in a systematic and comprehensive manner, and works that address nar-
rower problems and questions. The general treatises are the Almagest (astronomy), the Tetrabiblos 
(astrology), the Harmonics (musical pitch relations and systems), and the Optics (visual percep-
tion). Of these four works, the Almagest and Harmonics, and also to a large extent the Optics, are 
concerned with fields that Ptolemy regards as mathematics, that is, the study of “shape, number, 
size, and moreover place, time, and the like” (Almagest 1.1), whereas the Tetrabiblos concerns 
physics, the study of qualitative properties of matter and change.1 This ontologically-based dis-
tinction with respect to the brances of theoretical philosophy is paralleled by a distinction in the 
epistemological approach of the treatises: while the Tetrabiblos operates primarily with an inter-
play between the received tradition of astrological doctrine and aprioristic reasoning leading to 
inexact knowledge, the “mathematical” works aim at exact knowledge by an interplay between 
sense perception and analytical reasoning.

In the opening chapter of the Harmonics Ptolemy tells us that reason and the sensory faculty 
of hearing are the two “criteria” (i.e. faculties for determining truth) in harmonic science, and 
outlines how the interplay between them is supposed to work. If we substitute vision for hearing 
as the sensory criterion appropriate for astronomy and optics, the demonstrative structures of 
all three “mathematical” treatises largely follow the strategy of Harmonics 1.1. The process be-
gins with sense perception, and specifically with certain rather crude but indisputable percep-
tions that provide reason with the starting points for developing a theory and designing more 
sophisticated observational procedures and instruments for refining that theory. The back-and-
forth between progressively narrower observations and progressively deeper analysis may be 
repeated until a theory or model is reached whose agreement with observations is within the 
limits of accuracy of the relevant senses. As Ptolemy asserts in an astronomical context (Almag-
est 9.2), the standard of theory verification is that one should be able to “fit [ἐφαρμόσαι] pretty 
well all the phenomena” to the model, that is, not only observed data that went into the model’s 
deduction but also any other observed data that one may possess.

Hence in principle every theoretical outcome in Ptolemy’s mathematical sciences ought to 
rest on empirical evidence, and to a great extent the “narrative” of his treatises—the linear flow 
of evidence and argument that one encounters by reading the works from start to finish—con-
forms to this expectation. As Swerdlow has pointed out, in the Almagest Ptolemy provides his 

1	  In accordance with the Aristotelian theory of “proper” and “common” sensibles, the Optics also deals with 
the perception of color, the qualitative “physical” property of bodies that is the proper sensible by means of which 
vision perceives the common sensibles—which more or less coincide with the properties that Ptolemy treats as 
mathematical. 

Instruments – Observations – Theories: Studies in the History of Astronomy in Honor of James Evans, ed. Alexander Jones and 
Christián Carman, 2020, DOI: 10.5281/zenodo.3928498, pp. 147–175. Chapter DOI: 10.5281/zenodo.3975737. Open access distribu-
tion under a Creative Commons Attribution 4.0 International (CC-BY) license.
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empirical evidence in two distinct manners.2 Considerations that lead to conclusions about the 
general, as yet unquantified structures of his models tend to be presented as bald assertions of a 
general phenomenon relating to the apparent behaviour of the relevant heavenly bodies, with-
out explicit reference to specific observations or observational procedures; these correspond 
to the crude sensory perceptions of the Harmonics’s epistemological strategy. But finer details 
and in particular quantifications of the models are justified on the basis of observations that are 
described in greater detail, often with specific dates and, where pertinent, indications of the in-
struments that were employed; these correspond in the Harmonics’s account to the more refined 
sensory perceptions that have been guided by reason. Both types of presentation of empirical 
evidence are present in the Harmonics and Optics too, though where in the Almagest the second 
type consists of reports of actual observations (whether expressly dated or not) that are sup-
posed to have been made in the past by Ptolemy or his predecessors, in the Harmonics and Optics 
they are descriptions of demonstrations that the reader is invited to recreate, though presum-
ably Ptolemy means us to suppose that he has also tried them out. One can also add a third type 
of empirical appeal: implied invitations to the reader to compare predictions derived from the 
quantitative models with the established phenomena. In the Almagest, parts of the eclipse theory 
in Book 6 and the sections concerning planetary stations and visibility conditions in Books 12-13 
have this function of implicit model verification—implicit because Ptolemy usually does not say 
outright that his predictions agree with the phenomena.3

Data derived from the senses play a predominant role in controlling the evolution of Ptole-
my’s mathematical models, but do not suffice to determine them. An obvious, if usually unspo-
ken, consideration in every decision Ptolemy makes about his models is simplicity. In discussions 
of astronomy in particular it was a commonplace that a multiplicity of models could be devised 
that were equally in agreement with the phenomena.4 Ptolemy’s response is that “generally we 
consider that it is appropriate to demonstrate the phenomena through simpler models, so far 
as this is possible, insofar as nothing significant [ἀξιόλογον] in opposition to such a proposal is 
apparent from the observations” (Almagest 3.1). 

The qualification “significant” shows that in principle Ptolemy conceded that a simpler 
model should sometimes be preferred even if it did not fit the empirical data as closely as a more 
complicated model, especially if the discrepancies could be plausibly explained as arising from 
observational or computational errors. Yet he was generally reluctant to allow a simplicity argu-
ment to override observation, as we can see in a well known passage in Almagest 13.2, where he 
defends the staggering complexity of his models for the latitudinal motion of the planets on the 
grounds that the standards of simplicity for heavenly bodies cannot be learned from compari-
sons with the mundane constructions to which we have more direct access. His explicit invoca-
tions of simplicity in choosing between model options are rare, and typically in situations such 
as the question whether to explain an anomaly by means of an epicycle or an eccenter, where 
two model structures are kinematically identical, not just indistinguishable to the senses.

2	  Swerdlow 2004, 249-250.

3	  The confrontation of prediction and phenomena is explicit, however, in Almagest 13.8, where Ptolemy takes up 
the “strange” (ξενίζοντα) visibility phenomena of Venus (extreme variation of intervals of invisibility at inferior 
conjunction) and Mercury (“missed” appearances in the alternation of morning and evening visibility). See also 3.1 
where Ptolemy adduces the accuracy of predictions of eclipse times as evidence that his solar model is correct in 
assuming a constant tropical year.

4	  E.g. Theon of Smyrna, ed. Hiller 166-189 and the passage quoted from Geminus’ digest of Posidonius’s Meteorol-
ogy quoted by Simplicius (Commentary on Aristotle’s Physics ed. Diels, Commentaria in Aristotelem Graeca 9.291-292).
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It is worth asking whether for Ptolemy simplicity is a “criterion” in the technical sense of 
that term in Hellenistic philosophy, that is, a standard guiding us towards knowledge of the real-
ity underlying the phenomena, or whether it is merely a basis for selecting from among several 
hypotheses, any of which could equally be true, the one that is easiest to comprehend or most 
convenient. He does regard computational simplicity as a merit justifying the omission or ap-
proximation of certain theoretically necessary elements in methods of predicting phenomena, 
when the effects of these shortcuts are below the threshold of observational precision (Almagest 
6.7). In the introductory section of the Planetary Hypotheses (1.2) he writes, rather obscurely, 
that in describing the models for the motions of the heavenly bodies he will use “the simpler 
ones among the approaches [ταῖς ἁπλουστέραις τῶν ἀγωγῶν] for the sake of convenience in 
the construction of mechanical models [πρὸς τὸ εὐμεθόδευτον τῆς ὀργανοποιίας], even if some 
discrepancy [παραλλαγή] ensues,” probably referring to the models for planetary latitude which 
are much simpler than those of the Almagest.5 However, later in the same work (2.6) he writes 
that one should not suppose that anything pointless and useless exists in nature, while the pas-
sage in Almagest 13.2 already referred to, while asserting that simplicity is not a trivial thing 
for human beings to appraise in heavenly bodies, nevertheless implies that it is an attribute of 
their motions. It is thus clear that simplicity is one manifestation of Ptolemy’s Platonizing belief 
(Harmonics 1.2) that “the works of nature are crafted [δημιουργούμενα] with a certain reason and 
ordered cause, and nothing is brought about without plan or at random.”

Another important class of argument that rests on the presumed orderliness of the cosmos is 
appeal to analogy; as Ptolemy succinctly expresses the principle in Planetary Hypotheses 1.2, “the 
most wondrous nature portions out very like things [τὰ παραπλήσια] to similar things,” that is, 
entities that resemble each other in certain essential respects are naturally endowed with other 
similar characteristics. One might describe this principle as a simplicity argument applied to the 
cosmos as a whole. Explicit analogical argument is rare in the Almagest, but conspicuous in the 
Harmonics (as well as in the more speculative cosmology of the Planetary Hypotheses). One form 
it can take is the extension of attributes that have been deduced for one entity to other entities 
that are regarded as of the same kind; for example, the empirically deduced spherical shape of 
the Sun and Moon can be presumed to apply also to the invisible etherial bodies composing the 
heavens (Almagest 1.3). Another form is to infer from a numerical correspondence between two 
sets of entities that they can be paired off one-to-one in a meaningful way; this kind of argument 
comes into its own extravagantly in Harmonics Book 3 where the theoretical structures based on 
ratios of whole numbers that Ptolemy has deduced for musical pitch systems earlier in the trea-
tise are assigned putative analogues in various aspects of the human soul and the heavens. Ana-
logical argument can also be applied inversely to infer a kinship between entities on the basis of 
their having similar attributes, as when Ptolemy adduces the structural similarities among the 
models for certain subsets among the heavenly bodies as evidence that the models are spatially 
contiguous (Almagest 9.1 and Planetary Hypotheses 1B.36). Like simplicity arguments, arguments 

5	  Aside from the planetary latitude models, the only structural difference between the Almagest models and 
those of the Planetary Hypotheses is Ptolemy’s abandonment of the special definition of the apogee of the Moon’s 
epicycle from Almagest 5.5. If Ptolemy has the latitude models in mind in Planetary Hypotheses 1.2, his remarks would 
appear to cast doubt on whether he believed that the simpler models of the Planetary Hypotheses were true repre-
sentations of the way that the planets move, though they are in fact more accurate as geocentric transformations 
of the inclined heliocentric orbits of the planets than Ptolemy’s earlier models; see Swerdlow 2005.

6	  Goldstein 1967, 7. The two arguments are distinct: in Almagest 9.1 Ptolemy uses the criterion of restricted/
unrestricted possible elongation from the Sun to divide the planets into two groups spatially separated by the Sun’s 
sphere, while in Planetary Hypotheses 1B.3 he invokes the structural similarity between the Moon’s and Mercury’s 
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based on analogy seem to have the status of weak or probabilistic criteria in Ptolemy’s episte-
mology. They are invoked only when empirical arguments are not available, and often with a 
qualification that the argument has the force of likelihood, not certainty.

Ptolemy seldom appeals to the authority of his predecessors, if we except the observation 
reports from the past that he necessarily accepts as givens in the Almagest; and when it hap-
pens, this kind of appeal is normally offered as a supplement to an empirical argument. Thus in 
Almagest 3.1 he adduces several passages from Hipparchus’s works as supporting his value for 
the length of the tropical year, though his primary justification for that parameter comes from 
the comparisons of observed solstice and equinox dates in that chapter; 7.1-3 similarly draw on 
Hipparchus’s authority as a secondary support for the elements of his precession theory. Previ-
ously, in 1.12, he has pointed out that his value for the obliquity of the ecliptic, again ostensibly 
derived from his own observations, is in agreement with values accepted by Eratosthenes and 
Hipparchus. On the other hand, in 9.1, without providing any additional rationale, he accepts 
the consensus of “pretty well all the leading mathematicians [σχεδὸν παρὰ πᾶσι τοῖς πρώτοις 
μαθηματικοῖς]” that the outermost spheres of the heavenly bodies in the cosmos are, in order 
of progressive proximity to the Earth, those of the fixed stars, Saturn, Jupiter, and Mars, while 
the Moon’s sphere is closest to the Earth; but this seems to be a unique instance of Ptolemy’s 
acquiescing in insupported authority, and the matters at issue do not come into play in the sub-
sequent logical argument of the Almagest.

Thus the narratives of Ptolemy’s mathematical works present the reader with a series of ra-
tional decisions determining, refining, and quantifying the models under investigation, where 
each decision is based on empirical evidence, or if pertinent empirical evidence is not available, 
on less reliable principles reflecting the presumed orderliness of nature. This appearance, how-
ever, is partly deceptive, because Ptolemy sometimes presents ostensibly empirical evidence 
that, on closer examination, could not be observed. These claims, which I will call pseudoempir-
ical, are statements concerning things that are observable, such as musical pitches and appar-
ent positions and speeds of heavenly bodies, but what is said about them could not have been 
confirmed or refuted under ancient observing conditions because the claimed behaviors are 
smaller than the limits of observational accuracy, and one can be fairly sure that Ptolemy knew 
this. Pseudoempirical claims really are untestable predictions of phenomena derived from the 
very models for which they are supposed to provide evidence, and as such they mask gaps in the 
deductive completeness of Ptolemy’s treatises.

My primary purpose in this paper is to show that pseudoempirical claims are present in the 
Harmonics and, with some frequency, in the Almagest. (I am not aware of instances in the Optics.) 
Secondarily, I wish to raise the question of why Ptolemy sometimes chooses to adduce pseu-
doempirical claims instead of either genuine empirical evidence or metaphysical considerations 
such as simplicity or analogy. I begin with a case that arises in the Harmonics, because in that 
work Ptolemy discusses in some depth the limits of observational precision and their conse-
quences for the appropriate use of the evidence of the senses. My other examples are from the 
Almagest, and are presented in the order that they appear in that treatise; but they also represent 
a progression of increasing complexity, leading to cases whose status as pseudoempirical is dif-
ficult to assess with certainty.

rapidly revolving eccenters as grounds for believing that Mercury’s model is contiguous with the Moon’s.



Limits of observation and pseudoempirical arguments in Ptolemy’s Harmonics and Almagest	 151

The Harmonics and the limits of auditory perception

The premise of the Harmonics is that the systems of intervals between the tuned pitches em-
ployed by the musicians of Ptolemy’s culture were mathematical entities whose structures and 
properties could be described and explained by ὑποθέσεις (“hypotheses” or “models”) built up 
out of ratios of whole numbers, just as astronomical phenomena are explained by ὑποθέσεις 
built up out of uniform circular revolutions. The quantitative and relational character of pitch 
intervals, Ptolemy argues, is inferred from the primitive observation that the pitches produced 
by a sounding object are dependent on quantitative elements such as the object’s size and den-
sity and the distance between the point of origin of movement and the place where the air is 
struck and incited into motion. The effects of these quantitative elements must unite into a sin-
gle, more abstract quantitative attribute called τάσις (“tenseness”) that originates in the sound-
ing body and spreads outward through the air, where it is manifested as sound. Only discrete 
intervals between sounds that maintain a fixed pitch are mathematically tractable, and they 
obviously have the character of relations, i.e. ratios, between magnitudes.

Our sense of hearing, in Ptolemy’s view, is inherently inexact, but it is more reliable in certain 
kinds of responses and assessments than in others. At the high end of reliability are its recogni-
tion of certain pitch intervals as ὁμόφωνοι (“same-sounding”) or σύμφωνοι (“together-sound-
ing”), meaning that the pitches, though distinct, sound somehow the same or very nearly. The 
octave is an example of a “same-sounding” interval, and the fifth and fourth are examples of “to-
gether-sounding” intervals. Our auditory recognition of such special intervals is an elementary 
response to a pair of heard pitches that are approximately in a particular relation to each other, 
something more like a resonance than a measurement; Ptolemy gives an analogy of our visual 
recognition of circularity in an approximate circle, even if it is drawn freehand, which does not 
depend on a measurement of radii. Secondly, our hearing can reliably judge which of two heard 
pitches is higher so long as the interval between them is not smaller than some threshold. On the 
other hand, we cannot trust our hearing to correctly measure intervals or to compare the sizes 
of two heard intervals that are close to the same size and that do not have either their higher or 
their lower pitches in common.

Ptolemy’s methodology for acquiring scientific knowledge involves iterative, alternating ap-
peal to sense perception and reason to refine each other’s contribution. Having arrived at a basic 
theoretical framework for harmonics, namely the modelling of pitch intervals as whole num-

Figure 1. Ptolemy's monochord, top and side views. The bridges have spherical surfaces of equal radius. The middle 
bridge is movable and slightly raised relative to the fixed bridges; here it is set to produce a 2 : 1 ratio between the 
two parts of the string, which will be heard as an octave. The scale is divided linearly into 120 parts.
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ber ratios, reason can direct the next stage of sensory investigation by devising observational 
techniques and instruments that exploit the model to enable one’s hearing to make more exact 
perceptions, on the basis of which reason will take the modelling to the next stage. The instru-
ment that Ptolemy advocates as particularly suited to harmonic research is the κανών, actually 
a class of instruments based on tensed strings divided by bridges into measured lengths, which 
produce pitches when struck or plucked. The κανών effectively reduces the sounding body to a 
single, easily controlled variable magnitude that has a simple and direct relation to the τάσις and 
hence to the perceived pitch. The simplest form of κανών is a monochord, which comprises a 
single string between two fixed bridges, and a movable bridge that divides the string into equal-
ly tensed parts whose lengths and ratio can be measured by a ruler running along the string’s 
length (Fig.1). 

Ptolemy employs the monochord only for the most basic demonstrations, while for more 
advanced work he prefers a κανών consisting of eight independent monochords. With the single 
monochord, we are merely to divide the string into simple whole number ratios for which we 
have a theoretical expectation that they correspond to “same-sounding” and “together-sound-
ing” intervals, and verify that the pitches made by each part of the divided string produce the 
expected sensory response. Thus dividing the string into a 2 : 1 ratio results in a “same-sound-
ing” octave, while dividing it into a 3 : 2 or 4 : 3 ratio results respectively in a “together-sound-
ing” fifth or fourth.

Ptolemy also describes another demonstration that he ascribes to the followers of the fourth 
century B.C. Peripatetic philosopher Aristoxenos, which would most easily be carried out on a 
multi-string κανών. This demonstration concerns the relationship between the fourth and a 
smaller interval called the τόνος, which is the interval obtained by tuning up a fifth and then 
down a fourth from a given pitch, in other words the “difference” between a fourth and a fifth. 
One begins with two strings a and b, tuned by ear to sound at the interval of a fourth. String c is 
tuned (always by ear) two τόνοι above a, and string d is tuned two τόνοι below b. Lastly, string 
e is tuned a fourth below c, and string f is tuned a fourth above d. Strings e and f will ostensibly 
sound at the interval of a fifth, and from this it can be inferred that a fourth is equal to two and 
a half τόνοι.7 A corollary of this result is that an octave consists of exactly six τόνοι.

The conclusion of the Aristoxenian demonstration is inconsistent with the equations in Pto-
lemy’s model of the fourth with the 4 : 3 ratio and the fifth with the 3 : 2 ratio. Assuming Ptole-
my’s ratios, one obtains the ratio for the interval between e and f as 218 : 311 (i.e. 262144 : 177147), 
which is obviously not equivalent to a 3 : 2 ratio. Ptolemy has no doubt about which demonstra-
tion to trust: our hearing “all but screams out” that the monochord divided into 3 : 2 and 4 : 3 
ratios produces the fifth and fourth, whereas the multiplicity of by-ear tunings in the other 
demonstration gives ample room for small perceptual errors that could cumulatively stretch the 
final interval into something heard as a fifth. Ptolemy calculates from his model that the interval 
between pitches a true fourth and two and a half τόνοι above a given pitch would correspond to 
a ratio of 129 : 128, and he remarks that even the followers of Aristoxenos would not assert that 
such a tiny interval could be judged by ear.

Though its appearance in a polemical context might lead one to suspect Ptolemy’s statement 
that one cannot discriminate accurately between pitches in a 129 : 128 ratio (i.e. about 0.8%), it is 
in fact quite reasonable. While under ideal conditions hearing has been shown to capable of dis-

7	  Half a τόνος is the interval such that if strings i and j are a half τόνος apart and strings j and k are a half τόνος 
apart, then i and k are a τόνος apart.
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tinguishing pitches differing by as little as 0.4%,8 0.8% is about the average threshold of pitch dis-
crimination for non-tone-deaf individuals comparing electronically generated sinusoidal tones 
of half a second’s duration around 500Hz.9 The threshold for comparisons of rapidly fading tones 
made by plucked strings would surely be still higher.

To make his point still more explicit, he invites the Aristoxenians to fetch the most skilled 
musician that they can find, and have him tune a series of seven strings at successive intervals 
of a τόνος, and he guarantees that the final pitch will not sound as an octave above the first. 
Hence either six τόνοι do not make an octave or no musician can be relied on to perform perfect 
tunings, and either way the Aristoxenians will be baffled. By contrast, if the strings are tuned 
according to calculated 9 : 8 ratios using the ruler (i.e. following the methodology of Ptolemy’s 
simple monochord demonstrations), it will become apparent both visually and aurally that six 
τόνοι make an interval larger than an octave.

A pseudo-empirical claim about pitches

This statement that the ear cannot be expected to detect discrepancies as small as 1/128 between 
intervals is worth remembering when one comes to Harmonics 2.1, which describes an excep-
tionally elaborate and ingenious demonstration, the capstone of the first major part of the trea-
tise. Ptolemy has up to now been in pursuit of the mathematical rules determining the possible 
structures of tetrachords, sets of four pitches spanning an interval of a fourth, which were the 
building blocks out of which the various tuning systems (loosely, “scales”) of Greek music were 
built. For our purposes it will not be necessary to review Ptolemy’s investigations in detail. It is 
enough to know that, in accordance with the rules that he devises for the division of the tetra-
chord, he arrives at a very limited number of possible divisions, just six plus one that he presents 
as his own invention and one that he regards as a theoretically improper approximation to one 
of the others.

The purpose of Harmonics 2.1 is to show that four of the tetrachord divisions that the mu-
sicians of Ptolemy’s time employed can be rigorously identified among the set that his theory 
has generated. The required apparatus consists of an eight-string κανών, treated as two sets 
of four strings, and a musician capable of making accurate tunings by ear. We are repeatedly 
asked to have one or the other of the two sets of four strings tuned to a particular tetrachord 
division from among those familiar to musicians; after the first time this is done, the additional 
condition is imposed that one of the pitches in the new tetrachord is tuned to match one of the 
pitches in the tetrachord that is already tuned on the other half of the κανών. Following each 
tuning operation, the observer compares specific pairs of pitches from among the eight strings, 
in most instances merely judging which pitch is higher, and inferences are made that ultimately 
lead to the identification of the four musician’s tetrachords among the theoretically prescribed 
repertoire.

The procedure has more in common procedurally with the Aristoxenian demonstration than 
with those that Ptolemy has advocated hitherto, since the tunings are to be made by ear, not by 
calculation and the ruler. We are not asked to carry out long series of cumulative tunings between 
observations, however, so the effects of sensory imprecision can be expected to be less delete-
rious. Still, there is a problematic comparison where Ptolemy tells us that the second-lowest 

8	  Harris 1952.

9	  Loui, Alsop, & Schlaug 2009, 10216; for details of the tests see Loui, Guenther, Mathys, & Schlaug 2008, supple-
mentary data. A similar study (with similar results) is reported in Tervaniemi et al. 2005, 2-3.
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pitch of one tetrachord “will be found to be a little sharper” than the corresponding pitch of the 
second tetrachord, an observation that provides a necessary step in his deduction of the identity 
of the latter tetrachord. According to Ptolemy’s theoretical model for the tetrachord divisions 
that he has identified with the two sets tuned on his κανών at this stage, the interval between 
the two strings under comparison is 5120 : 5103, which is approximately 301 : 300. So if Ptolemy’s 
model is correct, the difference between the pitches, if exactly tuned, would be much smaller 
than the 129 : 128 difference that, he previously claimed, could not be accurately judged by ear, 
and in fact it would be below the normal threshold of pitch discrimination. In other words, even 
if a good musician was doing the tuning, it would be a matter of chance which of the strings 
would turn out sharper than the other, and in any case they would likely be so close that the 
observer would have difficulty telling the pitches apart.

Ptolemy was certainly aware of the numbers that his theory predicted for this pair of pitch-
es, though he does not state them in the chapter in question, and he can hardly have failed 
to realize that they were so close to equality as to make them indistinguishable under exper-
imental conditions.10 This realization need not have shaken his confidence in his model, but it 
would have shown him that the elaborate demonstration he devised in Harmonics 2.1 was faulty. 
If he actually performed the demonstration before including it in his treatise, and his musician 
consistently tuned the two strings in such a way that the first one always sounded slightly but 
unambiguously sharper than the second, he should have concluded that either the musician was 
systematically mistuning, rendering this stage of the demonstration worthless, or the model 
was false. If, on the other hand, in repeated trials the relation of the two pitches was inconsistent 
or indeterminate, he should have concluded that the model was confirmed up to this point but 
the demonstration could not proceed making use of this relation as an observed inequality.

The proper way to regard Ptolemy’s statement about the perceived sharpness of one pitch 
relative to the other, I believe, is as a pseudo-empirical fact, a kind of ideal observation that Ptol-
emy is sure would be made if it were not prevented by the limitations of human sense perception 
and the physical conditions we work within. It plugs a rather small hole in the didactic structure 
of the Harmonics, which is all about the interplay of observation and reasoning, and Ptolemy like-
ly felt that such stopgaps were unavoidable and pardonable if one was proposing to construct 
large scale mathematical deductions about the perceptible world.

The sphericity of the visible heavenly bodies

Ptolemy establishes the broad cosmological framework of the Almagest in a series of chapters, 
1.3-8; the theses of these chapters, none of which would have surprised Plato or Aristotle, are 
founded on arguments that are predominently empirical though some aprioristic considerations 
also come into play. 1.3 addresses a twofold thesis, that “the heavens are spherical and move 
spherically [σφαιροειδῶς].”11 Most of the empirical arguments adduce phenomena from which 
it can be inferred that, broadly speaking, the visible heavenly bodies all revolve daily on circular 
paths that are centered on a single axis and lie in planes perpendicular to it, which is effectively 
what Ptolemy means by “moving spherically.” This conclusion is consistent with but does not 
prove the hypothesis that the heavens are, taken as a whole, spherical. To establish that, Ptole-

10	  Proportional string lengths derived from the model are written, as sexagesimal approximations, in the accom-
panying diagram, though it is not certain whether this is a feature that goes back to Ptolemy or a medieval supple-
ment.

11	  The phrase appears at the end of 1.2.
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my turns to a mathematical-metaphysical argument (that the heavens, being the largest of all 
bodies, should have the three-dimensional form that has the greatest volume in proportion to 
its surface) and two arguments that he calls physical, since they depend on assumptions about 
the properties of the etherial matter that he assumes the heavens to be composed of. The second 
physical argument is as follows:

Nature has formed all mundane and perishable bodies generally from curved but nonho-
meomeric shapes, and all those that are in the ether and divine again from (shapes that are) 
homeomeric and spherical—since if they were planar or disk-shaped, a circular shape would 
not be apparent to all who see (them) from various places of the Earth at the same time—and 
because of this, it is plausible that the ether surrounding them, being of similar nature, is 
spherical and travels circularly and uniformly on account of its being homeomeric.

(“Homeomeric” here means that all parts of the surface or circumference are geometrically con-
gruent, which is a property of circles, cylinders, and spheres.)

There are two empirical claims here, capped by the argument from analogy that we have 
already cited in passing. First, we see around us that naturally formed bodies are more or less all 
rounded, but those in our terrestrial environment are geometrically irregular while the ones in 
the heavens, by which Ptolemy certainly means the Sun and Moon and perhaps also the plan-
ets and stars, are geometrically regular.12 Specifically, they are seen as having circular outlines, 
which would be compatible with their being circles or disks seen head-on or spheres seen from 
any direction. Secondly, their outlines appear circular no matter where we observe them from 
on the Earth’s surface, which rules out their being actual circles or disks since, by a well known 
optical theorem, a circle is normally seen as oval when seen obliquely.13

Just three chapters later, however, Ptolemy demonstrates that the Earth has, to the senses, 
the relation of a point to the heavens (1.6). In other words, so far as observations are concerned, 
all points on the Earth’s surface can be treated as the same point; hence the empirical argument 
that the visible heavenly bodies are not circular or disk-shaped has no force. Granted, Ptolemy’s 
arguments pertain only to the distances of the fixed stars and the Sun, and in Book 5 he shows 
that the Moon is near enough to the Earth to exhibit a significant parallax. But even at its min-
imum distance according to Ptolemy’s lunar model, 33 Earth-radii, the Moon would not be near 
enough for its outline to be seen from any point on the Earth as noticeably oval, supposing it had 
a planar circular face—especially since the minimum distance coincides with half-Moon phase.14 
Thus the statement that the heavenly bodies are always seen as circular from every terrestrial 
vantage point, while a legitimate empirical claim in its own right, becomes pseudoempirical in 
the context of the argument, since the reader is led to suppose that the theoretically predicted 
appearance of noncircularity of a flat-faced heavenly body would be perceived.

12	  Ptolemy believed that the planets and stars have small but discernible apparent disks, and in Planetary Hypoth-
eses 1B.5 (Goldstein 1967, 8) he offers estimates of their diameters.

13	  Euclid, Optics 34-35 (in the first recension in Heiberg’s edition) = 34-36 (in the so-called “Theonine” recension). 
According to these propositions, the circle’s diameters will also be seen as equal if the eye lies at a distance from the 
circle’s center equal to the circle’s radius, but this obviously does not apply to the heavenly bodies.

14	  Ptolemy could have argued for the Moon’s sphericity on the basis of the appearance of its phases, just as in 1.4 
he could have argued for the Earth’s sphericity on the basis of the outline of its shadow on the Moon during lunar 
eclipses. Why Ptolemy does not mention these well-known arguments is a mystery.
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The choice of solar model

Ptolemy introduces the eccenter and epicycle models as general approaches to modelling anom-
aly in Almagest 3.3. The next chapter turns to the specific solar model. Ptolemy writes:

Now that these things have been set out in advance, there should be a preliminary assump-
tion also about the anomaly apparent with respect to the Sun for the sake of its being single 
and causing the time from the least motion to the mean to be always greater than that from 
the mean to the greatest; for we find that this too is concordant with the phenomena. It can 
be accomplished by means of either of the models under consideration, making the provi-
so that (it is accomplished) by means of the epicyclic (model) such that the Sun’s shifting 
towards the leading (signs) takes place on the arc of (the epicycle) that is farther from the 
Earth. But it would be more reasonable [εὐλογώτερον] to apply the eccentric model since it 
is simpler and accomplished not by two motions but by one.

Unpacking this paragraph, we see that Ptolemy starts out not with two candidate models but 
with three: the eccenter model, and two epicyclic models differentiated by the direction that the 
Sun revolves around its epicycle (Figs. 2-3). The process of deciding which one to adopt involves 
two stages. First, the version of the epicyclic model in which the Sun revolves around its epicy-
cle in the opposite sense to that of the epicycle’s revolution around the Earth is chosen over the 
other version in which the two motions have the same sense. This choice is made on the basis 
of an empirical claim, that the “phenomena” are concordant with having the time from slowest 
to mean apparent speed greater than that from mean to greatest, which was shown in 3.3 to be 
characteristic of the opposite-sense epicyclic model but not of the same-sense model. Secondly, 
the eccenter model is chosen over the opposite-sense epicycle model, not on empirical grounds, 
but according to a simplicity argument. An empirical discriminant would not in fact be possible 
at this stage, because the eccenter model and the opposite-sense epicycle model are (with ap-
propriate choice of parameters) kinematically equivalent, that is, each would place the Sun at 
exactly the same point in space at any chosen time.

Figure 2. Opposite-sense epicycle model. The revolution of the body on the epicycle is considered in a geocentric 
frame of reference, i.e. relative to the revolving radius from the Earth to the center of the epicycle. If the two pe-
riods of revolution are equal, the radius from the epicycle's center to the body will maintain a fixed direction in a 
Cartesian frame of reference and the body will trace out an eccentric circular path at uniform actual speed.
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Before examining Ptolemy’s claim of establishing on empirical grounds that, considerations 
of simplicity aside, the opposite-sense epicycle model can be shown to be viable—and by im-
plication, the same-sense model can be shown not to be viable—it is worthwhile to look at the 
treatment of this question by Ptolemy’s older contemporary, Theon of Smyrna in his Mathemat-
ics Useful for Reading Plato. Theon motivates the application of eccenter and epicycle models to 
explaining the Sun’s apparent motion in a way similar to Almagest 3.4, by asserting that the time 
intervals between the solstices and equinoxes are not equal whereas the angles separating the 
Sun’s longitudes at these events are all 90°. He gives exactly the same figures as Ptolemy for the 
time intervals between vernal equinox and summer solstice (94½ days) and between summer 
solstice and autumnal equinox (92½ days), but he also gives the remaining two intervals between 
autumnal equinox and winter solstice (88⅛ days) and between winter solstice and vernal equi-
nox (90⅛ days), which Ptolemy does not give. This is a significant difference. Ptolemy sets out 
to derive the parameters of his eccenter model from the given time intervals, a calculation that 
calls for observed dates of just three of the four events. Theon, however, simply posits—without 
even proving that this is geometrically possible—a position of the eccenter relative to the Earth 
and ecliptic such that the eccenter is divided by the solstitial and equinoctial lines in unequal 
quadrants proportional to the four given intervals, and then he asserts as bald facts the same 
parameters that Ptolemy derives trigonometrically, namely that the center of the eccenter is 
displaced from the center of the Earth and cosmos by 1/24 of its radius in the direction of Gemini 
5½°.

Theon now turns to the same-sense epicycle model, using the diagram shown in Fig. 4. This 
diagram shows the Earth as point Θ, the ecliptic as circle ΑΒΓΔ (with the direction of increasing 
longitude being counterclockwise), the deferent as circle ΜΟΝΞ, and the epicycle in four suc-
cessive positions as circles ΕΖΗΚ, ΛΠ, ΦΥ, and ΧΨ. From a geocentric radial perspective, the Sun 
travels counterclockwise on the epicycle, from Ε to Ζ to Η to Κ and back to Ε, in the same time 
that the epicycle takes to revolve around Θ, so that its actual locations in relation to the whole 

Figure 3. Same-sense epicycle model. If the periods of revolution in a geocentric frame of reference are equal, the 
body will trace out a closed epitrochoid that, for a small epicycle, closely approximates an eccentric circle with 
slight flattening around the perigee. The body's actual speed, as well as its apparent speed as seen from the Earth, 
are slowest at perigee and fastest at apogee.
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system are successively Ε, Π, Υ, and Ψ. For the observer at Θ these points are projected on the 
ecliptic as Α, Σ, Γ, and Ω. Noting that Ε represents the Sun’s furthest distance from the Earth, 
Theon therefore equates this position with the apogee of Gemini 5½° that he previously gave 
for the eccenter model. From the diagram he has no difficulty in showing that the Sun sweeps 
out the larger arc ΩΑΣ in the same time interval (half a year) as it sweeps out the smaller arc 
ΣΓΩ, which means that the Sun appears to be moving faster around Gemini 5½° than around the 
diametrically opposite point, which contradicts the apparent speeds implied by the given time 
intervals between the solstices and equinoxes.

The diagram for the opposite-sense model (Fig. 5) is similar, but now the Sun revolves clock-
wise around the epicycle going from Ε to Κ to Η to Ζ and back to Ε in the same time as the epi-

Figure 4. Theon's diagram for the same-sense epicycle model.

Figure 5. Theon's diagram for the opposite-sense epicycle model.
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cycle revolves counterclockwise around Θ. The four positions of the Sun and their projections 
on the ecliptic are lettered as before, but now arc ΩΑΣ is smaller than arc ΣΓΩ, so that the Sun’s 
apparent motion around Gemini 5½° is slower than around the diametrically opposite point, 
in agreement with the given time intervals. For Theon’s didactic purposes, this is a sufficient 
demonstration that the opposite-sense epicycle model is viable for the Sun.

Theon’s treatment of the same-sense model is obviously fallacious, because he has no right 
to assume that the apogee of the path traced by the Sun in this model must coincide with the 
apogee found for the eccenter model. In fact the opposite is the case: if one were to hypothesize 
a same sense model and then use trigonometric methods as in Almagest 3.4 to derive the direc-
tion of the apogee, it would turn out to be almost exactly 180° from Gemini 5½°. Hence in Fig. 4 
the region around Γ would correspond to the part of the ecliptic around Gemini 5½°, so that the 
model predicts slower motion just where it ought to.

Ptolemy does not make this mistake. His criterion is whether the moments when the Sun 
appears to move at mean speed are closer to the moment of slowest apparent motion or that 
of fastest apparent motion, which is a valid discriminant between the two varieties of epicyclic 
model. In the opposite-sense model (Fig. 6), one quarter of a year’s motion brings the Sun from 
its point of least apparent speed at apogee, A, to a position B such that its longitude less than the 
mean longitude, but its equation, angle BTC, has not yet reached its (subtractive) maximum, at 
which point the apparent speed equals the mean speed. This occurs a little later, when the Sun is 
at D. In the same-sense model (Fig. 7), when the Sun has travelled for a quarter of a year starting 
from its point of least apparent speed at perigee, A, it will be at exactly the same position B as 
in the opposite-sense model, but it will already have passed the point of maximum equation, D, 
when the apparent speed equalled the mean speed.

But how could one test this discriminant empirically? Ptolemy just writes vaguely that it is 
“concordant with the phenomena.” He would have had absolutely no way of directly measuring 
the apparent speed of the Sun to a precision of even a minute per day, and around the dates of 
maximum equation, when the rate of change of the speed is greatest, it is accelerating or decel-

Figure 6. Behavior of the opposite-sense epicycle model. When the Sun is at its apogee, A, the apparent speed is 
slowest. One quarter of a year later, it is at B, but the moment when the apparent speed equals the mean is slightly 
later, when the Sun, at D, is at the point where TD is tangent to the epicycle. At this point the true anomaly, angle 
ATD, is 90°.
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erating by less than three seconds per day. The observations on which the Almagest’s solar theory 
is based are solstices and equinoxes, which yield dated longitudes only at four points 90° apart. 
In principle Ptolemy could have tried to determine solar longitudes at other dates from the ob-
served solar declinations, using a meridian instrument or armillary, but these would certainly 
not have been accurate enough to determine the date when the Sun’s apparent speed was equal 
to the mean speed.

Even considering the apparent speeds cumulatively, that is, comparing observed longitudes 
over longer intervals with the predictions of the models, one would not be able to demonstrate 
empirically that one model is more successful than the other. If one computes solar longitudes 
for every day over an entire year according to Ptolemy’s eccenter model (kinematically equiva-
lent to the opposite-sense epicycle model) and according to a same-sense epicycle model having 
equivalent parameters and aligned with its perigee matching the eccenter model’s apogee, the 
difference between the models has a maximum of just 6 minutes when the mean Sun is around 
45° and 135° on either side of the apsidal line, well below the precision of longitudes derived 
from observed declinations. The effects on phenomena involving other heavenly bodies of dis-
crepancies of 6 minutes in solar longitudes would also be too small to isolate; for example the 
times of true syzygies would be affected by about ten minutes at most.15

The most pronounced difference between the predictions of the two models from a geocen-
tric point of view is in the distances of the Sun from the Earth. The opposite-sense model makes 
the Sun trace, with uniform true speed, an eccentric circular path whose apogee is at Gemini 

15	  Swerdlow 2004, 250 suggests that one could confirm Ptolemy’s claim by observing that the time from when 
the Sun is at apogee (meaning Gemini 5½° or thereabouts)  to when it is observed at 90° elongation from apogee is 
about five days greater than the time from 90° elongation to perigee. This is, however, practically the same as The-
on’s attempted demonstration; the phenomenon would be consistent with a same-sense epicycle model having its 
perigee near Gemini 5½°, as one can see by comparing the situations of the Sun and its epicycle at the moment of 
90° elongation according to the two models in Figs. 6 (Sun at D) and 7 (Sun at E).

Figure 7. Behavior of the same-sense epicycle model. The apparent speed is lowest when the Sun is at its perigee, A. 
One quarter of a year later, it is at B, but the moment when the apparent speed equals the mean is slightly earlier, 
when the Sun is at D such that TD is tangent to the epicycle. The position of the epicycle when the true anomaly of 
the Sun, at E, is 90° is very close to the corresponding position in the opposite-sense model.



Limits of observation and pseudoempirical arguments in Ptolemy’s Harmonics and Almagest	 161

5½° according to Ptolemy’s parameters. The same-sense model fitted to the same initial equinox 
and solstice observations makes the Sun trace, not quite uniformly, an epitrochoid that closely 
approximates the eccentric circle of the other model in shape and size, but with its perigee at 
Gemini 5½°. According to either model, the apparent diameter of the Sun’s disk should be about 
1/12 greater at perigee than at apogee, so one might hope to use measurements of the diameter 
to determine which end of the apsidal line is the apogee. Whether an ancient observer could 
have detected a variation of this order of magnitude in the apparent solar diameter is an open 
question, but we know what Ptolemy thought: he writes in Almagest 5.14 that “we find that the 
diameter of the Sun is always subtended by approximately the same angle in every situation, 
with no significant variation arising from its distances.”

Ptolemy’s claim that the phenomena determine the required sense of the Sun’s revolution in 
an epicycle model is thus pseudoempirical, in a stronger sense than the claim about the appar-
ent disks of the heavenly bodies in 1.3, since here he is directly asserting that one can observe 
an unobservable effect.

Planetary epicycles and eccenters

In Almagest 9.5 Ptolemy presents a rationale for the structure of his models for the five planets. 
The key points are as follows:

(1) The planet revolves uniformly around an epicycle, with the sense of revolution such that 
the planet travels in the direction of increasing longitude when it is on the part of the epi-
cycle furthest from the Earth.

(2) The center of the epicycle revolves around an eccentric deferent circle.

(3) The apsidal line of the model shifts uniformly in the direction of decreasing longitude at 
the rate of precession.

(4) The angular motion of the epicycle’s center around the eccenter is such that its angular 
motion is uniform with respect to an equant point distinct from the center of the deferent.

Only the first two points are justified in this chapter on the basis of empirical claims similar to 
the one we have just examined concerning the Sun’s motion.

Ptolemy begins by pointing out that there are two fundamental model types available, the 
eccenter model and the epicycle model, and that there are “similarly” (ὁμοίως) two anomalies 
in each planet’s motion, the synodic anomaly correlated with the planet’s elongation from the 
Sun, and the zodiacal anomaly correlated with the planet’s longitude. Although he does not yet 
explicitly draw an inference from this conjunction of two pairs, the linkage by ὁμοίως clearly 
hints at the plausibility of a one-to-one correspondence: if one anomaly is caused by an epicycle, 
the other would be caused by an eccenter. This sets up a weak, aprioristic bias against a double 
epicycle model even before we have looked at the details of the two anomalies.

Ptolemy then offers a phenomenon that ostensibly proves that the synodic anomaly is pro-
duced by a same-sense epicycle:

We find in the case of the five planets from various configurations observed successively and 
around the same parts of the zodiac that the time from the greatest speed to the mean is 
always greater than that from the mean to the least.
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This appears to mean a procedure along the following lines.16 For some selected region of the 
ecliptic, one determines from observation two dates when the planet was at its maximum elon-
gation on either side of its mean longitude. If these belonged to different synodic cycles, one 
subtracts whole mean synodic cycles from the interval separating them, and what remains will 
be an estimate of either the interval from mean apparent speed through maximum and back to 
mean or that from mean through minimum and back to mean, on the assumption that the zodi-
acal anomaly has not significantly changed throughout. What Ptolemy asserts, then, is that the 
intervals from mean to greatest to mean speed are consistently more than half a mean synodic 
period, and those from mean to least to mean are consistently less. This is a test that could have 
been performed for all five planets; Saturn would be the most difficult case because of its small 
synodic anomaly, but careful observations and interpolation ought to have made it possible to 
detect the inequality of the intervals if not their precise length.17 Ptolemy’s inference that the 
synodic anomaly must be produced by a same-sense epicycle is true to the extent that an op-
posite-sense model can be ruled out, though he fails to mention that there exists an eccenter 
model with advancing apsidal line that is kinematically equivalent to the same-sense epicycle 
model.18 The empirical claim itself, however, is sound.

Conversely, Ptolemy has an empirical argument to prove that the zodiacal anomaly is pro-
duced by an eccenter or an opposite-sense epicycle:

In the case of the anomaly that is observed [θεωρουμένης] in relation to the parts of the zo-
diac, we find contrarily from the arcs of the zodiac taken up at the same phases or the same 
configurations that the time from the least speed to the mean is always greater than that 
from the mean to the greatest.

Ptolemy’s highly compressed statement can be expanded as follows. We have deduced that the 
synodic anomaly results from the planet’s revolution around an epicycle. We now wish to inves-
tigate the motion of the epicycle’s center around the Earth, to see whether the time from this 
center’s fastest apparent motion to the moment when its apparent motion equals its mean mo-
tion is greater or less than the time from that moment to the slowest apparent motion. Since the 
center cannot be observed directly, one uses multiple observations of the planet at a particular 
stage of its synodic cycle (“phases” or “configurations”), when it is approximately at the same 
point on the epicycle so that the center’s longitude can be approximated from the observed lon-
gitude of the planet. On the basis of such observations, Ptolemy asserts that the time from least 
to mean speed is consistently greater than the time from mean to greatest speed.

16	  This is a slight simplification and generalization of the second method outlined by Swerdlow 2004, 252. For an 
inferior planet, the mean longitude is the same as the Sun’s mean longitude; for a superior planet, it is obtained 
from the relevant period relation. In either case the exact alignment of the mean longitude is not required, only a 
reasonably accurate rate of mean motion.

17	  Swerdlow 2004, 251 asserts that a demonstration of this kind is only practicable for Venus. In the case of Mer-
cury, it is true that the planet’s day-to-day longitudes could only be observed adequately in certain portions of the 
ecliptic. However, his statement that the point of tangency on the epicycle cannot be observed for the superior 
planets is mistaken; one merely has to find the date when the difference between observed longitudes of the planet 
on successive days and the planet’s calculated mean longitudes is at a maximum.

18	  Ptolemy mentions the possibility of eccenter alternatives at Almagest 12.1, though only for the superior plan-
ets. See POxy astron. 4173 (Jones 1999a, 1.166-167 and 2.152-155) for a fourth century ad fragment of a set of mean 
motion tables, based on Ptolemy’s but apparently pertaining to a system in which the inferior planets had epicycle 
models and the superior planets eccenter models.
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Swerdlow remarks that the most direct way to carry out such a demonstration would be 
using oppositions of a superior planet, since this phase should coincide with the moment when 
the planet’s observed longitude coincides with the longitude of the epicycle’s center.19 In fact 
oppositions (or accurately interpolated conjunctions) are the only synodic phenomena that have 
a hope of yielding meaningful results, since stations and first and last visibilities involve factors 
that make the elongation of the planet from its mean longitude significantly variable. A suffi-
ciently dense collection of observed oppositions (which requires a sustained program of obser-
vations over several years or even decades, depending on the planet) would allow one to show by 
interpolation that the time from the point of slowest apparent speed to a longitude 90° greater is 
longer than the time from this point to the point of greatest apparent speed.20 But this is a situa-
tion closely paralleling our examination of the Sun’s anomaly. If the epicycle’s center travels on 
an eccenter or an opposite-sense epicycle, the point when it has a longitude 90° away from the 
point of slowest apparent speed will be the point of mean apparent speed; but the nature of the 
model is precisely what we are trying to determine, so it would be a petitio principii to claim that 
we have demonstrated Ptolemy’s empirical claim. A same-sense epicycle model with the perigee 
at the point of least apparent speed would be equally compatible with the observations, though 
it would result in the points of mean speed being closer to the point of slowest speed. As was the 
case with the Sun, there is no way that Ptolemy could have obtained a set of observations dense 
enough or precise enough to discriminate between an optimally-fitted same-sense epicycle 
model and the eccenter model that he adopted. It is noteworthy that, after ruling out the same-
sense model, he chooses the eccenter over the kinematically equivalent opposite-sense epicycle 
by invoking not just the simplicity argument used in Almagest 3.4 but also the correspondence 
principle, that two distinct anomalies call for two distinct model types.

The precessional motion of the planetary apsidal lines

Ptolemy’s justifications of the two remaining points about the planets’ models that he asserted 
in Almagest 9.5 are more complex. In each case he provides a detailed demonstration based on 
dated observation reports for one or two planets, but for the remaining planets he gives only a 
brief general empirical claim. Thus he shows in 9.7 by an analysis of observations made in his 
own time and four centuries earlier that Mercury’s apsidal line has shifted eastward by 4°, the 
amount corresponding to his rate of precession, but there is no corresponding demonstration 
for the other four planets, only a terse remark at the end of 9.7 that we find the hypothesis that 
the apsidal line has precessional motion to be “concordant” (σύμφωνον) “from the part-by-part 
fitting [ἐκ τῆς... κατὰ μέρος ἐφαρμογῆς] of the phenomena relating to the other planets.”21

At this point it will be useful to have a sense of how well Ptolemy’s models and their param-
eters are fitted to the motions of the planets. For this purpose we have used Ptolemy’s Almag-
est models and the JPL Horizons ephemeris22 to compute long runs of longitudes (comprising a 

19	  Swerdlow 2004, 253.

20	  Swerdlow 2004, 253-254, illustrated for Jupiter.

21	  The extension to the other planets is thus not simply an instance of analogical argument as stated in Jones 
2005, 30 (cf. Swerdlow 2004, 254), though analogy is a latent, secondary consideration, since the reader is likely to 
infer that Ptolemy would not have postulated moving apsidal lines for the other planets purely on the basis of the 
“fitting of the phenomena” without the ostensibly secure example of Mercury.

22	  http://ssd.jpl.nasa.gov .
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rough return to the initial Sun-planet configuration) for each planet at 5-day intervals,23 and in 
Table 1 we display (1) the mean value of the difference Δλ = λPtolemy – λJPL, which is the systematic 
longitudinal offset, incorporating the approximately –1° error in Ptolemy’s tropical frame of 
reference for his own time, (2) the standard deviation of Δλ, and (3) the maximum positive and 
negative values of Δλ.

Next, using the same runs of JPL longitudes, we determined the optimum values for the 
three dimensional parameters of Ptolemy’s models, namely the longitude of apogee λA, the ec-
centricity e of the deferent (scaled such that the deferent’s radius is 60), and the epicycle radius 
r (according to the same scale), so that the standard deviation of Δλ is minimized.24 In Table 2 
we give Ptolemy’s parameters, the optimized parameters, and the measures of fit for the models 
with the optimized parameters.

One is struck by how close Ptolemy’s parameters for the superior planets are to their opti-
mum values. Among them, the parameter that makes the largest contribution to error in pre-
dicted longitudes is Saturn’s epicycle radius.25 Venus’s epicycle radius is also very accurate,26 
its apogee at least decent, but the eccentricity is significantly too large. Mercury has a good 
epicycle radius, too small an eccentricity, and a disastrously inaccurate apogee. In addition, the

23	  The Almagest longitudes were computed for mean noon, Alexandria, and the JPL longitudes for 14:00 UT.

24	  For these optimizations we have retained Ptolemy’s mean motions. The error contributed by Ptolemy’s inac-
curate tropical frame of reference is small over the time intervals used here.

25	  Interestingly, in the earlier Canobic Inscription Ptolemy gave 6 1/4 for the epicycle radius, much closer to the 
optimum. One wonders what led him change it.

26	  The precise value adopted by Ptolemy almost exactly the radius required in a simple epicycle model such that 
the greatest elongation is 46°, which is one of the traditional estimates reported in ancient sources (Pliny, Naturalis 
Historia 2.6.38 with attribution to Timaeus, see Duke 2002, 57).

Planet	 Date range	 Mean Δλ	 Standard	 Maxima
			   Deviation Δλ	

Mercury	 ad 110-155 (46y)	 –1.26°	 2.86°	 –9.30°/+7.07°
Venus	 ad 100-163 (64y)	 –1.24°	 1.07°	 –2.65°/+4.68°
Mars	 ad 110-156 (47y)	 –1.17°	 0.38°	 –2.11°/+0.03°
Jupiter	 ad 140-151 (12y)	 –0.95°	 0.12°	 –1.23°/+0.60°
Saturn	 ad 120-149 (30y)	 –1.15°	 0.24°	 –1.58°/+0.56°

Table 1. Fit of Ptolemy's models to runs of longitudes computed from the JPL ephemeris.

Planet	 Ptolemy			   Optimized		  Mean Δλ	 Standard	 Maxima
	 λA	 e	 r	 λA	 e	 r		  Dev. Δλ

Mercury	 190°	 3	 22.5	 218.6°	 4.57	 22.14	 –1.26°	 2.05°	 –6.69°/ +4.03°

Venus	 55°	 1.25	 43 1/6	 59.2°	 0.83	 43.35	 –1.23°	 0.73°	 –1.94°/ +1.79°

Mars	 115°	 6	 39.5	 116.3°	 5.89	 39.48	 –1.17°	 0.31°	 –2.40°/ +0.24°

Jupiter	 161°	 2.75	 11.5	 160.7°	 2.69	 11.54	 –0.95°	 0.09°	 –1.12°/ 0.74°

Saturn	 233°	 3 25/60	 6.5	 234.1°	 3.53	 6.30	 –1.15°	 0.07°	 –1.37°/ +1.02°

Table 2. Ptolemy's planetary parameters compared with optimally fitted parameters.
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peculiar model Ptolemy assumes for Mercury, with its rapidly revolving eccenter and resulting 
double perigee, makes a large contribution to the error in predicted longitude; an optimally fit-
ted model having the same structure as for the other planets would bring the standard deviation 
of Δλ down to 1.67°.27

Thirdly, we determine the optimized parameters to fit runs of longitudes from the JPL 
ephemeris of the same length and density as those used above, but exactly 400 Julian years ear-
lier. The apogees for Ptolemy’s time and for four centuries earlier are compared in Table 3. The 
shift in longitude according to Ptolemy’s theory is of course 4° for all planets. For the optimized 
apogees, we give both the shift in true tropical longitude and the shift reduced by 1.6° to correct 
for the accumulated error in Ptolemy’s tropical frame of reference over four centuries.28

Now if Ptolemy’s resources for locating Mercury’s apogee in his own time were so defective 
that the result was nearly 30° off, it should be obvious that he could not have detected a shift on 
the order of 4°, as he claims, by comparing his result with observations from the third century 
bc, the oldest period from which he appears to have had planetary observation reports. The 
reasons behind the large errors in Ptolemy’s parameters for Mercury as well as those behind the 
unnecessary special structure of his model cannot be recovered in detail, but the chief cause was 
undoubtedly the highly restricted conditions under which Mercury could be observed in prox-
imity to fixed stars. An approximate idea of these conditions can be obtained from the numerous 
preserved Babylonian records from the last four centuries bc of observed positions of Mercury’s 
position relative to the so-called Normal Stars. Figure 8 shows the planet’s actual positions in 
longitude and latitude (according to modern theory) at the dates of these observations. The 
parts of the zodiac within which Babylonian observers were able to see Mercury together with 
a nearby Normal Star turn out to have been limited to two intervals of roughly half the zodiac, 
one of them applying to evening observations, the other to morning observations.29 An observer 
in Alexandria or generally in Egypt would have had slightly better observing conditions for Mer-
cury because of the lower terrestrial latitude, but there would still have been large “blackout” 
areas within which it would have been difficult or impossible to obtain accurate observed posi-
tions of the planet. This would apply both to Ptolemy’s own observations and to any that were 
available to him from past centuries (e.g. by Timocharis or the unknown observers who recorded 
planetary observations with dates “according to Dionysius”).

27	  The parameters of the optimized conventional model would be λA = 218.6°, e = 2.75, and r = 22.74.

28	  In any planetary observations used by Ptolemy, he has determined the planet’s longitude relative to one or 
more fixed stars, whose positions for the date are found from his star catalogue adjusted according to his 1° per 
century precession rate.

29	  The absence of reported observations of Mercury around 15°-30°, 240°-270°, and 300°-350° results from large 
gaps between stars in the regularly used Normal Stars; see Jones 2004, 481-491 with Figures 1-2 on pp. 493-494. 

Planet	 Ptolemy		  Optimized			 
	 2nd cent. ad	 3rd cent. bc	 2nd cent. ad	 3rd cent. bc	 Shift	 Adjusted Shift

Mercury	 190°	 186°	 218.6°	 213.2°	 5.4°	 3.8°

Venus	 55°	 51°	 59.2°	 52.3°	 6.7°	 5.1°

Mars	 115°	 111°	 116.3°	 110.5°	 5.8°	 4.2°

Jupiter	 161°	 157°	 160.7°	 155.4°	 5.1°	 3.5°

Saturn	 233°	 229°	 234.1°	 230.0°	 4.1°	 2.5°

Table 3. Parameters for Ptolemy's planetary models optimized for his own time and 400 years earlier.
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That Ptolemy nevertheless gives the appearance of demonstrating empirically that the lon-
gitude of Mercury’s apogee and perigee were almost exactly 4° lower in the first half of the third 
century bc than in his own time is a tribute to his skill in manipulating an analysis of observation 
reports to yield a preordained result. The method, which involves finding a line of symmetry 
between one selected observation and an interpolation between two others, is very sensitive to 
small variations in the data, as Ptolemy has to have known by experience, and the agreement of 
the apogee that he obtains with his theoretical expectation depends on several small impreci-
sions in the calculations.30 It is hard to avoid the conclusion that his analysis of the third century 
bc observations constitutes a pseudoempirical claim of a more elaborate kind than the general 
statements about solar and planetary speeds that we have considered up to now.

This places a greater burden on Ptolemy’s brief and frustratingly imprecise statement that 
the phenomena for the remaining planets “fit” a precessional motion of their apogees. Read 
strictly, Ptolemy’s wording could signify only that the phenomena are consistent with shifting 
apogees, but the context implies a stronger connotation, that the phenomena require them; the 
word translated above as “fitting,” ἐφαρμογή, is used, for example, to signify coincidence of 
geometrical objects. The planets’ apogees really do shift in a tropical frame of reference at rates 
close to that of precession as shown in Table 3 (in other words, in a sidereal frame of reference 
they move more slowly than the solstitial and equinoctial points). Could Ptolemy have detected 
and measured these motions for the planets other than Mercury by locating their apogees at a 
period several centuries before his time from old observation reports?

30	  See Jones 2005, 27-30 for details. Ptolemy’s inclusion of two Babylonian reports of Mercury’s passage by Nor-
mal Stars suggests that the selection of observations as well as their analysis was motivated by the desire to obtain 
a particular result, since such reports are very imprecise indicators of the planet’s longitude.
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Figure 8. Locations of Mercury at the dates of preserved Babylonian observations of the planet near Normal Stars.
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In the case of Venus, the answer is almost certainly not. Ptolemy’s value for the longitude of 
Venus’s apogee in his own time, 55°, is ostensibly obtained as one of the midpoints of two pairs 
of observed equal but opposite greatest elongations of the planet from the mean Sun. But these 
observations do not stand up to closer scrutiny. In the first place, their reported dates all differ 
by from 12 to 20 days from those of the actual greatest elongations; these discrepancies far ex-
ceed the plausible range of error in determining these phenomena, and they are large enough 
so that the planet’s elongation on the reported dates would have been significantly less than 
a greatest elongation occurring on that date would have been.31 Two of the observations (ad 
127 October 12, morning, and 132 March 8, evening) are ascribed to Theon the mathematician, 
and as reports of the location of Venus relative to nearby stars they appear to be reasonably 
accurate.32 The other two (136 December 25, evening, and 140 July 30, morning), which Ptolemy 
says that he observed himself, both state that the planet was a small fraction of a degree from a 
nearby star when in fact its distance was well over a degree away; these are obviously fabricated 
positions chosen so that the elongations are exactly equal and opposite to the elongations of the 
observations by Theon with which they are paired off.33

As Swerdlow has convincingly argued, genuine observations of greatest elongations would 
only have allowed Ptolemy to determine the location of the apogee very roughly, at best to with-
in a broad region of a zodiacal sign, and he likely chose the specific 55° longitude because it is 
approximately 90° from the mean solar longitudes for a pair of greatest elongations that he uses 
to locate the center of uniform revolution of Venus’s epicycle.34 Supposing that he had observa-
tions from, say, four centuries earlier of sufficient quality and density to allow him to determine 
a satisfactory collection of greatest elongations, he would have been in no better position to 
locate a precise apogee for the earlier date than for his own time.35

The situation with respect to the superior planets is different. Ptolemy’s apogees, adjusted 
for the error in the tropical frame of reference, are correct to within half a degree for Mars and 
Saturn, and within a degree and a half for Jupiter. There is little reason to doubt that his apo-
gees were determined by essentially the method of analysis of three observed oppositions to 
the mean Sun that he uses to demonstrate them in Almagest 10.7, and 11.1, and 11.5, although 
the ostensibly empirical data in these chapters have been adjusted so that the calculations yield 
more or less exactly the round number eccentricities that he adopts in his models.36 If he was 

31	  See Swerdlow 1987, 36-43 and especially Table 1, p. 37.

32	  Theon’s distances are expressed in terms of the “length of the Pleiades” in these reports, adding a subjective 
element to the reduction of Venus’s location to a precise longitude. The ad 127 report states that Venus appeared 
to be passing β Vir “one Moon” to the north, which must be a mistake since their latitudes were almost equal.

33	  In the ad 136 report Ptolemy states that Venus was ⅔ of a “Moon” west of φ Aqr and that a near-occultation 
seemed to be about to occur, when in fact the planet was approximately 1¼° west of the star in longitude and almost 
a degree north of it in latitude. The ad 140 report has Venus half a “Moon” northeast of ζ Gem, but Venus was actu-
ally almost 1½° east of the star and at nearly the same latitude.

34	  Swerdlow 1989, 41-43. Rawlins 2002 and Thurston 2002 show that the parameters for a model for Venus could 
be derived from analysis of an arbitrary set of three observed greatest elongations; there is no evidence, however 
that this method was used in antiquity, and Ptolemy clearly was not aware of it. 

35	  In any case, because of the small eccentricity of Venus’s orbit and the imperfect fit of Ptolemy’s model with any 
parameters to the planet’s actual geocentric longitudes, the optimal apogee for the model fluctuates over a range 
of several degrees depending on the selection of date-longitude pairs to which the model is fitted.

36	  Thurston 1994. The calculations in the Almagest have also been manipulated so that the long iterative proce-
dure appears to converge faster than it really should (Duke 2005). I would guess that the Almagest parameters were 
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able to determine the apogees with comparable success from third century bc observations, a 
shift of their longitudes of the same order of magnitude as precessional motion would have been 
obvious.

For this, Ptolemy would have needed a sufficient number of reliable dated observations of 
each planet near each of several oppositions so that he could accurately estimate the moments 
when the planet was diametrically opposite the mean Sun according to his theory. There were 
certainly a few reports of near-oppositions among the early planetary observations available to 
Ptolemy. In Almagest 11.7 he cites a Babylonian report from 229 bc of Saturn near a Normal Star 
that, by his calculations, was four days before mean opposition. A report from 241 bc of Jupiter’s 
location relative to fixed stars was cited in an early second century ad astronomical treatise 
that was probably known to Ptolemy; he would have determined that this was about two days 
before mean opposition.37 But we have Ptolemy’s own testimony in Almagest 9.2 that most of the 
old planetary observations preserved in his time were unsuitable for theoretical analysis, being 
mostly first visibilities, last visibilities, stations, and observations of positions such that the re-
ported distances from fixed stars were too large to be considered reliable. His contention in this 
chapter is that satisfactory observational resources for working out proper planetary models did 
not exist much before his own time.

In any case, if Ptolemy had meant to indicate in 9.7 that the precessional shift of all the 
planets’ apogees could be demonstrated by comparing apogees independently determined at 
widely separated periods, he would have written this more explicitly. His expression, invoking 
the ἐφαρμογή (“fitting”) of phenomena to the hypothesis, actually harks back to a passage in 
9.2 in which he warns the reader of certain methodological compromises that he will have to 
make in his planetary theory, including “hypothesizing certain primary matters not on the basis 
of an observed starting point [μὴ ἀπὸ φαινομένης ἀρχῆς], but having grasped them in accor-
dance with continued trial and fitting [ἐφαρμογή].”38 Such a process would mean, in the present 
instance, that Ptolemy tried out various possibilities for the behavior of the planets’ apogees, 
and found that sidereally fixed apogees yielded the best agreement with observations at dates 
remote from his time.

The problem with this “better fit” account is that small changes in the assumed longitude 
of apogee do not have a very pronounced effect on the predicted longitudes of the planets, and 
in individual observations the effect would be obscured by noise. For example, if we compare 
our 12 years’ worth of longitudes of Jupiter computed according to Ptolemy’s parameters with 
longitudes computed according to the same model but with a 4° change in the apogee, we find 
that the differences never exceed ±0.5°, with a standard deviation of 0.26°. But the differences 
between Ptolemy’s model and modern theory have a roughly ±0.3° range with standard devia-
tion 0.12°, while even carefully selected observation reports would have been subject to errors 
on the order of, say, a sixth of a degree. The effect of apogee shift on longitude is still smaller in 
relation to the other errors for Venus and Saturn. Mars offers the best prospect for discerning 
it; for this planet, a 4° shift can lead to differences in predicted longitude as large as 2.5°, with 
standard deviation 0.70°, though 89% of the absolute differences are less than 1, and the larger 

derived by selection or averaging of results from several sets of oppositions.

37	  P. Oxy. astron. 4133 in Jones 1999a, 1.69-80 and 2.2-5; for the probable relation to Ptolemy see Jones 1999b. The 
observation was probably made by the same person whose report of Jupiter’s position earlier in the same year is in 
Almagest 11.3.

38	  “ὑποτίθεσθαί τινα πρῶτα μὴ ἀπὸ φαινομένης ἀρχῆς, ἀλλὰ κατὰ τὴν συνεχῆ διάπειραν καὶ ἐφαρμογὴν εἰληφότα 
τὴν κατάληψιν.”
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discrepancies occur around the planet’s intervals of invisibility. Ptolemy would have been lucky 
to find suitable observations among his sources of early planetary observation records.

It seems likely, therefore, that Ptolemy’s entire treatment of the motion of the apsidal lines, 
not just the demonstration for Mercury, is pseudoempirical. He presents this feature of his mod-
els in 9.5 as an additional complication to the basic epicycle-on-eccenter model, because his lon-
gitudinal frame of reference is tropical, but he is probably taking over the assumption that the 
planets’ apsidal lines are tropically fixed from earlier planetary models that had this assumption 
by default since their frame of reference was sidereal.39 Fortuitously, his shifting apsidal lines 
turn out to be a much better approximation to reality than tropically fixed lines would have 
been.

The eccentricities of Venus

Ptolemy’s fourth point concerning the models for the planets is that the centers of uniform 
angular motion (i.e. equants) for their epicycles are distinct from the centers of the eccentric 
deferents. The special model for Mercury, described in 9.6, has the deferent’s center revolving 
rapidly on a small circle whose center lies twice as far from the Earth in the direction of the 
apogee as the equant. We will not discuss Mercury’s model further here. For the remaining four 
planets, the deferent’s center lies at the exact midpoint of the Earth and the equant, a condition 
often called the “bisection of the eccentricity.”

Ptolemy justifies the bisection of the eccentricity in a similar manner to his treatment of the 
motion of the apsidal lines, that is, he provides a detailed observation-based deduction of the 
two eccentricities for one planet, Venus (Almagest 10.2-3), but the extension of the hypothesis to 
the remaining three planets rests only on a general empirical claim (10.6). This claim is, however, 
more specific than the one provided in 9.7 for the motion of the apsidal lines of the planets other 
than Mercury:

In the case of each of these (planets), following a general approach [κατὰ τὸ ὁλοσχερέστερον 
τῆς ἐπιβολῆς], the (eccentricity) found by means of the greatest difference in the anomaly 
dependent on (the position in) the zodiac is found to be approximately double the eccentric-
ity arising from the quantity of the retrogradations around the greatest and least distanc-
es of the epicycle [ἐκ τῆς πηλικότητος τῶν περὶ τὰς μεγίστας καὶ ἐλαχίστας ἀποστάσεις τοῦ 
ἐπικύκλου προηγήσεων].

This passage has been much discussed in recent scholarship, and we can afford to be brief with 
it.40 Ptolemy clearly means this argument to be a rough empirical indication of the bisection, 
not a summary of a rigorous deduction, in contrast to what he has previously shown for Venus. 
Whether or not this is what Ptolemy intended, the reader would likely interpret it as saying that 
there are two independent ways of nonrigorously estimating the eccentricity causing a planet’s 
zodiacal anomaly, assuming an epicycle and eccenter model without yet differentiating between 
the center of the deferent and the center of the epicycle’s uniform motion. One way, based on 
empirical information relating to the planet’s retrogradations, indicates the variation in dis-
tance of the epicycle’s center from the Earth and thus the deferent’s eccentricity; the other, 

39	  Jones 2005, 29-30.

40	  Evans 1984, 1088; Swerdlow 2004, 262-263; Jones 2004, 376-380.
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based on equations of center derived from observations, indicates the location of the equant.41 
Read thus, the statement is simply false with respect to Jupiter and Saturn, while for Mars it is 
correct so far as it goes, but omits the crucial fact that the apogee derivable from Mars’s retro-
gradations according to an equantless model is diametrically opposite that derivable from the 
equations of center. If Ptolemy had written this passage so as to give a more or less valid state-
ment of the phenomena, it would have been something like this:42

The eccentricity arising from the quantity of the retrogradations around the greatest and 
least distances of the epicycle is, in the case of Mars, about half that found by means of the 
greatest difference in the anomaly dependent on (the position in) the zodiac, with the apo-
gee in the opposite part of the zodiac, while in the case of Saturn (the eccentricity derived 
from retrogradations) is about a third (of the eccentricity derived from equations of center), 
with the apogee in the same part of the zodiac, and in the case of Jupiter it is too small to 
determine.

Needless to say, a statement along these lines, while showing that the simple model is inade-
quate, would not make the necessity of bisecting the eccentricity appear obvious.

On the other hand, Ptolemy’s statement could be understood as a radical compression of the 
following:

The eccentricity derived from equations of center, if applied to a simple epicycle and eccen-
ter model, does not yield retrogradations that agree with the phenomena. If, however, we 
assume that this is the eccentricity of the center of uniform motion, but that the eccentricity 
of the eccenter is half that, the predicted retrogradations agree with the phenomena.

This would be a valid description of an effect of the bisection, which is accurate within the range 
of precision of ancient observations and detectable for all three superior planets. It is likely what 
Ptolemy meant,43 but one may reasonably suspect that he deliberately expressed the idea so as 
to convey a deceptive impression that a 1 : 2 ratio of eccentricities is apparent already from a 
“naïve” consideration of each planet’s observed behavior. Despite the elliptical and misleading 
wording, I would not characterize this as a pseudoempirical claim.

The demonstration for Venus is a different matter. Here Ptolemy has a procedure that ap-
pears to truly separate the measurement of the epicycle’s distance at apogee and perigee from 
the determination of the center of uniform motion. Let us first consider the latter.

Ptolemy has begun his treatment of Venus in 10.1 by locating its apsidal line as passing 
through 55° and 235° using the symmetry of pairs of equal and opposite greatest elongations; we 
have already noted that the reported observations are not genuine greatest elongations and are 
partly doctored, but here we can accept the result as a given. Comparing greatest elongations 
where the mean Sun was near either apsidal longitude, he establishes that 55° is the apogee and 
that the epicycle’s radius is 43⅙ such that the deferent’s radius is 60 (10.2); we will return pres-

41	  The order of phrases in Ptolemy’s Greek reinforces the impression that the method of deriving an eccentricity 
from retrogradations is to be thought of as independent of, and not subordinate to, the derivation from equations of 
center. The phrasing cannot be reproduced in literal translation, but this slight rewording conveys the effect: “… the 
eccentricity arising from the quantity of the retrogradations around the greatest and least distances of the epicycle 
is found to be approximately half that found by means of the greatest difference in the anomaly dependent on (the 
position in) the zodiac.”

42	  Jones 2004, 377-379.

43	  This is how Swerdlow 2004 interprets the passage.
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ently to this part. Now he selects a pair of observed greatest elongations, one in either direction 
from the mean Sun, with the mean Sun being approximately 90° from the apogee at both dates; 
by hypothesis, this means that a perpendicular dropped from the epicycle’s center to the apsidal 
line will intersect it at the center of uniform motion. Hence by a simple trigonometrical calcu-
lation involving the sum and difference of the elongations and the epicycle radius, he finds that 
the center of uniform motion is almost exactly 2½ units from the Earth such that the deferent’s 
radius is 60.

The calculation is legitimate in principle, and moreover Ptolemy was able to find a pair of 
greatest elongations that met the criterion of having the mean Sun close to 90° from the apsidal 
line, which is not something that can be taken for granted.44 In Table 4 we give the data for these 
events according to Ptolemy’s report as well as according to the JPL ephemeris.45

The first thing that is apparent from this table is that Ptolemy’s dates are very close indeed 
to the true dates of greatest elongation, close enough that the longitudes of Venus on Ptolemy’s 
dates can be treated as longitudes at greatest elongation without introducing any significant 
error in the ensuing calculations. (Incidentally we can also see that Ptolemy was capable of de-
termining dates of Venus’s greatest elongation within a margin of very few days.) The second 
thing we notice is that Ptolemy’s observed longitudes of Venus cannot both be accurate, since 
the sum of his elongations (which should be independent of the mean Sun) is approximately 
91.92° whereas according to modern theory it is 92.56, a discrepancy of close to two-thirds of a 
degree. In fact, taking into account the systematic error of approximately –1° in Ptolemy’s tropi-
cal longitudes for this range of years, it turns out that the longitude reported by Ptolemy for the 
earlier greatest elongation is about ⅔ ° too low, while the reported longitude for the later one is 
approximately correct. 

Of course a measurement error of ⅔ ° is implausibly large, especially for an event that by its 
nature had to be determined by repeated observations on successive nights. It is also enough 
to make a significant difference in the calculated eccentricity of the center of uniform motion. 
If we repeat Ptolemy’s computations using 44.31° and 48.25° as the given elongations, the ec-
centricity becomes 2.1 units instead of 2.5.46 We may recall that our optimized eccentricity of 
deferent for an equant model of Venus was 0.83 (Table 2), so that the optimized eccentricity of 
the equant would be about 1.6. It is reasonable to suspect that 2.5 was a predetermined quantity 
(likely to match Ptolemy’s solar eccentricity), and that Ptolemy has adjusted the longitude of 
one of his greatest elongations to get this result.

44	  Since Venus performs five synodic cycles in almost exactly eight years, any particular synodic phenomenon 
(such as a greatest morning elongation) will only occur within a span of several decades with the mean Sun in five 
narrow and more or less equally spaced intervals of the ecliptic.

45	  To estimate the mean Sun for the modern theory calculations, we use the Sun's mean longitude according to 
the Almagest solar theory plus 1° to compensate for the error in tropical frame of reference.

46	  Shifting the assumed longitudes of the mean Sun by 0.1°, which affects only the difference between the elon-
gations, changes the resulting eccentricity by about 0.1 units. 

Ptolemy				    Modern			 
date	 mean Sun	 λ♀	 elongation	 date	 mean Sun 	 λ♀	 elongation

134 Feb 18, am	 325½°	 28111/12°	 437/12°	 134 Feb 15, 8 ut	 323.55°	 279.24°	 44.31°

140 Feb 18, pm	 325½°	   13⅚°	 48⅓°	 140 Feb 19, 20 ut	 327.52°	   15.77°	 48.25°

Table 4. Two greatest elongations of Venus according to Ptolemy’s data and modern theory.
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Ptolemy’s method of finding the eccentricity of the deferent requires two observed great-
est elongations, one with the mean Sun at Venus’s apogee and the other with the mean Sun at 
the perigee; a trigonometrical calculation yields both the eccentricity and the epicycle’s radius. 
Again the procedure is theoretically sound, but the observations that it requires could not have 
been made in the interval between ad 120 and the mid 140s that encompasses the observa-
tions that Ptolemy uses for his planetary theories. The observations that Ptolemy claims to be 
greatest elongations with the mean Sun at 55⅖° and 235½°, i.e. within a degree of the two ends 
of his apsidal line, are respectively 14 and 25 days distant from the true greatest elongations, 
and his reported longitudes have probably both been doctored, in the case of the latter one (ad 
136 November 18) by more than a degree, to enlarge the elongations.47 The elongations that he 
assigns can hardly be better than guesses, and while the elongation for his claimed observation 
with the mean Sun at perigee, 47⅓°, would be about right for an actual greatest elongation in 
this situation, the elongation for the claimed observation at apogee, 44⅘°, is about ¾° too small. 
If Ptolemy somehow had access to well-observed greatest elongations with the mean Sun truly 
close to the apogee and perigee—the most recent candidates would have been in the mid first 
century ad and the late first century bc respectively—he would have had about 45.6° and 47.3° 
for the elongations, leading to an eccentricity of deferent of approximately 0.85 units, in pretty 
good agreement with the eccentricity in our optimized model. The elongations that he gives in 
10.2 must, however, have been chosen to yield predetermined values for both the eccentricity 
and epicycle radius.48

To sum up the situation, Ptolemy’s approach to demonstrating the bisection of Venus’s ec-
centricity depends on the availability of observations of Venus at its greatest elongations from 
the mean Sun when the mean Sun is in highly particular locations: at apogee, perigee, and 90° 
from the apsidal line. Only for the last of these conditions did suitable greatest elongations take 
place in Ptolemy’s own time, whereas for the others he would have needed reports from as long 
as a century and a half earlier. But it is clear that he did not have these; otherwise why did he 
not use them explicitly in the Almagest, or at least make the simulated observations that he does 
cite agree with them? More generally, if Ptolemy’s belief that Venus had an equant model with a 
bisected eccentricity was based on empirical evidence, how could it have come about that both 
his eccentricities, ostensibly found by independent analyses, are about 50% too large? I conclude 
that, although a viable procedure in the abstract, Ptolemy’s deduction of the eccentricities in 
10.2-3 is for his circumstances pseudoempirical. His observations may have sufficed to indicate 
that the eccentricity of the deferent is smaller than that of the center of uniform motion, but the 
choice of specific ratio must really have depended on analogy with the superior planets.

47	  The report for ad 129 May 20, which is attributed to Theon, is a rather accurate description of the location of 
Venus relative to two stars, but Ptolemy’s reduction of the information to a longitude involves inaccuracies that 
deducted nearly half a degree.

48	  Swerdlow 1989, 43 suggests that Ptolemy could have estimated the deferent’s eccentricity by using the actual 
greatest elongations that occurred nearest to the false dates of greatest elongations used in 10.2, treating them as 
if they were really in the apsidal line; such a calculation does result in an eccentricity of about 1.3 units, close to 
Ptolemy’s 1.25. But when the mean Sun is away from the apsidal line, one must use the sum of a pair of oppositely 
oriented greatest elongations, not just a single greatest elongation, to determine the distance and radius of the 
epicycle because the epicycle’s center is assumed to revolve uniformly around the equant, not the Earth. Doing the 
calculation with the two actual greatest elongations nearest perigee and the two nearest apogee in Ptolemy’s time, 
one would again get an elongation of about 0.8 units.
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General remarks

Before turning to the general question of why Ptolemy incorporated pseudoempirical claims in 
the two treatises considered in this article, we may note in passing that all the examples we have 
discussed from the Almagest lead Ptolemy to conclusions that are, in a qualified sense, correct. 
The Sun, Moon, and planets really are spherical; the Sun really is furthest from the Earth when 
its apparent motion is slowest; when a planet’s heliocentric revolution is optimally approxi-
mated in a geocentric frame of reference by an epicycle and eccenter model, the center of the 
epicycle really is farthest from the Earth too when its apparent motion is slowest; the apparent 
apsidal lines of these geocentric approximations really do precess in a tropical frame of refer-
ence at rates on the order of magnitude of the precession of the fixed stars; and bisecting the 
eccentricity yields a good fit for an equant model of Venus. On the other hand, Ptolemy’s broad 
theoretical hypothesis for the Harmonics, that all pitches in the tuning systems of Greek music 
should correspond exactly to whole number ratios subject to certain constraints, would not be 
considered viable today, so we would not accept the conclusions that he draws from any of the 
comparisons of heard pitches described in Harmonics 2.1, including the problematic one we have 
discussed.

If we ask what were the hidden nonempirical reasons behind the choices that Ptolemy osten-
sibly justifies by pseudoempirical claims as well as why Ptolemy leaves these reasons hidden, the 
most plausible answers differ from case to case. His avoidance of same-sense epicycles to model 
the anomaly of the Sun and the zodiacal anomaly of the planets seems to be a case of preferring 
a simpler model. In comparison with the eccenter or even the opposite-sense epicycle model, 
the same-sense model produces the effect of anomaly in a rather perverse way, by slowing down 
the actual speed precisely where its proximity to the Earth should give an appearance of swift-
est motion and vice versa. I suggest that Ptolemy did not offer such a simplicity argument in the 
Almagest because the models, though to the senses indistinguishable, are nevertheless kinemat-
ically distinct. It is an extreme case of the priority that Ptolemy attributes to empirical evidence 
over aprioristic reasoning, which he invokes elsewhere (Almagest 13.2) to justify adopting com-
plex models. Here, where a choice of model suggested by considerations of simplicity could no-
tionally be confirmed by observation if our means of observing were only sensitive enough, and 
is definitely not refuted by the observations we can make in reality, Ptolemy offers the reader 
the kind of positive evidence that ought to be available.

In other cases, analogy seems to have been the primary form of reasoning. Thus Ptolemy had 
a sound empirical basis for the bisection of the eccentricity of Mars, Jupiter, and Saturn, even if 
he was unable to present it as a fact deduced straightforwardly from observation reports so that 
he had to justify it as a case of “fitting” the phenomena to an otherwise incompletely motivat-
ed model; it would have appeared plausible to assume that the bisection applied also to Venus, 
for which the empirical evidence pertaining to the eccentricities was murky. However, it would 
have seemed desirable to offer the reader at least one clear demonstration of the bisection from 
observations, and Venus was a good candidate for this not just because it came before the supe-
rior planets in the order of presentation in Almagest Books 10-11, but because it was compara-
tively easy to design a procedure for notionally isolating the two kinds of eccentricity based on 
greatest elongations. As for the shapes of the visible heavenly bodies, the Moon’s sphericity was 
obvious from the appearance of its phases, so one would expect the Sun, planets, and stars to be 
spherical too; but it might have seemed too bold to apply analogical reasoning twice in a row, to 
go from the Moon alone to all the visible bodies, and then from the visible bodies to the invisi-
ble etherial bodies composing the bulk of the heavens. Finally, the decision to have the planets’ 



174	 Jones

apsidal lines sidereally fixed looks like an essentially cautious move; from Ptolemy’s point of 
view (with his commitment to a tropical frame of reference as the best description of reality), 
precessing apsidal lines were not the choice recommended by considerations of simplicity, but 
he may have been reluctant to posit a long-term behavior for them that was different from the 
consensus of earlier planetary models and tables in the absence of decisive empirical proof one 
way or the other.

Overlaying the particular considerations that may have led Ptolemy to introduce pseudoem-
pirical arguments is the privileged status of mathematical science as he delineates it in Almagest 
1.1. The two defining characteristics of mathematics, according to Ptolemy’s account, are that 
its objects are intrinsically knowable as exact things (unlike the objects of physics) and, crucially, 
that through our senses we are able to grasp these objects (unlike those of theology). Ptolemy 
knows that there are limitations to our ability to know mathematical realities through our sens-
es, and sometimes he admits it. But one senses that the severe standard set by his conception 
of what we would call “mathematical sciences” as “mathematics” tout court, together with the 
principle that all knowledge comes ultimately from the senses, drove him from time to time to 
push the boundary between secure reasoning based on the senses and plausible reasoning based 
on metaphysical considerations or consensus further in the direction of the senses than his cir-
cumstances allowed.
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