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Abstract: The importance of understanding the corrosion mechanisms of excavated metal artefacts 

help in determining the physico-chemical parameters of the burial environment and the formation 

of different corrosion products. These products can be observed and analysed with the help of var-

ious techniques that provide information on their morphology, chemical composition and struc-

ture. The analysis of ancient coins is extremely challenging in the presence of heavily corroded 

surfaces; as quantitative information may not exactly concur with its bulk composition. In the case 

of silver coins, the use of surface information can be used as a guide for bulk composition only. 

The current study carries out investigation and characterization of selected coins from a large coin 

hoard excavated from Amheida, Dakhla oasis, Egypt. The study and analysis of the alloy composi-

tion and corrosion products was performed using a multi-technique approach which included 

Light optical microscopes, Scanning Electron microscope (SEM) coupled with energy dispersive 

spectroscopy (EDS) and X-ray diffraction analysis. Investigation of the coins revealed the presence 

of a thick active inhomogeneous corrosion crust, while analysis showed that the coins were made 

from a binary silver copper alloy (billon) while the corrosion crust was rich in chlorides and car-

bonates, later identified by XRD analysis as Paratacamite, Malachite and Chrysocolla. 
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1. Introduction 

Corrosion or mineralization of metals is defined as a process resulting from the elec-

trochemical reactions in which metal or alloys react with the surrounding environment to 

form chemical compounds that are similar to the original mineral ores from which the 

metal was extracted [1]. This process can take many forms depending on the composition 

of the metal, environmental conditions [2] and the existence of internal stresses [3,4]. An-

cient metal coins recovered from archaeological sites are subjected to several corrosion 

processes, resulting in a nearly composite material consisting of metal remnants and min-

eral alteration products [5]. Normally corrosion produces a buildup of insoluble products, 

both within and overlying the original metal volume. Billon is an alloy of silver and copper 

[6] used in the manufacture of coins, medals, and tokens. The use of billon coins date from 

ancient Greece and continued through the Middle Ages, but are perhaps best known from 

the Roman Empire [7]. The addition of copper to silver was to increase its hardness and 

durability as silver is a very soft metal [8,9]. Surface corrosion products can occur, when 
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breaks in the oxide film or the buildup of surface scale change the nature of the surface 

[10], in addition to the effects of the free exchange of ions [11]. However, the rate of corro-

sion can be increased through galvanic process that occurs when objects made of different 

metals are in contact with each other in high relative humidity (RH) [12,13].  Silver alloys 

are sensitive to exposure to atmospheric aggressive agents such as H2S, carbonyl sulphide 

(COS) and SO2, combined with the presence of high relative humidity (RH), can rapidly 

form an adherent layer of tarnish [14]. Ancient silver copper alloys are also susceptible to 

intergranular corrosion-induced embrittlement due to the segregation of copper to grain 

boundaries (Smith, 1965). Over time, the corrosion of archaeological objects becomes ex-

tensive, and its removal may affect their appearance and cause compositional changes on 

the object’s surface [15]. Therefore, the removal of corrosion products from excavated met-

al objects should be always performed with extreme caution [16].  A preliminary examina-

tion and condition assessment of the object is of great importance [17]. It is necessary to 

form some estimate of the thickness and regularity of the encrusted layer, and the degree of 

penetration of corrosion into the core [18].  

1.1. The study area 

The study area “Amheida”, (Figure 1-a, b) is located on the western edge of Dakhla 

oasis in the western desert of Egypt about 750 km south-west of Cairo at Lat. 25°25′56″ N to 

25°55′11″ N and Long. 28°28’37’’ E to 29°22’14’’ E) [19]. According to Brookes [20] and 

Kuciewicz, et al. [21] this area hosts potentially unique features that were noted by some 

previous researchers. This area is a vast archaeological site that has a long history that goes 

back to at least the old Kingdom [22]. It can be reached via the loop road running from Mut 

to el-Qasr. Geologically, this oasis corresponds to the interior of the African continent 

where Mesozoic and Cenozoic rocks prevail [23]. According to Said [24] the study area is a 

part of the stable shelf that generally includes the horizontal strata forming the Western 

desert plateau. These strata are mainly covered by sedimentary rocks ranging in age from 

Jurassic to Quaternary [25,26].  
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  Figure 1. (a) map of Dakhla oasis; (b) the Amheida study area 

1.2. The study objects 
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 According to Bagnall [27] the discovered coin hoard (Figure 2-a) contained around 

850 coins, which was studied to investigate the different effects of the surrounding envi-

ronment [28]. The coin hoard is the part of a project aiming to perform the conservation 

and authentication of the archaeological coins’ hoards discovered in Amheida. The hoard 

was divided into three textile bags (traces of fabrics are visible) lying on top of a mudbrick 

debris layer filling Area (Figure 2-b).  The hoard (Figure 2-c) was covered with a thick lay-

er of corrosion products and soil encrustations, resulting from their long-term under-

ground burial. Their surface features and inscriptions were obscured and distorted to such 

an extent that no detail of the original surface could be retrieved. Most ancient coins are 

subjected to various corrosion processes [29], resulting in the formation of different corro-

sion products [30]. Corrosion can gradually alter their aspect, shape, and nature, up to a 

stage where it is impossible to use them as historical evidence of human civilizations [31]. 
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                            (a)                                                                                          (b)  

Figure 2. (a) The area where the excavated coins were found (b & c) the coin hoard 

2. Materials and Methods 

Three Roman billon (Ag-Cu alloy) coins were selected for this research; coins no.(66, 

68 & 73) with the dimensions (Ø2.5cm, 0,4cm) for coin number (66), (Ø2,4cm, 0,5cm) for 

coin number (68) and(Ø2,3cm, 0,4cm) for coin number (73) were studied, (Figure 3-a, b, c). 

They are from the excavations at Amheida, Dakhla oasis, Egypt. The coins are covered with 

a thick layer of corrosion and soil encrustations (Figure 3). 
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Figure 3. (a) Coin number 66 (b) coin number 68 (c) coin number (73) 

The coins were studied using different techniques for defining surface and morpho-

logical features, different elemental and mineralogical components, in addition to structure 
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and nature of the patina according to Constantinides, et al. [32]. Light optical microscope 

(LOM) was used because it allows a rapid and representative characterization of the mor-

phological features of the corrosion products, the nature of the patina, and the associated 

burial remains.  Optical observations were primarily carried out without any preparation 

in order to keep the surface intact.  

Scanning electron microscopy coupled with energy dispersive spectrometry (SEM- 

EDS), was used according to Borges, et al. [33] and Di Turoa. et al. [34] to investigate the 

surface and the metallic core and to detect the distribution of the chemical elements in the 

corrosion layer and in the core. SEM micrographs and EDS spectra of the selected coins 

were obtained by using a JEOL/EO, JSM-6380 device, equipped with an EDS link operating 

up to an accelerating voltage of 20 kV and a working distance of 9 mm.  

X-Ray diffraction analysis (XRD) was used to identify the corrosion products and to 

understand the corrosion mechanism [35,36]. The studied coins surfaces were carefully 

scraped with a small spatula, to collect the fine corrosion particles for the X-ray diffraction 

analysis. The analysis of the corrosion products was performed with an Ultima IV, multi-

purpose X-ray diffraction system equipped with a copper anticathode. The measuring 

conditions were set as follows: Cu target, 40 kV accelerating voltage, 40 mA current, the 

scanning range of 2θ was from 5 to 70° and the scanning speed was 2°/min. 

3. Results 

3.1. Optical Microscope 

OM observations (Figure 4) revealed that the coins showed a rough corrosive surface 

with cracks and pits. It was covered with different corrosion products with colors of dark 

green, light green, greenish blue and metallic gray blackish surface covered with soil resi-

dues. In some parts, there was a thick active inhomogeneous green corrosion crust, full of 

pores and cavities.  
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Figure 4. Optical observation of (a) corrosion layers (170-x) (b) schematic representation of the corro-

sion layers (c) corrosion pitting (bronze disease) with pale green color (150-x) 
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3.2. SEM-EDS  

Coin no.66 is of a binary silver copper alloy otherwise known as Billon, with the bulk 

composition of around 63% Ag, 15.4% Cu, (Figure 5-a, b). The surface of Coin no. 68 shows 

distinct layered corrosion structure rich in chlorides, (Figure 5-c, d). Within the same con-

text, the investigation of the coin no. 73 proved that it is covered with thick corrosion crust 

rich in copper chlorides, oxides and soil deposits, (Figure 5-e, f). 
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(c)                                           (f) 

Figure 5.  SEM photomicrographs of (a) the bright areas on the surface of coin (66), (b) the thin su-

perficial layer on the surface of coin (68), (c) the corrosion products on the surface of coin (73), (d, e. & 

f) EDS spectrum of the same samples 
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3.3. XRD  

The results showed that the major compound of the light green patina of the sample 

is paratacamite (Cu2(OH)3Cl), which exists with little amounts of malachite (Cu2CO3(OH)2), 

chrysocolla (CuSiO2.H2O) and metallic copper (Cu), ( Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. XRD patterns of the studied samples of corrosion powder  

4. Discussion 

Base silver alloyed with copper usually displays a variety of copper corrosion prod-

ucts on the surface. All metals have specific relative electrical potential. When metals of 

different electrical potential are in contact in the presence of moisture, a low energy electric 

current flows from the metal having the higher position in the galvanic series. This is called 

"galvanic action or corrosion", which is considered a form of electrochemical corrosion [37] 

that occurs when two dissimilar metals come together in the presence of an electrolyte to 

form an electrical couple, known as a galvanic couple [12]. The more noble or cationic the 

metal, the less likely it will corrode relative to the other metal it is in contact with [38] Billon 

is a Roman silver copper alloy[39] composed of a noble and base metal, it is used chiefly for 

making coins and medals [40]. Billon alloy is susceptible to galvanic corrosion and this ex-

plains the fact that most of the corrosion products identified by X-ray diffraction are of 

copper. Corrosion of archaeological alloys is also essentially due to ambient environments, 

particularly soil and groundwater [41,42]. The corrosion of billon coins in the soil is a com-

plicated process caused by interaction between metals and surrounding soil [43], especially 

with presence of moisture and high salt contents [44]. 

This process is generated as moisture is commonly present within the inter-granular 

spaces and organic matter of soil, which alters the ambient pH [45]. This leads to two main 

mechanisms; physical and chemical, which, result from the aggressive deterioration factors, 

such as soil external stress and internal strains. According to Merk [46]; Agrawal [47]; 

Quaranta [48], research work has been carried out on their interaction with metal alloys. In 

our case, this mechanism is primarily attributed to the combined environmental effects 

such as O, Cl within the soil as argued previously by Schweizer [49].  As well as, the effects 

of urban pollution and ion migration in the study area [50,51]. Physical corrosion mecha-

nism is one of the most important mechanisms affecting the metal corrosion process [52], 

which is attributed to the pressure on the overlying corrosion products that cause physical 

damage. This damage is visually evident in some serious forms, such as cracking, which 

develops into lamination and exfoliation [53,54]. This is mostly linked to the rate of oxygen 

consumption and dominated RH. It controls the metal corrosion products as attested by 

Matthiesen [55]. 

Post-excavation, archaeological silver alloy coins usually display a central core of 

uncorded metal surrounded by a layer of predominantly silver corrosion products. Some 

archaeological silver artifacts may also become brittle as a long-term consequence of corro-

sion and microstructural changes [56,57]. Corrosion-induced embrittlement results from 

selective corrosion that penetrates the metal and eventually causes it to crack and fracture. 

The surface of corroded silver alloys is slowly converted to silver chloride [58]. Silver chlo-
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ride forms a brittle, finely granular layer but it does not affect the remaining metal, while 

copper diffuses out of the alloy and forms green copper corrosion products on the surface 

[56]. Other common types of corrosion in silver copper alloys are intergranular, interden-

dritic, along segregation bands that are the remains of coring and interdendritic segregation 

and along slip lines and deformation twin boundaries in objects not annealed after their 

final mechanical working [43]. Intergranular corrosion is very common in silver copper al-

loys. It is the selective dissolution of the grain boundary zone, while the bulk grain is not 

attacked. Intergranular corrosion is caused by the action of micro-galvanic cells at the grain 

boundaries. Grain boundaries are preferred sites for segregation and precipitation, which 

makes them physically and chemically different from the matrix. Furthermore, a zone ad-

jacent to the grain boundary is depleted of the solute elements. Consequently, a ‘galvanic 

cell’ is formed [59]. 

4.1. Optical microscope 

Based on the surfaces features’, (Figure 4), it could be asserted that the noted rough 

corrosive surface and weakness areas mostly resulted from aggressive factors dominating 

the study area, especially the abundance of chlorides in the soil. Cracks and pits on the coin 

surfaces owed essentially to the developing of macroscopic activity between the corrosion 

layers or fatigue cracks [60]. In our case, it is attributed to covering the surfaces of the 

original objects by complex corrosion compounds (dark-green areas), due to defects in the 

protecting oxide film [61]. Furthermore, the crack propagation in the coins could result 

from acid production and saline water/soils in the study area as mentioned by Tylecote [62] 

in his case study, in addition to the effect of stress concentration and the physical properties 

of the metal itself [63]. The presences of corrosion products; on one hand, dark green car-

bonates, malachite and light green paratacamite covered with soil residues are attributed to 

the burial crusts dominated in the area because of the long interaction of soil environment 

[64]. The latter compounds are inherently unstable and convert into more stable com-

pounds due to active chlorine [65]. Finally, the occurrence of black spots with microscopic 

appearance is mostly attributed to local migration of copper ions from the alloy to form 

chalcocite crystals on the surface as mentioned previously by Eggert & Sobottka-Braun in 

their case study [66].  

4.2. SEM-EDS 

Through evaluating the SEM, (Figure 5-a, b & c) it could be noted that they show 

some variations in layered corrosion structure characterized by distinct layers rich in chlo-

rides covered with thick corrosion crust. This crust contains copper chlorides, carbonates, 

sulphides and soil deposits due to direct influence of the burial effects for a long time as 

mentioned previously by Cura, et al. [67]. Although, it wasn’t possible to prepare a 

cross-section, the flaking of the outer corrosion products made it possible to examine and 

analyze these layers. These corrosion layers are heterogeneous and composed of different 

elements with different ratios. Within the same context, it could be asserted that there are 

main differences between the investigated samples according to their deterioration states. 

In coin 66, there is a distinct enrichment of silver at the surface with the composition of Ag 

63.15%, stating clearly that it’s a billon alloy, however, the bulk analysis couldn’t be de-

termined. In coin 68, (Figure 5-e) only copper corrosion products were detected, the surface 

being rich in malachite and paratacamite as confirmed by XRD. The surface of Coin 73, 

shows signs of active corrosion rich in chlorides and soil deposits.  

4.3. XRD  

The studied coins were found in a desert environment, enough moisture is present to 

interact with the soil salts, with the result that the movement of free ions produces different 

corrosion products as evident from the microscopic examination. XRD analysis identified 

the presence of several mineral species representing the corrosion products and soil de-

posits. Chalcocite (Cu2S) is one of corrosion products formed on copper and copper alloys 

exposed outdoors at sites with high hydrogen sulphide (H2S) or buried in soils where sul-
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fate-reducing bacteria may generate (H2S) during respiration. Studies have shown that 

copper sulfides are readily produced in moist, anoxic soil environments or deoxygenated 

seawater [68-70]. Copper alloys (except possibly arsenical bronzes) are also subject to sul-

fide-induced corrosion by SRB within a biofilm. Under these circumstances chalcocite 

forms easily [71-73]. The corrosion layer may contain other sulfides buried under other 

corrosion products [74,75]. Nonetheless, the poor adherence and mechanical properties of 

the sulfides make these layers non-protective. 

Paratacamite Cu2(OH)3Cl, occurs as a powdery light green secondary corrosion layer 

found on the patina surface [76]. The conditions for its formation include the presence of a 

deposit of insoluble cuprous chloride (CuCl) under a layer of cuprite (Cu2O) which acts as a 

bipolar electrode. This means that the corrosion (anodic) reactions occur on the metal side 

of the cuprous oxide membrane while oxygen reduction (cathodic) reactions occur on the 

environmental side. This coincides with the fact that XRD data gave a clear indication that 

this mineral is in fact present at the interface of the outer-layer and the inner-layer (metallic 

substrate) of corrosion surface. Furthermore, it could be claimed that it was formed prin-

cipally when copper alloys come in contact with soil in the presence of moisture formed by 

surface condensation and charged with carbon dioxide [48]. The existence of the cuprous 

chloride layer in the pit will depend on the relative rates of copper corrosion and the hy-

drolysis of cuprous. In the presence of chlorine ions CuCl can form a series of soluble 

complexes such as CuCl2- and CuCl3- in the pit. These copper (I) species diffuse through the 

cracks in the Cu2O membrane and are then oxidized by molecular oxygen to cupric ions 

while oxygen is reduced to hydroxide ions. Some of the cupric ions will be precipitated in 

the form of basic cupric chlorides (Cu2(OH)3Cl), while other cupric ions can be reduced to 

form cuprous ions, which are subsequently oxidized by molecular oxygen away from the 

surface of the pit. The anodic reaction inside the pit is the oxidation of cuprous to cupric 

ions at the Cu2O surface, which in turn attack the copper metal to form more cuprous ions 

causing the pit to deepen. The driving force for the pitting reaction is the concentration 

gradient of copper (I) species between the bottom of the pit and the corrosion mound 

formed above the Cu2O film [75]. In addition, the presence of this mineral indicates that the 

formation of the internal chloride layer could be linked to the contamination in the soil due 

to artificial fertilizers as attested by Gerwin & Baumhauer [4]. Cuprous chloride may lie 

dormant until reaction with moisture or oxygen causes this stable compound to expand in 

volume on conversion to one of the copper trihydroxychlorides. This creates physical stress 

within the object affected, resulting in cracking or fragmentation. Cl- (chloride ions) is very 

active when subjected to moisture or high relative humidity. Deterioration occurring to al-

loys rich in copper is often attributed to the presence of chloride, and there is no doubt that 

most, if not all, corrosion products on archaeological copper alloy artifacts contain chloride 

ions. 

Malachite, CuCO3.Cu(OH)2 is a significant component of patinas that develops 

during burial in the soil [77], practically all copper alloys buried in soil form a cuprite crust 

that is adjacent to the metal and overlaid with malachite [78]. It is formed principally when 

copper alloys come in contact with soil waters or with water formed by surface condensa-

tion and charged with carbon dioxide. Malachite can be formed in two ways: by reaction of 

cupric ions with carbonate ions from a super-saturated aqueous solution 10,17,18, depos-

ited on a substrate 19 , or by the reaction of cupric oxide (tenorite) or cuprous oxide (cu-

prite) with carbon dioxide and water 17,20,21. Malachite usually can form above the initial 

cuprite layer due to the direct chemical reaction of the carbonate/ bicarbonate anions and 

the copper and/or cuprous oxide patina in the presence of the high humid environment 

[79]. The carbonate/ bicarbonate anions can result from the dissolution of the salts in the 

burial environment.  

Chrysocolla, CuSi02.nH20, a copper silicate is not a common corrosion product on 

copper alloy artefacts; however, its formation could be due to the reaction of leached copper 

ions with the surrounding soil. The sandy soil (the place which the coins found) allows 

good penetration of air, because the large spaces between the grains of sand make it easy 
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for air and moisture to pass through. As a result, the corrosion process becomes very active, 

and some coins display spongy corrosion. 

5. Conclusions 

Three silver copper alloy (billon) coins from the Amheida excavation site in Dakhla 

oasis, Egypt were chosen for this study. Various investigative and non-destructive analyt-

ical techniques were used to assess the condition of the coins including a light optical mi-

croscope and a Smart-Eye USB Digital microscope to characterize the morphological fea-

tures of the corrosion products and the associated burial soil remains. These showed evi-

dence of the presence of active localized pitting corrosion known as “bronze disease”. 

Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS), 

showed that the coins were made from a binary silver copper alloy while the corrosion 

crust was rich in chlorides and carbonates, later identified by XRD analysis as Paratacamite, 

Malachite, Chalcocite and Chrysocolla. These corrosion products are typical for silver 

copper alloys, whereby copper diffuses out of the alloy and forms different copper corro-

sion products.  The coins were found in a sandy soil which allows good penetration of air, 

and moisture. As a result, corrosion becomes very active, and the coins display thick in-

homogeneous corrosion crust. Moreover, the presence of copper chlorides expressed as 

paratacamite in the outer corrosion crust suggests the objects were recovered from partly 

aerobic conditions, while the presence of chalcocite suggests an anaerobic reducing envi-

ronment which could suggest fluctuating conditions. 
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