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Cuneiform tablets originating in second millennium BCE Babylonian 
scribal schools preserve exercises and calculations recorded by 
teachers and pupils, ranging from practical arithmetic to problems 
well beyond everyday applications. This exhibition presents an  
unprecedented grouping of tablets from the first golden age of 
mathematics, highlighting both classroom training and advanced 
curiosity-driven mathematics.



Centers of mathematics in Mesopotamia.

B E F O R E P Y T H A G O R A S
T H E C U L T U R E   O F 
O L D B A B Y L O N I A N M A T H E M A T I C S 

Since the second half of the nineteenth century, thousands of cuneiform tablets dating to the  
Old Babylonian Period (c. 1900–1700 BCE) have come to light at various sites in ancient 
Mesopotamia (modern Iraq). A significant number record mathematical tables, problems, and 
calculations. It was not until the 1920s that these tablets began to be systematically studied  
by Otto Neugebauer, a young Austrian mathematician who had turned to the history of mathe-
matics during his doctoral studies at the renowned Mathematical Institute at the University  
of Göttingen. Neugebauer spent two decades transcribing and interpreting tablets housed in 
European and American museums. His labors, and those of his associates, rivals, and successors, 
have revealed a rich culture of mathematical practice and education that flourished more than  
a thousand years earlier than the Greek sages Thales and Pythagoras with whom histories  
of mathematics used to begin.

This exhibition was made possible through the support of the Leon Levy Foundation. 

This exhibition is the first ever to explore the world of Old Babylonian mathematics through  
a display of tablets covering the full spectrum of mathematical activity, from arithmetical tables 
copied out by young scribes-in-training to sophisticated work on topics that would now be  
classified as number theory and algebra. The pioneering research of Neugebauer and his contem-
poraries concentrated on the mathematical content of the advanced texts; a selection of archival 
manuscripts and correspondence o!ers a glimpse of Neugebauer’s research methods and his  
central role in this “heroic age.” Recent scholarship, bringing into consideration the archaeological 
context and material aspects of the tablets, has illuminated their human dimension, tracing the 
stages by which scribes mastered a curriculum intended to prepare them for professional careers. 
But the most mathematically rich tablets remain focuses of questions and controversy.

The tablets in this exhibition illustrate three themes that follow a progression from the more  
elementary to the more advanced texts. The first group of tablets shows how numbers were  
written in cuneiform, starting with two basic marks made by a reed stylus on clay, representing  
1 and 10. Quantities given in the elaborate Babylonian system of weights and measures were  
converted into a place-value notation analogous to our Hindu-Arabic numerals but based on  
60 instead of 10. Tables facilitated arithmetic; and final results were reconverted into the conven-
tional units of measure. The second group comprises tablets from the scribal schools of Nippur, 
which reveal the methods of elementary mathematical education and how it was interwoven with 
the study of the Sumerian language.

The third group turns to the advanced training, in which students solved problems of progressive 
di"culty, inspired by real-world situations such as surveying, building, and public works. Many 
of these problems were much more di"cult than any that they would have to deal with in their 
professional careers, and their solutions depended on principles that, before the rediscovery of  
the Babylonian tablets, were believed to have been discovered by the Greeks of the sixth century 
BCE and after. Thus, the exhibition suitably culminates with two tablets that have acquired  
iconic status in the history of science since they were first published by Neugebauer and Abraham 
Sachs in 1945: YBC 7289, which graphically testifies to Babylonian knowledge of the Pythagorean 
theorem as well as precise calculations of square roots, and Plimpton 322, which links the 
Pythagorean theorem to whole-number solutions of the relation l2 + w 2 = d 2.



Cuneiform was a kind of script based on shapes impressed by a reed on a clay tablet. The 
versions of cuneiform that evolved to record the Sumerian and Akkadian languages spoken in 
ancient Mesopotamia were extremely complex, involving hundreds of distinct symbols. Scribes, 
who were individuals formally trained in reading and writing, were a small minority of the 
population and generally belonged to well-o! families in which literacy and professional  
expertise were handed down. While most scribes were male, some females also had access to 
scribal training. We have little firm evidence for the range of ages for pupils.

Scribal schools most likely existed in Mesopotamia since the introduction of writing in the 
second half of the fourth millennium BCE, rising to special importance in the state during 
the Neo-Sumerian period that closed the millennium. During the Old Babylonian period, 
the city of Nippur in southern Mesopotamia was the most prestigious among the centers of 
scribal training, with the great majority of the school tablets known to us coming from there. 
Schools were normally small houses, with rooms opening onto a courtyard where a supply  
of clay was kept and the schoolwork apparently was done. 

Although Sumerian was no longer a living language in the Old Babylonian period, it persisted 
as the language of written learning, scholarship, and administration. Students learned through 
copying, beginning with lists of the simplest cuneiform signs, and progressing through lists  
of hundreds of signs representing the Sumerian vocabulary. Eventually the student practiced 
copying actual texts, especially model contracts and proverbs. Mathematical training during 
this stage consisted of copying lists of units of measure and arithmetical tables. Once finished, 
the school tablets were discarded and often reused for constructing walls, floors, and benches.

In the more advanced curriculum, lexical lists gave way to texts of the literary tradition, in 
particular, hymns and narratives of myths. On the mathematical side, the scribes practiced 
calculations and simple problem solving, putting to use the metrological and arithmetical 
toolbox that they had learned at an earlier stage.
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1. Table of reciprocals
Yale Babylonian Collection YBC 10529
Old Babylonian Period, place of origin unknown

2. Collection of arithmetical tables
Yale Babylonian Collection YBC 4678
Old Babylonian Period, place of origin unknown

3. Calculation by a scribal student
University of Pennsylvania Museum B11318
Old Babylonian Period, Nippur

1. Scribes used reciprocal tables to perform division, 
which is difficult to do directly in the sexagesimal  
notation. The reciprocal of a number is 1 divided by 
the number. Dividing by a number is thus the same  
as multiplying by its reciprocal; for example, the  
reciprocal of 8 is 1/8.

Tables of reciprocals listed 1 divided by a series of 
numbers, beginning with 2, 3, 4, 5, 6, 8, 9, 10, 12. . . . 

Scribes avoided doing arithmetic with 7, 11, and similar 
numbers whose reciprocals cannot be written out 
completely in sexagesimals (just as the reciprocal of  
3 cannot be written out exactly in our decimals). This 
tablet is an unusual table that includes approximate 
reciprocals of these so-called irregular numbers. 

2. This six-column tablet, unusually well preserved for 
its size, contains a table of reciprocals and twenty-two 

multiplication tables, the basic tools for arithmetic 
with sexagesimal numerals. The times-table for base 
60, from 1s1 through 59s59, was too big to memo-
rize, so scribes learned multiplication tables listing 
products of a single number by units (up to 20) and 
tens (from 30 through 50). The tables on this tablet 
consist of multiples of numbers decreasing from 50  
to 71/5. The scribe probably intended to write even 
more tables since a fourth column on the reverse has 

been prepared with ruled lines, and two more are 
marked off without rulings.

3. This tablet records a student’s calculations as he 
worked through a problem. Problems such as this one 
required the student to use two kinds of tables learned 
in the earlier stages of the scribal curriculum: metro-
logical tables giving the relations of units of measure, 
and arithmetical tables for multiplication and division.
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4. Type I school tablet with arithmetical tables
University of Pennsylvania Museum UM 29-15-76
Old Babylonian Period, Nippur

5. Type II tablet with word list and tables
University of Pennsylvania Museum CBS 2142
Old Babylonian Period, Nippur, “Scribes’ Quarter”

6. Type III tablet with multiplication table
University of Pennsylvania Museum B6063
Old Babylonian Period, Nippur, “Cassite houses”
 

7. Type IV tablet with incomplete calculation
University of Pennsylvania Museum 55-21-357
Mid-18th century bce, Nippur, “Scribes’ Quarter,” House F

4. Assyriologists recognize four types of school tablets used in 
scribal training both in the Sumerian language and in mathe-
matics. Type I tablets are large, typically around 15 by 20 
centimeters, each face having up to six columns read left to right 
on the obverse, and right to left on the reverse. The entire tablet 
consists of lists of one variety of information learned in the  
elementary curriculum. Mathematical Type I tablets contain 
tables or lists of units of measure or numerical tables. This 
fragment belonged to a compilation of multiplication tables.  

It probably had three columns and was twice the height of the 
extant fragment. 

5. Type II tablets were a medium on which students practiced 
the lists and tables of the elementary curriculum. The obverse 
was divided by a vertical line. The teacher wrote out a model 
list on the left, and the pupil copied it on the right. His effort 
could be erased by scraping off the surface; then he would  
repeat the exercise. The reverse was used to review a different 

subject; the pupil would write out a previously practiced list 
without a model. Type II tablets are valuable evidence of the  
elementary curriculum because they show the order in which 
subjects were studied. In this example the obverse is a list of 
Sumerian words meaning “food” and their Akkadian equivalents. 
The pupil’s half has been scraped off, and only traces of his latest 
copy are visible. The student’s side thus often ended up quite 
thin. The reverse contains tables of reciprocals and multiples.

6. Type III tablets contain texts of similar character as those 
on the obverse of Type II tablets, but their appearance is differ-
ent. They are small and relatively narrow, hence their Sumerian 
name imgidda (“long tablet”). The script is practiced and ele-
gant. The end of the text is often marked by a line, and may be 
followed by the scribe’s name and the date. These tablets were 
demonstrations of the scribe’s acquired skill. This Type III tab-
let is a table of multiples of 18.
 

7. Type IV tablets were known by the name imšu (“hand tab-
lets”) because their size was convenient to hold in the palm of 
one’s hand. They were used for practice writing and calcula-
tions. Mathematical Type IV tablets mostly pertain to an ad-
vanced curriculum in which problem solving supplanted the 
copying of lists and tables. Such tablets sometimes catch the 
scribes making mistakes. This one records a scribe’s search for 
a reciprocal that was not included in the standard tables. By 
some confusion, however, he wrote down an incorrect answer. 



Scribes who had completed their schooling were often destined for administrative positions, 
especially in the prominent Mesopotamian institutions of temple and palace. Their training 
was a reflection of their future professions as accountants, project planners, and overseers, 
who would regularly need to work with quantitative data. School exercises and problems were 
routinely composed in terms of the situations scribes were going to encounter.

A typical project that might be posed as a mathematical problem is the construction of a dam. 
Thinking of the dam as a particular shape consisting of earth and having a certain length, 
width, and height, a basic problem would be to calculate the amount of earth required. This 
would lead to more complicated questions, such as the number of workers needed for the 
project, the time it would take, and the total cost. Scribes had to learn information such as how 
much work one laborer could do in a day and for how much pay, as well as the relationships 
between many di!erent units employed for measuring lengths, areas, volumes, and weights.

Many problems are about plots of land, how they were surveyed (by measuring along each 
side with a surveyor’s rod), and how one found the area of a square field, a rectangular field, 
a triangular field, or a trapezoidal field. In more di"cult problems, the student had to take 
into account the varying crop yields of di!erent parts of a plot to calculate the total yield.

“Real-world” problems strikingly similar to those of the Old Babylonians are found in 
neighboring regions centuries and even millennia later, for example, in Egyptian papyri from 
the time of the Roman Empire. Little is known, however, of the processes of survival and 
transmission of this practical tradition.

 M A T H E M A T I C S  
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8. Calculation of the area of a circle
Yale Babylonian Collection YBC 11120
Old Babylonian Period, place of origin unknown

9. Problems concerning digging a canal
Yale Babylonian Collection YBC 7164 
Old Babylonian Period, place of origin unknown

10. Problems and step-by-step solutions
Yale Babylonian Collection YBC 4663
Old Babylonian Period, place of origin unknown

11. Series of abstract problems
Yale Babylonian Collection YBC 4713 
Old Babylonian Period, place of origin unknown

8. This “hand tablet” records a geometrical calculation 
in the form of a diagram. The problem is to find the area 
of a circle given its circumference. The circumference, 
11/2, is written in sexagesimal numerals above the circle. 
The first step was to find the square of 11/2, namely 21/4; 
this was written to the right, although it is not very 
legible. Dividing this by 12 yields the area, namely 3/16, 
which is written inside the circle. The procedure is  
approximate since it assumes that π = 3. 

9. This is a collection of mathematical problems, all 
variations on the theme of digging a canal—a real-world 
premise for a Babylonian. The canal is assumed to have 
a rectangular cross-section, and each problem involves 
its dimensions, the number of workers, how much a 
worker can dig in a day, how much a worker is paid, 
how many days he works, and so forth. Some of these 
quantities are given, others are sought. The answers 
are given without explaining how they are found,  

suggesting that this is a teacher’s manual. The problems 
can all be solved by basic arithmetic, though some are 
by no means trivial.
 

10. This tablet contains problems about digging a 
rectangular trench. The quantities given or asked for 
stay exactly the same from problem to problem but in 
each the selection of data that are given and demanded 
is different. Between the statement of the problem and 
its answer, the scribe gives a step-by-step calculation 
of the answer. The statements are written in the 
Sumerian language and the procedures in Akkadian.
 

11. This tablet belongs to a puzzling category known 
as Series Texts: long lists of concise statements of 
problems with no indication of the method of solu-
tion. The lists continue through series of numbered 
tablets; YBC 4713 is tablet 10 of such a series. Its 
problems concern a rectangular surface and have an 
abstract, impractical character. Many of the problems 
are mathematically advanced, leading to quadratic 
equations. Several problems of this series are equiva-

lent to fourth-degree equations which the tablet’s  
author probably did not expect anyone to solve. Rather, 
the Series Texts appear to be explorations of struc-
tured systems of mathematical relations that had no 
practical goal.



While many of the mathematical techniques learned in the scribal schools were intended  
for use in the scribes’ later careers, a large part would never have been applied in practical 
situations, and can be described as theoretical. This kind of mathematics sometimes looks 
practical because it is expressed in terms of real-world objects, but the combination of  
information provided and information demanded is unrealistic. Sometimes the texts seem  
to operate with abstract lengths, areas, and numbers whose reference to real-world objects  
is at best tenuous.

The simplest examples of impractical mathematics in Babylonian tablets are puzzles. For  
example, the student, after being told that a stone has had its weight increased and decreased 
several times by certain fractions, is asked to find its original weight from its final weight. 
Another problem might describe a surveyor measuring a distance with a surveying rod that 
gets shorter every time it is used, and the student has to find the total distance measured  
by the time the rod has completely disappeared. Puzzles were probably an entertaining way 
to practice calculations.

Two of the most remarkable mathematical principles exploited repeatedly in Old Babylonian 
tablets were of little practical use. Probably by reasoning through rearrangements of  
dissected geometrical figures, Babylonian mathematicians found the relation of the sides of  
a right-angled triangle that we call the Pythagorean theorem, as well as how to find the  
sides of a rectangle, knowing its area and some known relationship connecting the lengths  
of the sides, which is equivalent to solving a quadratic equation. Before the decipherment of  
the Babylonian tablets, it was thought that Greek mathematicians of the mid-first millennium 
BCE discovered these principles.

“Series Texts” are extreme examples of Babylonian interest in mathematics for its own sake: 
the problems they list are quite abstract, and not even always soluble by techniques known  
in antiquity. The unknown authors of such tablets and of the list of Pythagorean triples  
in Plimpton 322 seem to have been exploring mathematical relations inspired by the problems 
of the schoolroom but reaching into a realm of pure intellectual curiosity.

 R E A C H I N G  
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12. Tablet illustrating Pythagoras’ Theorem 
Yale Babylonian Collection YBC 7289
Old Babylonian Period, southern Mesopotamia?

12. This famous tablet, one of the few to consist entirely of a 
geometrical diagram, is a graphic witness that Babylonian scribes 
knew Pythagoras’ Theorem and possessed a method of calculating 
accurate estimates of square roots. On the obverse, the scribe 
has drawn a square and its diagonals. According to Pythagoras’ 
Theorem the length of the diagonal is the length of the side 
multiplied by the square root of 2. An accurate approximation 
of this quantity in sexagesimal (base-60) notation (1,24,51,10) 
is written along one diagonal. One side is labeled with its length, 

30 units, and the product of 30 by the square root of 2 is also 
written along the diagonal.

The tablet is of the lentil-shaped “hand-tablet” type commonly 
used for calculations. It probably records a student’s intermediate 
work on a mathematical problem involving a square and its  
diagonal. The student himself probably would not have known 
how to calculate square roots, but would have learned by rote 
the rule for finding the diagonal.



 

 

 
 
  

13. Table of whole-number sides of Pythagorean triangles
Columbia University Plimpton 322
Old Babylonian Period, Larsa?

13. The most renowned of all mathematical cuneiform tablets 
since it was published by Neugebauer and Sachs in 1945, 
Plimpton 322 reveals that the Babylonians discovered a method 
of finding Pythagorean triples, that is, sets of three whole 
numbers such that the square of one of them is the sum of the 
squares of the other two. By Pythagoras’ Theorem, a triangle 
whose three sides are proportional to a Pythagorean triple is  
a right-angled triangle. Right-angled triangles with sides  
proportional to the simplest Pythagorean triples (3, 4, 5 and  

5, 12, 13) turn up frequently in Babylonian problem texts. 
However, if this tablet had not come to light, we would have 
had no reason to suspect that a general method capable of  
generating an unlimited number of distinct Pythagorean triples 
was known a millennium and a half before Euclid.

Plimpton 322 has excited much debate centering on two  
questions. First, what was the method by which the numbers in 
the table were calculated? And second, what were the purpose 

and the intellectual context of the tablet? At present there is 
no agreement among scholars about whether this was a docu-
ment connected with scribal education, as are the majority  
of Old Babylonian mathematical tablets, or if it was part of a 
research project.



As a student of mathematics at the University of Göttingen in the 
1920s, Otto Neugebauer (1899–1990) adopted as his field of research 
the history of mathematics in the ancient world. His prolific work 
over seven decades opened up the study of the mathematics of the  
ancient Near East and brought to light the transmissions and trans- 
formations of mathematics and astronomy among ancient and  
medieval civilizations. 

Neugebauer believed that the history of early mathematics should be based on the direct  
investigation of texts, demanding profound knowledge of ancient languages and scripts  
together with mathematical insight. As he became aware that hundreds of Babylonian clay 
tablets containing mathematical tables and texts lay unpublished and unstudied in European 
and American museums, he undertook a comprehensive edition of them, with transcriptions, 
translations, and commentaries, to serve as a foundation for the history of what he called 
“pre-Greek” mathematics. 

By the time his German-language edition appeared (1935–37), Neugebauer had left Nazi 
Germany for Copenhagen. In 1939 he migrated to the USA, joining the faculty of Brown 
University as well as holding recurring memberships at the Institute for Advanced Study. 
Brown created for him a Department of the History of Mathematics, which became the  
principal center for research in the exact sciences of antiquity. For his first colleague at Brown, 
Neugebauer chose an outstanding young Assyriologist, Abraham Sachs, with whom he began 
editing the numerous Babylonian mathematical tablets in American collections that had  
come to light since 1937. The new volume, Mathematical Cuneiform Texts (1945), greatly  
influenced mathematicians’ and historians’ perceptions of ancient Near Eastern mathematics, 
above all because it provided the first publication of Plimpton 322, which appeared to reveal 
the Babylonians as forerunners of Greek and modern number theory.

Most of Neugebauer’s work after the 1940s was on ancient astronomy. After an interval of 
comparative inactivity, a new generation of historians renewed the study of Babylonian  
mathematics in the last decades of the twentieth century, applying linguistic, archaeological, 
and archival methods to revolutionize our understanding of the texts and their makers.  

 O T T O   N E U G E B A U E R  
 A N D   B A B Y L O N I A N  
 M A T H E M A T I C S

Photo: Otto Neugebauer, c. 1936. Photo courtesy of the Mathematical Institute, University of Göttingen.



 

 

 

 
 

14. Otto Neugebauer, Notebook from Emmy Noether’s course on 
Algebraic Functions (Göttingen, 1925)
The Shelby White and Leon Levy Archives Center, Institute for Advanced 
Study, Princeton, NJ, USA, Neugebauer Papers, box 7

Following studies in electrical engineering and physics at Graz and Munich, 
Otto Neugebauer began doctoral studies at the Mathematical Institute at 
Göttingen, where he took courses with many of the leading mathematicians 
of the time, including Richard Courant (who became his close friend and 

promoter), David Hilbert, Edmund Landau, and Emmy Noether. His  
notebooks, valuable documents in their own right for the history of twentieth-
century mathematics, attest to his broad training as well as his meticulous 
work habits. Unlike most mathematicians who turn to the history of their 
discipline, Neugebauer did almost no work in mathematics proper; he  
published only one nonhistorical paper, coauthored with his Danish friend 
and mentor, Harald Bohr.

15. Otto Neugebauer, Vorlesung über Geschichte der  
vorgriechische Mathematik (Göttingen, 1928)
The Shelby White and Leon Levy Archives Center, Institute for Advanced 
Study, Princeton, NJ, USA, Neugebauer Papers, box 1

Neugebauer’s 1926 thesis was on the arithmetic of fractions in ancient 
Egyptian mathematical texts. The wide-ranging notes for his “Lecture on 
History of Pre-Greek Mathematics” are one of the earliest reflections of his 
study of Babylonian mathematics. This section on “relationships between 

the neighboring cultures” anticipates Neugebauer’s later deep interest in the 
transmission of mathematical methods (especially for astronomy) in ancient 
and medieval civilizations, though not all the specific connections suggested 
here between Babylonian, Egyptian, Greek, Indian, and even Chinese scientific 
traditions would have survived his later scrutiny.
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16. Otto Neugebauer, “Ausgewählte Kapitel  
über Geschichte der antiken Mathematik” (Göttingen 1932–33)
The Shelby White and Leon Levy Archives Center, Institute for Advanced 
Study, Princeton, NJ, USA, Neugebauer Papers, box 1

During the 1930s Neugebauer gave a number of lectures and courses on 
the history of Egyptian, Babylonian, and Greek mathematics, drawing on 
the texts that he was currently studying and, in the case of Babylonian 
mathematics, editing. The course notebook “Selected Chapters on History 

of Ancient Mathematics” contains analysis of individual Old Babylonian 
tablets that would soon be published in his comprehensive three-volume 
Mathematische Keilschrift-Texte (1935–37). The page on display belongs 
to a session concerning problem texts on a tablet at the British Museum 
(BM85194). A problem concerning the volume of earth needed to construct 
a circular wall surrounded by a trench is illustrated, on a separate slip, by a 
characteristic specimen of Neugebauer’s draftsmanship.



 

 

 
 

Preparing Mathematical Cuneiform Texts

Immediately after his move from Copenhagen to Brown University in 1939, 
Neugebauer began searching for mathematical tablets in American collections 
that he had missed in his Mathematische Keilschrift-Texte. As he and his 
colleague Abraham J. Sachs were preparing the new volume, Mathematical 
Cuneiform Texts, the Assyriologists Albrecht Goetze and Ferris Stephens were 
continually finding new tablets for them in the Yale Babylonian Collection. 
Despite the proximity of New Haven to Providence, Neugebauer preferred 

to edit the texts from photographs, consulting the Yale Assyriologists when 
he and Sachs were uncertain of the readings. This display illustrates part of 
the careful process of editing for the tablet YBC 7164, which is on view in 
this exhibition (9).

17. Photographs of YBC 7164 (obverse, reverse, and two edge 
views) mounted for publication in Mathematical Cuneiform Texts
John Britton Collection

18. Undated, unaddressed handwritten note from Neugebauer 
(probably accompanying letter from Neugebauer to Stephens, 
October 7, 1942) and carbon copy of Stephens’ typed reply,  
October 13, 1942
Yale Babylonian Collection
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19. Typed transcription of YBC 7164 with handwritten  
annotations (referred to in the adjacent correspondence [20])
John Britton Collection

20. Typed letter from Neugebauer to Stephens, October 27, 1942, 
and carbon copy of Stephens’ typed reply, November 3, 1942
Yale Babylonian Collection

21. Neugebauer’s hand copy of YBC 7164 as published in 
Mathematical Cuneiform Texts (1945)
Alexander Jones Collection


