

Article

Simulating the Software Development Lifecycle:
The Waterfall Model
Antonios Saravanos 1,* and Ma/hew X. Curinga 2

1 Division of Applied Undergraduate Studies, New York University, 7 East 12th St, Room 625B, New York, NY
10003, USA

2 MIXI Institute for STEM and the Imagination, Adelphi University, 179 Livingston St, Brooklyn, NY 11201,
USA; mcuringa@adelphi.edu

* Correspondence: saravanos@nyu.edu; Tel.: +1-212-992-8725

Abstract: This study employs a simulation-based approach, adapting the waterfall model, to pro-
vide estimates for software project and individual phase completion times. Additionally, it pin-
points potential efficiency issues stemming from suboptimal resource levels. We implement our
software development lifecycle simulation using SimPy, a Python discrete-event simulation frame-
work. Our model is executed within the context of a software house on 100 projects of varying sizes
examining two scenarios. The first provides insight based on an initial set of resources, which re-
veals the presence of resource boHlenecks, particularly a shortage of programmers for the imple-
mentation phase. The second scenario uses a level of resources that would achieve zero-wait time,
identified using a stepwise algorithm. The findings illustrate the advantage of using simulations as
a safe and effective way to experiment and plan for software development projects. Such simulations
allow those managing software development projects to make accurate, evidence-based projections
as to phase and project completion times as well as explore the interplay with resources.

Keywords: software development lifecycle; systems development lifecycle; SDLC; waterfall model;
software process simulation modeling; discrete-event simulation; SimPy framework

1. Introduction
Despite decades of study and advancements in processes and procedures, software

development remains a fraught and challenging process plagued by cost overruns, missed
deadlines, abandonment of final products, and outright failure. Research shows a signifi-
cant probability of failure [1,2]: Bloch et al. [3] share from “a study of 5400 large IT projects
exceeding $15 million found that, on average, large IT projects run 45% over budget and
7% behind schedule while delivering 56% less value than initially planned”. As Wu et al.
[4] point out, information technology (IT) projects are inherently high-risk endeavors—a
sentiment echoed since the early 1980s. ChareZe [5] reiterates this dismal reality when
remarking that “few IT projects, in other words, truly succeed”, writing that “of the IT
projects that are initiated, from 5 to 15 percent will be abandoned before or shortly after
delivery”. The author characterizes this “as hopelessly inadequate” [5]. Zykov [6] writes,
“the product that the developers produce may significantly differ from what the custom-
ers expects”. Certainly, the reputation of the practice of software development has suf-
fered from its inability to guarantee success. Accordingly, Kellner et al. [7] find that “over
the past few decades the software industry has been assailed by numerous accounts of
schedule and cost overruns as well as poor product quality delivered by software devel-
opment organizations in both the commercial and government sectors”.

Data on the magnitude of the challenges and failures with respect to software devel-
opment are traditionally sought from the Standish Group’s CHAOS reports. DeFranco

and Voas [8] have indicated that the Standish Group has been gathering data about project
outcomes (i.e., the successful or failure completion of projects) since 1994 through their
CHAOS reports. Morawiec et al. [9] provide specifics from these reports, showing that in
2015, 29% of projects were successful and 19% failed [10]. By 2020, the success rate had
increased slightly to 31%, while the failure rate remained at 19% [11]. In other words, al-
most one in five IT projects will fail. Alves et al. [12] in their review of crisis and risks in
engineering project management describe the existence of a software crisis. Middleton
and SuZon [13] share that “people who have labored to produce software in chaotic de-
velopment environments appreciate anything that brings more order and predictability
to their work”. We find hope in the words of ChareZe [5], who writes that “the biggest
tragedy is that software failure is for the most part predictable and avoidable”.

To enhance the chances of success, most firms implement a software development
life cycle (SDLC). This can be thought of as a recipe “for designing, building, and main-
taining information” [14] systems by prescribing steps “that are essential for developers,
such as planning, analysis, design, and implementation” [15]. The innovation emerged in
the 1960s after “the failure of several high-profile software projects” [16]. To support the
use of a software development lifecycle such as the waterfall model, management can rely
on simulations of software process models to support decision making and minimize the
risk of failure, as proposed by Kellner et al. [7]. The drive here is that “we use models in
an aZempt to gain understanding and insights about some aspect of the real world” [17].
Certainly, the use of simulations to beZer understand a current scenario as well as com-
peting ways one can work with the lifecycle is further supported by Pinho et al. [18], who
stress that efficient business management depends in part on the ability to evaluate such
competing scenarios. Furthermore, simulation can also be regarded as an effective way of
gleaning valuable insights ”when the costs, risks or logistics of manipulating the real sys-
tem of interest are prohibitive” [7]. Vasilecas et al. [19] note that the allocation of resources
is a particular area where one can frequently encounter challenges.

Our Contribution and the Remainder of this Paper
There have been several aZempts to simulate software process models (e.g., [20–23])

which include waterfall (the most cited to our knowledge being Bassil’s [21], which we
will aZempt to align with how we structure our simulation for uniformity). Our contribu-
tion is to demonstrate how an open-source programming language such as Python cou-
pled with the SimPy framework [24] can be used to simulate the waterfall model in order
to ascertain the optimal number of resources to minimize the possibility of boZlenecks
and idle resources, the implications being that it can be more easily used in industry and
education to offer valuable insight that could be used by those managing, or learning to
manage, software development projects.

The remainder of this paper unfolds as follows: Section 2 delves into the background
of the waterfall software development lifecycle and our motivation for its study. In Section
3, we outline the materials and methods used with respect to our simulation. Section 4
presents the results following sample executions of the simulation, demonstrating how it
can be used to identify resource levels that would result in zero-wait times. The findings
from this exercise are discussed in Section 5. Finally, Section 6 concludes the paper by
outlining how this work could be applied as well as the limitations which concurrently
offer directions for how this work could be advanced.

2. Background
In this section, we provide an overview of the relevant literature introducing the in-

novation of software development processes and the idea of a lifecycle. We then present
the waterfall model, which is perceived as the first software development lifecycle, as well
as our motivation for its study.

2.1. The Software Development Lifecycle
The SDLC “is also called [the] software development process model” [25], with

Sarker et al. [26] equating the two terms. The term “software development life cycle” sim-
ilarly appears in the literature to be used at times interchangeably with the “systems de-
velopment life cycle”. Ruparelia [27] rationalizes this equation by pointing out that “sys-
tems development lifecycle models have drawn heavily on software and so the two terms
can be used interchangeably in terms of SDLC”. However, in practice, “a software devel-
opment life cycle” can frequently be “considered as a subset of [the] system development
life cycle” [26].

Öztürk [28] reviews several definitions for the term SDLC and distills them to offer
his own, which we will use as the basis for this work, specifically, to be “a model that
defines the sequence of phases and activities that will/should take place during the soft-
ware development”. The SDLC “covers all stages of software from its inception with re-
quirements definition through to fielding and maintenance”. Over time, a number of
SDLCs have emerged “which have their own advantages/disadvantages and
strengths/weakness” [28]. The inception of the first such model is traced by Dawson and
Dawson [29] to the pioneering work of Benington [30]. Benington heralds SDLCs’ im-
portance, writing, “since the first software process model was introduced by Benington in
1956, software engineers have continued to recognize that processes are the bedrock on
which all software developments succeed”.

While SDLCs are not new, they are still evolving along with advances in computing
and software engineering. Existing models are being extended to include specific exten-
sions for secure software development [31], green computing [32] that considers the ma-
terial and environmental impact of software systems, and the impact of machine learn-
ing/deep learning both as it provides insight into the development process and presents
unique challenges to the SLDC of machine learning systems [33] where requirements are
emergent from the analysis of data rather than gathered from stakeholders.

2.2. The Waterfall Model
Rastogi [34] presents what is colloquially known as “the waterfall model” as “the

classical model of software engineering” as well as “one of the oldest models” [26]. Balaji
and Murugaiyan [15] also support this characterization of the waterfall model as “the old-
est of these, and the best known”. Sommerville [16] describes it as “the initial life-cycle
model”, “now termed the waterfall model“. We should point out that the model is based
on and expands on the work of Benington (which was introduced earlier). This waterfall
model is classified by Dennis et al. [35] under the category of “structured design”, who go
on to note that this category replaced “the previous ad hoc and undisciplined approach”
that was being used to develop software. Weisert [36] shares that he “can’t find a rigorous
definition” for the original waterfall model. Also known as the cascade model [27], the
waterfall model is described as “a sequential design process, often used in software de-
velopment processes, in which progress is seen as flowing steadily downwards (like a
waterfall) through the phases” [15]. As Sommerville [16] describes it, the “model consists
of a set of phases, starting with system specification, with results cascading from one stage
to another“.

Thus, “the waterfall metaphor was suggested by the inability of water to flow uphill”
[36]. The phases run individually one at a time and “all process phases (planning, design,
development, testing and deployment) are performed in a sequential series of steps” [22]
where the “output of each stage becomes the input for the next” [15]. Cocco et al. [22]
elucidate that “each phase starts only when the previous one has ended”. There is a bit of
debate as to the origins of the label “waterfall” to describe a life cycle approach, with the
first use “often aZributed either to Barry Boehm or to critics of his COCOMO estimating
technique” [36]. However, Petersen et al. [37] point out that, traditionally, it is credited to
the work of Winston Royce [38]. Indeed, colloquially the development of what is referred

to as the waterfall model is aZributed to his article entitled “Managing the Development
of Large Software Systems”, which introduced the model in Figure 3 of that paper, alt-
hough the word waterfall does not explicitly appear in his text. The earliest use of “water-
fall” to define Royce’s [38] model that we could identify was in the 1976 work of Bell and
Thayer [39], where they write, “[Royce] introduced the concept of the “waterfall” of de-
velopment activities”.

In Royce’s [38] original work, the model is presented as having seven phases: “Sys-
tems Requirements”, “Software Requirements”, “Analysis”, “Program Design”, “Cod-
ing”, “Testing”, and “Operations”. However, many adaptations can be found in the liter-
ature (for example, in Petersen et al. [37] and Paul et al. [40]) that modify the exact delin-
eation and description of phases. The waterfall model has received considerable criticism
regarding its suitability for development. Weisert [36] points out that “the key aZribute of
the so-called ’waterfall approach’ seems to be extreme inflexibility”, explaining that “once
you’ve completed a phase, its results are frozen. You can’t go back and revise anything
based on changing needs or fresh insights”. The author reiterates this point, writing, “until
the results of the current phase are complete and approved, you may not start on any
work that properly belongs to the next phase or any later phase” [36].

2.3. Motivation to Study the Waterfall Model
Despite the growth in popularity of iterative, incremental, and agile software devel-

opment models, we must recognize the waterfall model’s continued relevance and, con-
sequently, its continued need for study. Humphrey and Kellner point out that [41] “out-
side the research community, much software process thinking is still based on the water-
fall framework”. This view is echoed by Petersen et al. [37], who write that “waterfall de-
velopment is still a widely used way of working in software development companies”. A
study by Andrei et al. [42] in 2019 looked at the usage of agile versus waterfall approaches,
finding that 28.1% of software developers had reported that they used waterfall. However,
this estimation may be too low—according to the PMI [43] in 2020, 56% of projects used a
traditional project management methodology (i.e., waterfall). Fagarasan et al. [44] rein-
force the persistence of waterfall, finding that “although the Agile methodology started to
become the standard methodology in software projects implementation, several organi-
zations are currently employing Waterfall methodology because it simply works, and it
has a proven track record”. Further, although waterfall exists in hybrid forms and one of
many software development lifecycles, because of its clear stages and easy to grasp model,
it remains foundational for computing education as novice software engineers learn more
about the software development process.

While having a place in software development, some have questioned whether we
have taken the new agile approaches too far [45], implying that there may still be some
value in waterfall. This type of thinking has led to an emerging practice of taking the best
of waterfall and agile approaches, resulting in hybrid models. Kirpitsas and Pachidis [46]
explain the motivation for mixing agile and waterfall: “the rise of hybrid software devel-
opment methods”, which “combined elements from both the waterfall and agile method-
ologies” do so “to increase efficiency throughout the software development lifecycle”. For
example, Bhavsar et al. [47] propose a hybrid framework integrating Kanban and Scrum
approaches with waterfall. Fagarasan et al. [44] propose another hybrid framework that
combines the best from both agile and waterfall. Thus, the study of waterfall is appropri-
ate.

Others (e.g., Sommerville [48], Dennis et al. [49], Dennis et al. [35]) take a more ag-
nostic approach to waterfall, seZling on a position where there is no one software devel-
opment lifecycle that is superior to the others; rather, each has its strengths and weak-
nesses. So, agile is not superior to waterfall or the reverse; rather, each is designed to ad-
dress a particular situation. Waterfall appears best suited for projects where requirements
need to be well understood upfront and then are not very likely to significantly change
over the course of the project [48]. This would make the waterfall approach a sensible

option for systems that are complex and need to be reliable [49] (e.g., safety- or security-
critical systems [48]).

However, the waterfall model may be best known for its weaknesses. Royce [38] re-
ceived considerable criticism for the model, even though he understood (perhaps only in
part) the weakness of his model. He himself pointed out the problems, writing, “I believe
in this concept, but the implementation described above is risky and invites failure” [38].
Bassil [21] emphasizes that the “SDLC of software systems has always encountered prob-
lems and limitations that resulted in significant budget overruns, late or suspended deliv-
eries, and dissatisfied clients”. He goes on to explain that “the major reason for these de-
ficiencies is that project directors are not wisely assigning the required number of workers
and resources on the various activities of the SDLC”. As a result, “SDLC phases with in-
sufficient resources may be delayed; while, others with excess resources may be idled,
leading to a boZleneck between the arrival and delivery of projects and to a failure in
delivering an operational product on time and within budget” [21]. It is these problems
that we seek to address using simulation.

3. Materials and Methods
Software process simulation and visualization is critical for helping us understand

the risks and indicators of failure in software projects. Tracing its roots back to the 1980s,
as noted by Zhang et al. [50], the technique has evolved considerably over the years. Ruiz
et al. [51] define a simulation model as “a computational model that represents an abstrac-
tion or a simplified representation of a complex dynamic system”. This definition reso-
nates with Acuna et al. [52], who assert that “a software process model is an abstract rep-
resentation of the architecture, design or definition of the software process” [52]. For fur-
ther context, we can look to Kellner et al. [7], who offer a definition for “process”, which
they describe as “a logical structure of people, technology and practices that are organized
into work activities designed to transform information, materials and energy into speci-
fied end result(s)” [53]. There are several adaptations of Royce’s [38] original waterfall
model. For our study, we will simulate the waterfall software development lifecycle cul-
minating on a model inspired by the work of Bassil [21] and Sommerville [48]. An illus-
tration of our adaptation of the waterfall model can be seen in Figure 1. It comprises five
phases: requirements analysis and definition (analysis), system and software design (de-
sign), implementation and unit testing (implementation), integration and systems testing
(testing), and operations and maintenance (maintenance), which are executed in sequence.
The steps in the simulation can be seen in Figure 2. Although the titles of the phases are,
for the most part, self-explanatory, their respective definitions can be seen in Table 1.

Figure 1. Our adaptation of the waterfall model, inspired by Bassil [21] and Sommerville [48].

Figure 2. Activity diagram illustrating the steps in the simulation.

Table 1. List and definition of phases.

Phase Definition

Requirements analysis
and definition

“The system’s services, constraints, and goals are established by
consultation with system users. They are then defined in detail and

serve as a system specification” [48].

System and
software design

“The systems design process allocates the requirements to either hardware or
software systems by establishing an overall system architecture.

Software design involves identifying and describing the fundamental
software system abstractions and their relationships” [48].

Implementation and
unit testing

“During this stage, the software design is realized as a set of programs or program
units. Unit testing involves verifying that each unit meets its specification” [48].

Integration and
systems testing

“The individual program units or programs are integrated and tested as a complete
system to ensure that the software requirements have been met.

After testing, the software system is delivered to the customer” [48].

Operation and
maintenance

“Normally (although not necessarily), this is the longest life cycle phase. The sys-
tem is installed and put into practical use. Maintenance involves correcting errors

which were not discovered in earlier stages of the life cycle, improving
the implementation of system units and enhancing the system’s services

as new requirements are discovered” [48].
Note: Phase definitions as stated by Sommerville [48].

3.1. Assumptions
Our software simulates a software development house’s ability to pursue concurrent

projects of small, medium, and large scales, given a fixed number of resources. Given that
a simulation is a simplified version of a more complex system [54], we must establish and
rely on certain assumptions. To that end, we look to the work of Bassil [21] and his simu-
lation of the waterfall model. Specifically, the available resources for our software house
are outlined in Table 2; the required human resources by size of project are presented in
Table 3; the duration of phases in days are outlined in Table 4; and the probabilities of an
error occurring are presented in Table 5. Note the supposition of clear requirements,
which is implicit with the use of the waterfall model.

Table 2. Available resources.

Category Quantity
Analyst(s) 5

Designer(s) 5
Programmer(s) 10

Tester(s) 20
Maintenance personnel 5

Values are as proposed by Bassil [21].

Table 3. Required human resources by scale of project.

Role Small Medium Large
Analyst(s) 1 2 5

Designer(s) 1 2 5
Programmer(s) 2 4 10

Tester(s) 2 6 20
Maintenance personnel 1 2 5

Values are as proposed by Bassil [21].

Table 4. Duration of phases in units of time.

Phase Lower Upper
Analysis 3 5
Design 5 10

Implementation 15 20
Testing 5 10

Maintenance 1 3
Values are as proposed by Bassil [21].

Table 5. Possibility of error by scale of project.

Phase Small Medium Large
Analysis - - -
Design 10% 20% 30%

Implementation 10% 20% 30%
Testing 10% 20% 30%

Maintenance 10% 20% 30%
Values are as proposed by Bassil [21].

We introduce the projects using an exponential statistical function with a mean arri-
val of 35 units of time (the value of 35 inspired from the work of Bassil [21]) parameterized
by a lambda value of 1/35. We also account for the scale of the project, using the work of
Jørgensen [55] as guidance. Jørgensen’s study of information technology projects reports
that 48% of the projects had a budget less than EUR 1 million, 25% between EUR 1 and 10
million, and 27% more than EUR 10 million. Accordingly, we set a 48% chance of a project
being a small-scale project, a 25% chance of it being a medium-scale project, and a 27%
chance of it being a large-scale project. It should be noted that the software that was de-
veloped for this experiment allows for these values to be changed according to the specific
needs of the user.

3.2. Zero-Wait Times
To identify a resource level which would minimize boZlenecks and result in zero-

wait times, we draw upon Riley [56], who provides an overview of existing techniques
with respect to discrete-event simulation. The most basic is what is known as “intuitive
methods” [56]. Through these, “the user selects input parameters and undertakes an iter-
ative process that involves: (1) varying the parameter levels; (2) completing a statically
valid number of simulation replications and runs, and; (3) altering the input parameters
and reevaluating the results” [56]. They conclude by noting that “the objective of this
method is to find increasingly beZer solutions” [56]. This is also the approach that we find
prescribed in other papers that have aZempted to simulate a software development lifecy-
cle (e.g., Bassil [21]). We adopt a similar approach, looking at each resource (i.e., analyst(s),
designer(s), programmer(s), tester(s), and maintenance personnel) and associated phase
(i.e., requirements analysis, design, implementation, testing, or maintenance) in the wa-
terfall model. Using intuitive methods, we define a minimum and maximum allocation
for each resource, as well as an initial step size. An iterative process is then conducted,
increasing the corresponding resource until we find the level that results in zero-wait time.
This continues until no further improvements can be found based on a provided thresh-
old, where no wait is observed for 3 runs of the simulation.

4. Results
In this section, we present the outcomes from simulating our adaptation of the wa-

terfall model. We simulated two scenarios: the first scenario relied on an initial set of re-
sources based on intuition; the second scenario relied on a set of resources identified using

a stepwise algorithm to eliminate any boZlenecks caused by a lack of resources. During
all executions, we simulated a scenario where 100 projects were started, each of varying
size (i.e., small, medium, and large), using the respective probabilities presented in Section
2 and using an exponential statistical function with a mean arrival of 35 units of time. With
respect to distribution in Scenario 1, 47% of the projects were small, 31% medium, and
22% large. For Scenario 2, 57% of the projects were small, 20% medium, and 23% large.
All initiated projects (i.e., 100) were subsequently completed successfully.

Running the simulation in this first stage provided insight regarding the utilization
of resources, specifically allowing us to identify periods where resources were idle as well
as periods where there were no available resources, resulting in boZlenecks. Figure 3 il-
lustrates the resource availability and usage from the commencement of the simulation
up to the first 400 units of time. We chose to depict only the initial 400 units to maintain
clarity in the diagram. Inefficiencies are readily apparent from the data. Specifically, when
the line rises above zero, it indicates idle resources. Conversely, a line at zero signifies a
resource shortage. The duration for which the line remains at these levels highlights the
magnitude of either idleness or shortage. Data from the initial scenario are summarized
in Table 6.

Figure 3. Line chart illustrating Scenario 1 utilization of each resource for initial 400 units of simu-
lation time during the first iteration.

Table 6. Count of the number of times that a resource is unavailable for use as well as the mean wait
time to acquire that resource in Scenario 1.

Phase Resource Number of Delays Mean Wait Time
for Resource

 Small Medium Large Small Me-
dium

Large

Analysis Analyst(s) 1.000 1.000 5.000 0.010 0.069 0.388
Design Designer(s) 6.000 8.000 17.000 0.525 0.380 1.030

Implementation Programmer(s) 21.000 26.000 34.000 5.344 7.422 9.707
Testing Tester(s) 2.000 2.000 10.000 0.111 0.120 0.796

Maintenance Maintenance personnel 0.000 0.000 0.000 0.000 0.000 0.000
All phases All resources 30.000 37.000 66.000 1.250 1.799 2.728

Note: Units for mean wait time represent simulated units of time.

Under the first scenario, which took 7522.174 units of time to complete, the data re-
vealed that four of the five phases (i.e., analysis, design, implementation, and testing) ex-
perienced a wait for their respective resource. The implementation phase, specifically in-
volving programmers, was a pronounced boZleneck. It exhibited the highest mean num-
ber of delays across various resource sizes—21.000 for small-sized projects, 26.000 for me-
dium-sized projects, and 34.000 for large projects. Additionally, this phase also displayed
the most extended mean wait times, with small projects waiting 5.344 simulated time units
for programmers, medium-sized projects 7.422 units of time, and large projects 9.707 units
of time. The design phase also faced some boZlenecks, with an overall number of delays
of 31.000 and a mean wait time of 0.645 simulated units of time.

On the other hand, the analysis and testing phases demonstrated relatively lower
delays and wait times. Small and medium projects each experienced delays in acquiring
one or more testers in 2.000 instances, respectively, and large projects experienced delays
in 10.000 instances and had to wait on average 0.333 units of time for a tester. The analysis
phase had a low overall number of delays of 7.000 and the lowest mean wait time of 0.143
units of time.

Interestingly, the maintenance phase had zero delays and wait times across all re-
source sizes. Large-sized projects, which required a greater number of the respective re-
sources to initiate their phases, experienced the greatest number of delays as well as the
greatest wait times for resources. These findings would strongly advocate for the devel-
opment of targeted strategies, with an emphasis on the implementation and design
phases, and their respective resources, to substantially mitigate delays and decrease wait
times across the board.

We ran a second simulation using a stepwise algorithm to identify and set resources
to a level that resulted in zero-wait times. Simulation cycles ran recursively until there
were no delays for any resources for a certain number of iterations (i.e., three). When a
delay occurred, the total number of the resource which was lacking was incremented by
one. In total, 40 runs of the simulation were required. For the analysis phase, it was iden-
tified that 15 analysts would be needed, in lieu of the initially speculated 5, to address the
earlier identified delays.

With respect to the design phase, the designer count was raised from 5 to 18. Succes-
sively, we examined the implementation phase; the number of programmers was substan-
tially increased from 10 to 38. The next phase to be examined was testing. We ascertained
that the necessary number of testers was 49, rather than the original number of 20 testers.
Lastly, the originally proposed level of 5 maintenance personnel for the maintenance
phase was increased to 10. These values are summarized in Table 7.

Table 7. Number of original and optimized resources as well as their corresponding phases.

Phase Resource Scenario 1
(Intuition)

Scenario 2
(Zero-Wait)

Analysis Analyst(s) 5 15
Design Designer(s) 5 18

Implementation Programmer(s) 10 38
Testing Tester(s) 20 49

Maintenance Maintenance personnel 5 10

The second scenario, after adjusting the number of resources in each phase to achieve
zero-wait, took 5754.000 units of time to complete. Indeed, we observe that there are no
longer any delays to procure respective resources, as can be seen in Table 8, which lists
the number of times a delay occurred, as well as the maximum, mean, and standard devi-
ation of wait times for resources across iterations by size of project.

Table 8. The number of times a delay occurred (Count), as well as the maximum (Max Wait), mean
(Mean Wait), and standard deviation (Std. Dev.) of wait times, for resources by size of project.

Phase Small Medium Large All Sizes
 Scenario Scenario Scenario Scenario
 1 2 1 2 1 2 1 2

Analysis

Count 1.000 0.000 1.000 0.000 5.000 0.000 7.000 0.000
Max Wait 0.509 0.000 2.979 0.000 4.707 0.000 4.707 0.000

Mean Wait 0.010 0.000 0.069 0.000 0.388 0.000 0.143 0.000
Std. Dev. 0.072 0.000 0.454 0.000 1.091 0.000 0.668 0.000

Design

Count 6.000 0.000 8.000 0.000 17.000 0.000 31.000 0.000
Max Wait 8.977 0.000 6.000 0.000 8.059 0.000 8.977 0.000

Mean Wait 0.525 0.000 0.380 0.000 1.030 0.000 0.645 0.000
Std. Dev. 1.754 0.000 1.124 0.000 1.989 0.000 1.669 0.000

Implementation

Count 21.000 0.000 26.000 0.000 34.000 0.000 81.000 0.000
Max Wait 42.000 0.000 29.000 0.000 46.396 0.000 46.396 0.000

Mean Wait 5.344 0.000 7.422 0.000 9.707 0.000 7.490 0.000
Std. Dev. 9.482 0.000 9.897 0.000 11.478 0.000 10.407 0.000

Testing

Count 2.000 0.000 2.000 0.000 10.000 0.000 14.000 0.000
Max Wait 4.000 0.000 3.000 0.000 8.000 0.000 8.000 0.000

Mean Wait 0.111 0.000 0.120 0.000 0.796 0.000 0.333 0.000
Std. Dev. 0.604 0.000 0.594 0.000 1.989 0.000 1.262 0.000

Maintenance

Count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Wait 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean Wait 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Across all phases

Count 30.000 0.000 37.000 0.000 66.000 0.000 133.000 0.000
Max Wait 42.000 0.000 29.000 0.000 46.396 0.000 46.396 0.000

Mean Wait 1.250 0.000 1.799 0.000 2.728 0.000 1.901 0.000
Std. Dev. 4.870 0.000 5.605 0.000 6.841 0.000 5.819 0.000

Note: The minimum wait times for all resources were 0.000. The units for maximum and mean wait
times represent simulated units of time.

The simulation also provided insight regarding project durations; the findings are
presented in Table 9 which follows. Overall, we see the fastest project in the second sce-
nario (zero-wait) being completed in 33.000 units of time, this being a large-sized project.
The longest project took 168.000 units of time, once again, a large-sized project. The mean

completion time for projects for Scenario 2 irrespective of size was 57.540 units of time.
Considering project size, for small projects, we see the fastest project completing in 34.000
units of time, the longest project requiring 106.000 units of time, and the mean project
completion standing at 47.298 units of time. For medium-sized projects, the quickest was
completed in 36.000 units of time and the longest in 112.000 units of time, with the mean
at 59.950 units of time. Looking at large-sized projects, we see the fastest project completed
in 33.000 units of time, the lengthiest project taking 168.000 units of time, and on average,
a project required 80.827 units of time to complete. Therefore, the post-optimization mean
time to complete a project increased with the size of the project as it ranged from 47.298
units of time for a small project to 59.950 units of time for a medium project to 80.827 units
of time for a large project. We also see the zero-wait algorithm having a mostly positive
effect on completion time, as minimum times went from 32.000 to 34.000, from 41.000 to
36.000, from 39.000 to 33.000, and from 32.000 to 33.000 for small, medium, large, and
across all sizes, respectively. Similarly, maximum completion times went from 107.141 to
106.000, from 170.142 to 112.000, from 303.000 to 168.000, and from 303.000 to 168.000 for
small, medium, large, and across all sizes, respectively. The effects of the optimization
process were similar when looking at mean completion times. The values went from
49.995 to 47.298, from 81.944 to 59.950, from 119.643 to 80.827, and from 75.222 to 57.540
for small, medium, large, and across all sizes, respectively. The data clearly indicate that
the implementation of a zero-wait strategy can significantly improve project completion
times.

Table 9. Summary of minimum (Min), maximum (Max), mean, and standard deviation (Std. Dev.)
of completion times for projects by size of project for both Scenarios 1 and 2.

 Small Medium Large All Sizes
 Scenario Scenario Scenario Scenario
 1 2 1 2 1 2 1 2

Min 32.000 34.000 41.000 36.000 39.000 33.000 32.000 33.000
Max 107.141 106.000 170.142 112.000 303.000 168.000 303.000 168.000

Mean 49.995 47.298 81.944 59.950 119.643 80.827 75.222 57.540
Std. Dev. 17.964 15.729 38.671 25.372 65.704 40.559 47.682 28.576

Note: Units for completion times represent simulated units of time.

We also looked at the duration of the individual phases for both Scenario 1 and Sce-
nario 2. In the analysis phase, we see that the minimum completion time remained a con-
stant 3.000 units across all project sizes, irrespective of scenario. Conversely, the maximum
time required for completion in Scenario 2 saw a significant reduction, dropping to 5.000
units from as high as 8.189 units of time for large projects. The mean values showed only
minor fluctuations across different project sizes, going from 4.083 units of time for Sce-
nario 1 to 4.058 units of time for Scenario 2, thereby revealing that the size of the project
does not significantly impact the average duration in the analysis phase. Moving on to the
design phase, the data reveal that while the minimum time remained constant at 5.000
units across all sizes and scenarios, the maximum time required saw a substantial reduc-
tion post-optimization. This was most pronounced for large projects, where the maximum
time was reduced from 18.059 to 10.000 units of time. Similarly, small projects dropped
from 15.541 to 10.000 units of time and medium-sized projects from 15.000 to 10.000
units of time. The average durations showed minimal variation regardless of project size,
going from 8.255 to 7.558 units of time. During the implementation phase, the minimum
time remained consistent at 15.000 units across all project sizes. However, the maximum
time saw a drastic reduction for Scenario 2, dropping to 20.000 units from as high as 62.396
units for large projects. Comparably, for small-sized projects the drop was from 61.000 to
20.000 units of time and for medium-sized projects from 48.000 to 19.000 units of time. The
mean times dropped from 24.730 to 17.510 units of time. The testing and maintenance

phases showed stable minimum and maximum times for the most part. In the case of the
testing phase, a drop was seen with respect to large projects and maximum completion
times, which dropped from 16.000 units of time for Scenario 1 to 10.000 units of time for
Scenario 2.

In summary, there was a significant reduction in maximum completion times across
all phases for Scenario 2. This supports the conclusion that the zero-wait approach was
effective in eliminating boZlenecks. Additionally, while large projects generally take more
time for Scenario 1, the zero-wait approach effectively narrows this gap, indicating that
such a process can improve worst-case scenarios. Table 10 provides greater detail on the
duration of phases by size of project across iterations in both scenarios.

Table 10. Summary of minimum (Min), maximum (Max), mean, and standard deviation (Std. Dev.)
of completion times for phases by size of project for both Scenario 1 and Scenario 2.

Phase Small Medium Large All Sizes
 Scenario Scenario Scenario Scenario
 1 2 1 2 1 2 1 2

Analysis

Min 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
Max 5.509 5.000 6.979 5.000 8.189 5.000 8.189 5.000

Mean 3.890 4.095 4.093 4.083 4.313 3.975 4.083 4.058
Std. Dev. 0.710 0.640 0.866 0.732 1.376 0.620 1.008 0.657

Design

Min 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Max 15.541 10.000 15.000 10.000 18.059 10.000 18.059 10.000

Mean 7.858 7.671 8.200 7.357 8.674 7.560 8.255 7.558
Std. Dev. 2.328 1.501 1.936 1.620 2.727 1.527 2.359 1.536

Implementation

Min 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
Max 61.000 20.000 48.000 19.000 62.396 20.000 62.396 20.000

Mean 22.398 17.458 24.668 17.207 27.125 17.760 24.730 17.510
Std. Dev. 9.519 1.383 9.873 1.373 11.429 1.546 10.419 1.442

Testing

Min 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Max 10.000 10.000 10.000 10.000 16.000 10.000 16.000 10.000

Mean 7.278 7.433 7.540 7.500 7.980 7.320 7.588 7.406
Std. Dev. 1.406 1.373 1.541 1.703 2.537 1.596 1.890 1.507

Maintenance

Min 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Max 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

Mean 2.120 1.984 1.929 2.130 1.857 2.061 1.984 2.034
Std. Dev. 0.594 0.713 0.745 0.626 0.648 0.659 0.667 0.679

Across all phases

Min 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Max 61.000 20.000 3.000 19.000 62.396 20.000 62.396 20.000

Mean 8.934 8.000 10.041 7.686 11.059 8.336 9.976 8.036
Std. Dev. 8.539 5.497 9.523 5.125 10.804 5.602 9.654 5.449

Note: Units for completion times represent simulated units of time.

The simulations also provided insight into the likelihood of a phase failing within the
software development lifecycle. It should be noted that, based on our simulation of the
waterfall model, errors can first become possible during the design phase. This is in line
with the approach proposed by Bassil [21]. Furthermore, we should highlight that the
probabilities of an error occurring did not vary between the scenarios, thus having no
effect on the possibility of failure. The likelihood of failure was based exclusively on pro-
ject size. We should also share that our software does allow differentiation by phase
should that be desired, namely analysis, design, implementation, testing, and mainte-
nance. The failure rate for small projects was 5.323 percent for Scenario 1 and 7.715 percent
for Scenario 2; for medium-sized projects, it was 19.368 percent for Scenario 1 and 17.949

percent for Scenario 2; and lastly, for large projects, the rates were 26.891 percent for Sce-
nario 1 and 24.215 percent for Scenario 2. Overall, the failure rate for Scenario 1 was 16.844
percent, and for Scenario 2, it was 15.084 percent. These data, which detail the number of
times a phase failed by project size, are presented in greater detail in Table 11.

Table 11. Reports on the mean number of times a phase failed and was not completed successfully
by size of project and across iterations.

Phase Small Medium Large All Sizes
 Scenario Scenario Scenario Scenario
 1 2 1 2 1 2 1 2

Design
of failed phases 3.000 6.000 12.000 16.000 18.000 17.000 33.000 39.000

of phases 54.000 73.000 61.000 42.000 59.000 50.000 174.000 165.000
Percentage 5.556 8.219 19.672 38.095 30.508 34.000 18.966 23.636

Implementation
of failed phases 4.000 10.000 18.000 6.000 19.000 10.000 41.000 26.000

of phases 55.000 72.000 57.000 29.000 55.000 50.000 167.000 151.000
Percentage 7.273 13.889 31.579 20.690 34.545 20.000 24.551 17.219

Testing
of failed phases 4.000 5.000 8.000 3.000 14.000 17.000 26.000 25.000

of phases 54.000 67.000 50.000 26.000 49.000 50.000 153.000 143.000
Percentage 7.407 7.463 16.000 11.538 28.571 34.000 16.993 17.483

Maintenance
of failed phases 3.000 5.000 11.000 3.000 13.000 10.000 27.000 18.000

of phases 50.000 62.000 42.000 23.000 35.000 33.000 127.000 118.000
Percentage (%) 6.000 8.065 26.190 13.043 37.143 30.303 21.260 15.254

All phases
of failed phases 14.000 26.000 49.000 28.000 64.000 54.000 127.000 108.000

of phases 263.000 337.000 253.000 156.000 238.000 223.000 754.000 716.000
Percentage (%) 5.323 7.715 19.368 17.949 26.891 24.215 16.844 15.084

5. Discussion
We began this paper inspired by the words of ChareZe [5], who argued that we could

predict and avoid many software failures. Our reliance on software systems continues
significant challenges related to exceeding schedules and accordingly costs, as well as the
customer’s perception of subpar product quality. We feel compelled to develop more ro-
bust software development methodologies [51]. Simulation, in particular, has been pro-
posed as a viable solution to challenges encountered in software engineering [57]. In this
spirit, we developed and executed an event-driven simulation to augment the software
development process. The utilization of software to support the modeling of software pro-
jects is a popular exercise, with significant sums of money being spent each year [58]. This
simulation, coded in Python using the SimPy framework, is designed to facilitate the gen-
eration of accurate estimates of project completion times and identify an optimal alloca-
tion of resources, thereby enabling more effective project management. Moreover, it em-
powers one to understand the interplay and associated tradeoffs that exist between longer
projects and procuring more resources. Furthermore, having an accurate forecast of re-
source requirements can significantly improve financial planning for projects. For in-
stance, exceeding anticipated project timelines can increase project costs and lead to
budget overruns. Previous research emphasizes the criticality of delivering high-quality
software within resource and time constraints for the software industry [59]. Conse-
quently, it is vital to ensure that project completion is not only within an allocated
timeframe but also within a projected budget. Through the use of such simulation, one is
empowered to promptly assess alternate scenarios when shifts occur in a planned task
timeline in order to realize effective business management [18].

In this work, we built on previous efforts to simulate the waterfall model (e.g.,
[21,23,60]) by offering an open-source solution utilizing Python and SimPy exploring two
scenarios. The first instance simulates the waterfall model with an intuitive set of

proposed resources. This provided initial insights into our current resource utilization and
identified boZlenecks within the software development life cycle. This suggested a need
for increasing resource allocation to ensure sufficient availability of programmers during
this phase. We then identify a level of resources that would result in zero-wait. Subse-
quently, we ran the simulation one final time to ascertain the effect that the optimization
process had on the software development life cycle. The results revealed that the adjusted
resource levels would achieve no delays. It is important to qualify that this is within a
certain margin—running the simulation enough times would theoretically produce at
times outliers reflecting resource shortages and phase delays.

The data also offered insight on the errors that could potentially emerge within the
software development life cycle. This can offer those managing information systems pro-
jects insight as to what errors could appear so that they would not be caught off guard
and could adequately address such errors. We would recognize that the presence of errors
in the practice of software development is widely recognized. If we were to look at the
work of Brooks [61], we would find that approximately half of development time is spent
on testing to identify and correct errors. Our analysis revealed that large projects consist-
ently had the highest failure rates, both in Simulation 1 with intuitive resources levels and
in subsequent simulations where levels were adjusted to achieve zero-wait.

Kellner et al. [7] write that “a model is valuable to the extent that it provides useful
insights, predictions and answers to the questions it is used to address”. To that end, this
simulator has satisfied this requirement. Certainly, the insight provided would enable an-
yone managing such an information systems project valuable information to make an in-
formed decision. On the one hand, they would understand and communicate the antici-
pated duration and predicted completion times for the project and its phases (including
any delays caused by a shortage of resources) to the stakeholders. On the other hand, it
also offers the potential to explore how changes in resources would influence completion
times but also the ability to identify an optimal set of resources that would minimize de-
lays.

6. Conclusions
As a practice, the development of software has been thoroughly studied and refined

over the years. Despite these efforts, software projects continue to run into trouble or fail
entirely. The waterfall model persists as a staple of software development. While there is
a belief that waterfall has been discarded in favor of agile approaches, an announcement
of its death is premature. A small but significant number of projects still use waterfall.
Moreover, there is a growing trend towards hybrid methodologies which combine the
more effective aspects of waterfall with the more effective aspects of different flavors of
agile.

In our work, we proposed and executed a discrete-event simulation of the waterfall
software development life cycle. By proactively identifying and managing potential de-
lays, teams can take preventive measures, beZer allocate resources, and maintain more
predictable project timelines, leading to successful project deliveries and higher customer
satisfaction. To implement the simulation, we utilized the Python programming language
coupled with the SimPy framework. We executed the simulation based on a set of prede-
fined assumptions which allowed us to estimate the time that would be required to com-
plete various hypothetical projects of different sizes.

The simulation offered insight as to project completion times, resource usage, and
any connected impacts on project completion. Furthermore, the simulation assists project
managers in determining the resources required to complete a project with minimal bot-
tlenecks and delays, thus providing valuable insights for project managers, software de-
velopment teams, and organizations seeking to refine and improve their software devel-
opment processes.

6.1. Implications
There are several implications that follow from our efforts, and we would contend

that they fall into two broad sets. The first of these is a response to McHaney et al.’s [58]
cautioning that “a discrete event computer simulation project can be a complex and diffi-
cult undertaking”. Our work offers an open-source solution to simulate a software devel-
opment life cycle using a modern, widely used programming language (i.e., Python). This
addresses, in part, the issues of access, cost, and complexity, given that Python, SimPy,
and our software are freely available through the internet. Furthermore, we would high-
light that the Python language is frequently taught in introductory programming courses.
Consequently, many programmers can use our solution without the need for significant
retraining. There are few remaining barriers with respect to access, cost, or complexity.
Moreover, with respect to complexity, our simulation by design is easily customizable and
adaptable. In this way, even those with a rudimentary understanding of Python should
be able to use it for their needs. Accordingly, a new population (whether that be industry
or academia) should now have access to a solution to simulate the waterfall software de-
velopment lifecycle.

According to Kellner et al. [7], “we have clustered the many reasons for using simu-
lations of software processes into six categories of purpose: strategic management; plan-
ning; control and operational management; process improvement and technology adop-
tion; understanding; and training and learning”. Indeed, our solution at the most basic
level provides an estimate of a project’s duration based on the given set of phases (i.e.,
analysis, design, implementation, testing, and maintenance) and resources (i.e., in our im-
plementation, business analysts, designers, programmers, testers, and maintenance peo-
ple). This system allows for beZer projections for project completion, given an existing
collection of resources. It also identifies boZlenecks and provides insight as to the extent
of delays and the resources necessary to alleviate or eliminate them. Furthermore, the sim-
ulation offers the level of resources necessary to eliminate boZlenecks, thus empowering
those managing information systems projects with the ability to strategically plan the
lifecycle, understand the interplay of multiple projects, and make any necessary decisions.
One way the resource issue could be addressed is by identifying an optimal part-time full-
time employment composition to best address the imbalances between idle resources and
boZlenecks caused by a lack of resources, always keeping in mind the words of Brooks
[61] that adding resources takes time.

Not only is such a simulation valuable for the workplace but also for those being
trained in managing such projects. Indeed, the use of simulations has been quite common
in the training of information systems professionals [62]. Through this technology, learn-
ers can see the impact of their decisions and explore possibilities before working with real-
world projects where mistakes may have significant and far-reaching implications for any
respective stakeholders. Ruiz et al. [51] reinforces this sentiment when they write, “simu-
lation models offer, as a main advantage, the possibility of experimenting with different
management decisions”, continuing, “thus, it becomes possible to analyze the effect of
those decisions in systems where the cost or risks of experimentation make it unfeasible”
[51]. The implication here is that future projects will have access to beZer-trained project
managers, which will optimally result in a higher percentage of successful projects.

6.2. Limitations and Next Steps
There are five limitations of this work that should be acknowledged and articulated

as they also concurrently offer direction for next steps in the future development of this
applied research. The first four are directly connected to the study’s narrow scope. Our
first limitation arises from our focus on simulating the waterfall model. While our solution
offers a promising degree of adaptability, it might be beneficial for our community to ex-
amine how other models—such as parallel, iterative, and incremental models, among oth-
ers—could be implemented as event-driven simulations in Python using SimPy. The next

limitation relates to the exclusive use of Python to code our program. Future efforts could
potentially explore the use of other languages, such as Java, via the Java Simulation Li-
brary (JSL), to extend the reach of our work. The third limitation lies in our adoption of an
event-based method of simulation. Subsequent studies could explore alternative ap-
proaches, such as agent-based simulation. The fourth has to do with the technique that we
employed to identify a resource level that would eliminate the time spent by phases in
waiting for resources, a simple step algorithm. Exploring alternate optimization tech-
niques, as well as other goals (e.g., eliminating resources or idle time), or examining them
would also be of interest. Finally, our fifth limitation recognizes that any software is in-
trinsically bound by the human element. The current iteration of our program requires
one to be comfortable working with code, as it lacks a graphical user interface to facilitate
user interaction. Extending the software to include such a feature should expand the user
base. Furthermore, an exploration into the usability of the output and how it can be further
developed would certainly be of value.

Our Python simulation system opens several avenues for further study. While the
simulation identifies boZlenecks and suggests optimal resource allocation in our hypo-
thetical projects, studying the simulation’s use in the real world will allow us to determine
its efficiency in helping teams deliver software projects on time and within budget. A sec-
ond area of further study involves integrating the simulation into software engineering
courses to see how asking students to interact with and study the parameters and code of
the simulation alters the ways in which they understand the software engineering process
and the software development lifecycle.

Computer Code and Software: The simulation software can be downloaded from the following
GitHub repository: hHps://github.com/adelphi-ed-tech/waterfall-sym.

Author Contributions: Conceptualization, A.S. and M.X.C.; methodology, A.S. and M.X.C.; soft-
ware, A.S. and M.X.C.; writing—original draft preparation, A.S. and M.X.C.; writing—review and
editing, A.S. and M.X.C. All authors have read and agreed to the published version of this manu-
script.

Funding: This research was funded in part through the New York University School of Professional
Studies Full-Time Faculty Professional Development Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cerpa, N.; Verner, J.M. Why Did Your Project Fail? Commun. ACM 2009, 52, 130–134. hHps://doi.org/10.1145/1610252.1610286.
2. Kotowaroo, M.Y.; Sungkur, R.K. Success and Failure Factors Affecting Software Development Projects from IT Professionals’

Perspective. In Soft Computing for Security Applications: Proceedings of ICSCS 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 757–772.

3. Bloch, M.; Blumberg, S.; Laaro, J. Delivering Large-Scale IT Projects on Time, on Budget, and on Value. Harv. Bus. Rev. 2012, 5,
2–7.

4. Wu, W.W.; Rose, G.M.; Lyytinen, K. Managing Black Swan Information Technology Projects. In Proceedings of the 2011 44th
Hawaii International Conference on System Sciences, Kauai, HI, USA, 4 January 2011; pp. 1–10.

5. ChareHe, R.N. Why Software Fails [Software Failure]. IEEE Spectrum 2005, 42, 42–49.
hHps://doi.org/10.1109/MSPEC.2005.1502528.

6. Zykov, S. Software Development Crisis: Human-Related Factors’ Influence on Enterprise Agility. In Research Anthology on Recent
Trends, Tools, and Implications of Computer Programming; IGI Global: Hershey, PA, USA, 2021; pp. 1145–1162.

7. Kellner, M.I.; Madachy, R.J.; Raffo, D.M. Software Process Simulation Modeling: Why? What? How? J. Syst. Softw. 1999, 46, 91–
105. hHps://doi.org/10.1016/S0164-1212(99)00003-5.

8. DeFranco, J.F.; Voas, J. Revisiting Software Metrology. Computer 2022, 55, 12–14.
9. Morawiec, P.; Sołtysik-Piorunkiewicz, A. Cloud Computing, Big Data, and Blockchain Technology Adoption in ERP Implemen-

tation Methodology. Sustainability 2022, 14, 3714.

10. The Standish Group, CHAOS Manifesto 2015, The Law of Diminishing Returns. Available online: hHps://www.standish-
group.com/sample_research_files/CHAOSReport2015-Final.pdf (accessed on 9 November 2023).

11. Portman, H. Review Standish Group—CHAOS 2020: Beyond Infinity. Available online: hHps://hennyportman.word-
press.com/2021/01/06/review-standish-group-chaos-2020-beyond-infinity/ (accessed on 9 November 2023).

12. Alves, J.L.; Ferreira, E.A.; de Nadae, J. Crisis and Risks in Engineering Project Management: A Review. Braz. J. Oper. Prod. Manag.
2021, 18, 1–17.

13. Middleton, P.; SuHon, J. The Way Out of the Software Crisis. In Lean Software Strategies; Productivity Press: New York, NY, USA,
2020; pp. 89–96.

14. Alshamrani, A.; BahaHab, A. A Comparison between Three SDLC Models Waterfall Model, Spiral Model, and Incremental/It-
erative Model. Int. J. Comput. Sci. Issues (IJCSI) 2015, 12, 106.

15. Balaji, S.; Murugaiyan, M. WATEERFALLVs V-MODEL Vs AGILE: A COMPARATIVE STUDY ON SDLC. Int. J. Inf. Technol. Bus.
Manag. 2012, 2, 26–30.

16. Sommerville, I. Software Process Models. ACM Comput. Surv. (CSUR) 1996, 28, 269–271.
17. Sanchez, P.J. As Simple as Possible, but No Simpler: A Gentle Introduction to Simulation Modeling. In Proceedings of the Pro-

ceedings of the 2006 winter simulation conference, Monterey, CA, USA, 3–6 December 2006; IEEE: Piscataway, NJ, USA, 2006;
pp. 2–10.

18. Pinho, T.M.; Coelho, J.P.; Boaventura-Cunha, J. Forest-Based Supply Chain Modelling Using the SimPy Simulation Framework.
IFAC-PapersOnLine 2016, 49, 90–95. hHps://doi.org/10.1016/j.ifacol.2016.03.016.

19. Vasilecas, O.; Normantas, K.; Rusinaite, T.; Savickas, T.; Vysockis, T. Shared Resource Model for Allocating Resources to Activ-
ities in BP Simulation. In Proceedings of the Information and Software Technologies; Dregvaite, G., Damasevicius, R., Eds.; Springer
International Publishing: Cham, Swioerland, 2016; pp. 218–229.

20. Thind, S.; Karambir, A. Simulation Model for the Spiral Software Development Life Cycle. Int. J. Innov. Res. Comput. Commun.
Eng. 2015, 3, 3823–3830.

21. Bassil, Y. A Simulation Model for the Waterfall Software Development Life Cycle. arXiv 2012, arXiv:1205.6904.
22. Cocco, L.; Mannaro, K.; Concas, G.; Marchesi, M. Simulating Kanban and Scrum vs. Waterfall with System Dynamics. In Pro-

ceedings of the International Conference on agile Software Development, Madrid, Spain, 10–13 May 2011; Springer: Berlin/Hei-
delberg, Germany, 2011; pp. 117–131.

23. Singh, A.; Kaur, P.J. A Simulation Model for Incremental Software Development Life Cycle Model. Int. J. Adv. Res. Comput. Sci.
2017, 8, 126–132.

24. Matloff, N. Introduction to Discrete-Event Simulation and the Simpy Language. Davis CA. Dept. Comput. Sci. Univ. Calif. at Davis
2008, 2, 1–33.

25. Shylesh, S. A Study of Software Development Life Cycle Process Models. In Proceedings of the National Conference on Rein-
venting Opportunities in Management, IT, and Social Sciences, Washington, DC, USA, 14–15 December 2016; pp. 534–541.

26. Sarker, I.H.; Faruque, F.; Hossen, U.; Rahman, A. A Survey of Software Development Process Models in Software Engineering.
Int. J. Softw. Eng. Its Appl. 2015, 9, 55–70.

27. Ruparelia, N.B. Software Development Lifecycle Models. SIGSOFT Softw. Eng. Notes 2010, 35, 8–13.
28. Öztürk, V. Selection of Appropriate Software Development Life Cycle Using Fuzzy Logic. J. Intell. Fuzzy Syst. 2013, 25, 797–810.
29. Dawson, C.; Dawson, R. Software Development Process Models: A Technique for Evaluation and Decision-Making. Knowl. Pro-

cess Manag. 2014, 21, 42–53. hHps://doi.org/10.1002/kpm.1419.
30. Benington, H.D. Production of Large Computer Programs. In Proceedings of the Proceedings of the 9th International Confer-

ence on Software Engineering; IEEE Computer Society Press: Washington, DC, USA, 1987; pp. 299–310.
31. Angulo, A.A.R.; Yang, X.; Niyaz, Q.; Paheding, S.; Javaid, A.Y. A Secure Software Engineering Design Framework for Educa-

tional Purpose. In Proceedings of the 2022 IEEE International Conference on Electro Information Technology (eIT), Mankato,
MN, USA, 19 May 2022; pp. 375–381.

32. Dhaini, M.; Jaber, M.; Fakhereldine, A.; Hamdan, S.; Haraty, R.A. Green Computing Approaches-A Survey. Informatica 2021, 45,
1–12.

33. Navaei, M.; Tabrizi, N. Machine Learning in Software Development Life Cycle: A Comprehensive Review. ENASE 2022, 1, 344–
354.

34. Rastogi, V. Software Development Life Cycle Models-Comparison, Consequences. Int. J. Comput. Sci. Inf. Technol. 2015, 6, 168–
172.

35. Dennis, A.; Wixom, B.; Tegarden, D. Systems Analysis and Design: An Object-Oriented Approach with UML, 5th ed.; John Wiley &
Sons: Hoboken, NJ, USA, 2015; ISBN 1-118-80467-8.

36. Weisert, C. Waterfall Methodology: There’s No Such Thing! Available online: hHps://www.idinews.com/waterfall.html (ac-
cessed on 17 December 2021).

37. Petersen, K.; Wohlin, C.; Baca, D. The Waterfall Model in Large-Scale Development. In Proceedings of the Product-Focused Software
Process Improvement; Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg,
2009; pp. 386–400.

38. Royce, W.W. Managing the Development of Large Software Systems: Concepts and Techniques. In Proceedings of the Proceedings
of the 9th International Conference on Software Engineering; IEEE Computer Society Press: Monterey, CA, USA, 1987; pp. 328–338.

39. Bell, T.E.; Thayer, T.A. Software Requirements: Are They Really a Problem? In Proceedings of the Proceedings of the 2nd Inter-
national Conference on Software Engineering, San Francisco, CA, USA, 13–15 October 1976; pp. 61–68.

40. Paul, D.; Yeates, D.; Cadle, J.; Eva, M.; Hindle, K.; Rollaston, C.; Tudor, D. Business Analysis, 2nd ed.; British Informatics Society:
Swindon, UK, 2010; ISBN 978-1-78017-006-0.

41. Humphrey, W.S.; Kellner, M.I. Software Process Modeling: Principles of Entity Process Models. In Proceedings of the Proceed-
ings of the 11th International Conference on Software Engineering, Singapore, 11–15 April 1988; pp. 331–342.

42. Andrei, B.-A.; Casu-Pop, A.-C.; Gheorghe, S.-C.; Boiangiu, C.-A. A Study on Using Waterfall and Agile Methods in Software
Project Management. J. Inf. Syst. Oper. Manag. 2019, Vol. 13 No. 1, 125–135.

43. PMI Ahead of the Curve: Forging a Future-Focused Culture. Pulse of the Profession. Available online:
hHps://www.pmi.org/learning/library/forging-future-focused-culture-11908 (accessed on 10 October 2023).

44. Fagarasan, C.; Popa, O.; Pisla, A.; Cristea, C. Agile, Waterfall and Iterative Approach in Information Technology Projects. In
Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1169, p.
012025.

45. Bryar, C.; Carr, B. Have We Taken Agile Too Far? Harv. Bus. Rev. 2021. Available online: hHps://hbr.org/2021/04/have-we-taken-
agile-too-far (accessed 9 November 2023).

46. Kirpitsas, I.K.; Pachidis, T.P. Evolution towards Hybrid Software Development Methods and Information Systems Audit Chal-
lenges. Software 2022, 1, 316–363. hHps://doi.org/10.3390/software1030015.

47. Bhavsar, K.; Shah, V.; Gopalan, S. Scrumbanfall: An Agile Integration of Scrum and Kanban with Waterfall in Software Engi-
neering. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2020, 9, 2075–2084.

48. Sommerville, I. Software Engineering, 9th ed.; Pearson: London, UK, 2011; p. 18, ISBN-10 137035152.
49. Dennis, A.; Wixom, B.H.; Roth, R.M. Systems Analysis and Design, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN

978-1-118-05762-9.
50. Zhang, H.; Raffo, D.; Birkhöloer, T.; Houston, D.; Madachy, R.; Münch, J.; SuHon, S.M., Jr. Software Process Simulation—At a

Crossroads? J. Softw. Evol. Process 2014, 26, 923–928. hHps://doi.org/10.1002/smr.1694.
51. Ruiz, M.; Ramos, I.; Toro, M. A Dynamic Integrated Framework for Software Process Improvement. Softw. Qual. J. 2002, 10, 181–

194. hHps://doi.org/10.1023/A:1020580008694.
52. Acuna, S.T.; De Antonio, A.; Ferre, X.; Maté, L.; López, M. The Software Process: Modeling, Evaluation and Improvement. In

Handbook of Software Engineering and Knowledge Engineering: Volume I: Fundamentals; World Scientific: Singapore, 2001; pp. 193–
237.

53. Pall, G.A. Quality Process Management; Prentice-Hall: Englewood Cliffs, NJ, USA, 1987.
54. Ruiz, M.; Ramos, I.; Toro, M. Software Process Dynamics: Modeling, Simulation and Improvement. In New Trends In Software

Process Modelling; World Scientific: Singapore, 2006; pp. 21–56.
55. Jørgensen, M. Do Agile Methods Work for Large Software Projects? In Agile Processes in Software Engineering and Extreme Pro-

gramming, Proceedings of the 19th International Conference, May 21–25 2018, Porto, Portugal; Garbajosa, J., Wang, X., Aguiar, A.,
Eds.; Springer International Publishing: Cham, Swioerland, 2018; pp. 179–190.

56. Riley, L.A. Discrete-Event Simulation Optimization: A Review of Past Approaches and Propositions for Future Direction. In
Proceedings of the 2013 Summer Computer Simulation Conference, Toronto, Canada, 7-10 July 2013; pp. 386-393.

57. Zhang, H.; Jeffery, R.; Houston, D.; Huang, L.; Zhu, L. Impact of Process Simulation on Software Practice: An Initial Report. In
Proceedings of the 33rd International Conference on Software Engineering, Honolulu, HI, USA, 21–28 May 2011; pp. 1046–1056.

58. McHaney, R.; White, D.; Heilman, G.E. Simulation Project Success and Failure: Survey Findings. Simul. Gaming 2002, 33, 49–66.
hHps://doi.org/10.1177/1046878102033001003.

59. Ali, N.B.; Petersen, K.; Wohlin, C. A Systematic Literature Review on the Industrial Use of Software Process Simulation. J. Syst.
Softw. 2014, 97, 65–85. hHps://doi.org/10.1016/j.jss.2014.06.059.

60. Trivedi, P.; Sharma, A. A Comparative Study between Iterative Waterfall and Incremental Software Development Life Cycle
Model for Optimizing the Resources Using Computer Simulation. In Proceedings of the 2013 2nd International Conference on Infor-
mation Management in the Knowledge Economy; IEEE: Piscataway, NJ, USA, 2013; pp. 188–194.

61. Brooks, F.P., Jr. The Mythical Man-Month (Anniversary Ed.); Addison-Wesley Longman Publishing Co., Inc.: Upper Saddle River,
NJ, USA, 1995; ISBN 0-201-83595-9.

62. Martin, A. The Design and Evolution of a Simulation/Game for Teaching Information Systems Development. Simul. Gaming
2000, 31, 445–463.

