
A Brief History of the Waterfall Model: Past, Present, and Future
Antonios Saravanos
saravanos@nyu.edu
New York University
New York, NY, USA

Abstract
The waterfall model, one of the earliest software development
methodologies, has played a foundational role in shaping contempo-
rary software engineering practices. This paper provides a historical
and critical overview of the model, tracing its conceptual origins
in software engineering, its formalization by Royce, and its evolu-
tion through decades of industry adoption and critique. Although
often criticized for its rigidity, shortcomings, and high failure rates,
the waterfall model persists in specific domains. Its principles con-
tinue to influence contemporary hybrid development frameworks
that combine traditional and agile methods. Drawing on a range
of scholarly sources, this study synthesizes key developments in
the perception and application of the waterfall model. The analysis
highlights how the model has shifted from a standalone framework
to a component within modern hybrid methodologies. By revisiting
its origins, assessing its present utility, and examining its role in
contemporary development practices, this paper argues that the
waterfall model remains relevant, not as a relic of the past but as
part of context-aware development strategies. The paper contends
that the model’s enduring relevance lies in its adaptability. By recog-
nizing both its limitations and its strengths, and by understanding
its integration within hybrid approaches, practitioners can make
more informed decisions about methodology selection and process
design in diverse development environments.

CCS Concepts
• Software and its engineering→ Software creation and man-
agement; Software development process management; Soft-
ware development methods;Waterfall model;

Keywords
Waterfall model, Systems development life cycle, Software develop-
ment life cycle, SDLC, Diverse development environments

1 Introduction and Origins
This paper offers a contemporary overview of the popular waterfall
model. A structured formula for developing systems is often cred-
ited to Royce [1] (available in the ACM Digital Library), though
some argue that it builds on earlier work by Benington [2]. Emerg-
ing during a period when the field was still in its formative stages,
the model offered a much-needed structured approach to managing
the growing complexity of software systems. It formalized a phase-
driven development cycle that mirrored the logical progression
of engineering projects, beginning with requirements gathering
and ending in deployment and maintenance. As such, it became

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

the blueprint for how software systems were conceptualized, de-
signed, and built in the latter half of the twentieth century. The
model gets its name from its visual appearance: a sequence of steps
flowing downward from one phase to the next, resembling wa-
ter flowing down a waterfall [3]. It is often categorized under the
broader systems development life cycle (SDLC) umbrella, some-
times used interchangeably with the term software development
life cycle [3]. Strictly speaking, one is part of the other [4]. As Rupar-
elia [4] explains, these distinctions have largely blurred in modern
practice, where integrated systems development increasingly treats
software as the central component. Consequently, the terms SDLC
and waterfall model are frequently used synonymously in both aca-
demic and professional discourse [4]. According to Ruparelia [4],
“a lifecycle covers all the stages of software from its inception with
requirements definition through to fielding and maintenance”.

Royce’s 1970 formalization [1], reprinted in 1987, comprises
seven phases: system requirements, software requirements, analy-
sis, program design, coding, testing, and operations, arranged so
that each depends on the deliverables of the preceding one. His
paper presents a sequence of refinements. The second model (a
linear flow without feedback) and the third (with feedback to the
prior phase) are the versions most commonly labeled as “waterfall”.
Notably, Royce recommended executing the development cycle at
least twice, as illustrated in Figure 1(b). The first pass, in his words,
“provides an early simulation of the final product” [1], while the
second produces a more robust solution. His paper was explicitly
critical of a rigid, one-pass approach for large systems. Neverthe-
less, this guidance was often overlooked in early industry adoption,
which favored the most linear interpretation and in turn invited
later critiques of inflexibility and project failure. Contrary to pop-
ular belief, Royce did not advocate a strictly linear process; he
prescribed repetition to accommodate learning and refinement. In
retrospect, this emphasis on iteration and feedback foreshadows
the incremental practices later emphasized by Agile methods.

Interestingly, the term “waterfall” does not appear in Royce’s [1]
original paper. It was later popularized by Bell and Thayer [5]
in 1976. Over the following decades, the waterfall model became
widely institutionalized in both government and private-sector soft-
ware development. It was often codified in official project manage-
ment standards, particularly in regulated industries such as defense,
aerospace, and healthcare. Despite its historical importance, the
waterfall model has faced substantial criticism, especially since the
1990s. As the software industry encountered growing challenges
with project overruns, shifting customer requirements, and rapid
technological change, the model’s rigidity and limited adaptability
came under scrutiny. Influential studies, including the Standish
Group’s CHAOS Report [6], reinforced these concerns by linking
traditional approaches such as waterfall to high rates of project
failure. These critiques, combined with the rise of iterative and

https://orcid.org/0000-0002-6745-810X
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0

Saravanos, A.

incremental methods such as Agile, led many to question whether
waterfall had outlived its usefulness.

Nonetheless, this paper argues that the waterfall model should
not be dismissed as a relic of the past. Although it is no longer
dominant as a standalone methodology, it continues to influence
contemporary software engineering in important ways. First, it
remains well suited to projects with stable requirements, clearly
defined scopes, and strong demands for traceability and documen-
tation. Second, its structure and discipline have gained renewed
relevance in hybrid development methodologies that combine tra-
ditional and Agile practices. In these approaches, the sequential
logic of waterfall is often retained at the macro level, such as in
planning or compliance phases, while Agile methods are applied at
the team or sprint level to enhance responsiveness and flexibility.

Building on this historical foundation, the remainder of this
paper is organized as follows. Section 2 surveys the treatment of
the waterfall model in mainstream software engineering literature,
emphasizing how it has been interpreted, adapted, and critiqued.
Section 3 examines its contemporary relevance, particularly its
continued use both as a standalone method and as a component
within hybridmethodologies. Section 4 presents a critical discussion
and conclusion, reflecting on the enduring legacy and evolving
applications of the waterfall model in modern software engineering.

2 Perceptions of Waterfall
This section examines the evolving structure and perception of the
waterfall model. First, we review how the model has been described
and adapted in software engineering literature. We then examine
its historical association with project failure.

2.1 Composition of Waterfall
As discussed in Section 1, the original waterfall model is often
presented as a rigid, linear sequence of development phases. The lit-
erature, however, reveals a range of adaptations and interpretations.
This subsection presents three representative snapshots from aca-
demic sources that illustrate how the model has been described over
time. Notably, each of these sources depicts the waterfall model as
consisting of five phases, rather than the seven originally described
by Royce [1].

The first example is Petersen et al. [7], whose highly cited 2009
paper The Waterfall Model in Large-Scale Development defines five
phases. The first is requirements engineering, in which “the needs
of the customers are identified and documented on a high abstrac-
tion level” and “the requirements are refined so that they can be
used as input to the design and implementation phase” [7]. The
second is design and implementation, subdivided into two parts:
the design, where “the architecture of the system is created and
documented”, and the implementation, where “the actual devel-
opment of the system takes place” [7]. The third phase is testing,
in which “the system integration is tested regarding quality and
functional aspects” [7]. The fourth is release, defined as the point
where “the product is brought into a shippable state” [7]. The final
phase is maintenance, where “after the product has been released
to the customer it has to be maintained” and “if customers discover
problems in the product they report them to the company and get
support in solving them”.

The second example is Sommerville’s [8] ninth edition of Soft-
ware Engineering (2011), which also presents five stages of the
waterfall model. The first is requirements analysis and definition,
in which “the system’s services, constraints, and goals are estab-
lished by consultation with system users” and then “defined in
detail and serve as a system specification” [8]. The second is system
and software design, where “the systems design process allocates
the requirements to either hardware or software systems by es-
tablishing an overall system architecture”, and “software design
involves identifying and describing the fundamental software sys-
tem abstractions and their relationships” [8]. The third stage is
implementation and unit testing, during which “the software de-
sign is realized as a set of programs or program units”, each verified
to ensure “that each unit meets its specification” [8]. The fourth
stage is integration and system testing, in which “the individual
program units or programs are integrated and tested as a complete
system to ensure that the software requirements have been met”,
after which “the software system is delivered to the customer” [8].
Finally, operation and maintenance occurs when “the system is
installed and put into practical use” and “maintenance involves
correcting errors which were not discovered in earlier stages of
the life cycle, improving the implementation of system units, and
enhancing the system’s services as new requirements are discov-
ered” [8]. The same model appears in the tenth edition of the book,
published in 2016 [9].

The third example is Andrei et al. [10], who in 2019 describe the
model with reference to Davis [11] (2012) and van Casteren [12]
(2017). Their five stages are: requirements, defined as “analyzing
business needs and extensive documentation of all features” [10];
design, described as “choosing all required technology and plan-
ning the full software infrastructure and interaction” [10]; coding,
defined as “solving all problems, optimizing solutions and imple-
menting each component described in the requirements phase,
using the diagrams and blueprints from the design phase” [10]; test-
ing, described as “extensive testing of all implemented features and
components and solving any occurring issues” [10]; and finally op-
erations, defined as “deployment to a production environment” [10].
Table 1 summarizes how these three sources present the phases of
the waterfall model.

We can see these phases connected in various ways across the
literature, as illustrated in Figure 1. The first waterfall lifecycle (a)
is linear, with a single pass from start to finish. This representation
is common in popular literature and is often associated with project
failure, particularly in large projects. It reflects the second of the
models presented by Royce [1]. The second model (b) illustrates a
two-pass waterfall, where the requirements phase (Phase 1 in this
example) is excluded from the second pass. This aligns with Andrei
et al. [10], who note that “theWaterfall model assumes that once the
initial requirements are set and every goal has been cleared of any
ambiguities, there is an unobstructed road which the development
team will follow towards finishing the project”. It should be em-
phasized that Royce [1] proposed several variations in conjunction
with the two-pass idea, but since these are not commonly associated
with the waterfall model, they fall outside the scope of this paper.
The third model (c) represents a more contemporary interpretation
of waterfall, where failure in one phase allows for feedback and
repetition of the immediately preceding phase to correct mistakes.

A Brief History of the Waterfall Model: Past, Present, and Future

(a) (b)

(c) (d)

Figure 1: Four Structural Views of the Waterfall Model: (a) Linear, (b) Two-Pass, (c) Feedback Loops to Previous Phase, (d)
Feedback Loops to Any Previous Phase.

Table 1: Phases of the waterfall model as presented by different sources.

Phase Petersen et al. [7] (2009) Sommerville [8] (2011); [9] (2016) Andrei et al. [10] (2019)
1 Requirements engineering Requirements analysis and definition Requirements
2 Design and implementation System and software design Design
3 Testing Implementation and unit testing Coding
4 Release Integration and system testing Testing
5 Maintenance Operation and maintenance Operations

This corresponds to one of the variations described by Royce [1].
Finally, the fourth model (d) permits feedback to any earlier phase.
This allows a team to revisit and repeat any previous stage in order
to make corrections before moving forward.

2.2 Reputation and Critique in Literature
The waterfall model is closely associated with the notion of fail-
ure, a reputation it shares with the broader practice of software
development [13, 14]. Before the emergence of rapid application
development (RAD) in 1991 and Agile in 2001, the software develop-
ment life cycle and the waterfall model were largely synonymous.
The idea of failure in software development was recognized early in
the field’s history. Ebert [15] recalls that the 1968 conference, later

recognized as the first on what became known as software engineer-
ing, identified “the so-called software crisis” as a central problem.
Saravanos and Curinga [16] survey literature that highlights failure
in the craft of software development. For example, Charette [17]
observes that “few IT projects, in other words, truly succeed”. Simi-
larly, Bloch et al. [18] report that “on average, large IT projects run
45 percent over budget and 7 percent over time, while delivering
56 percent less value than predicted”, based on a review of more
than 5,400 IT projects each costing over $15 million. Lauesen [19]
notes that “we have known for decades that IT projects often fail”.
Charette [17] further states that “from 5 to 15 percent” of projects
are “abandoned before or shortly after delivery”. Gilb [20] critiques

Saravanos, A.

the model directly, calling it “unrealistic, and dangerous to the pri-
mary objectives of any software project”. The most influential body
of research linking software development with failure is the Stan-
dish Group’s CHAOS Report. Eveleens and Verhoef [21] cite the
1994 report, which stated that “Standish reported a shocking 16%
project success rate, another 53% of the projects had overruns of
costs or time or less functionality and 31% of the projects failed out-
right”. They emphasize the report’s impact on perception, writing
that “many authors have quoted the Standish figures to illustrate
information technology is in a troublesome state”, that “over the
years their figures have had tremendous attention”, and that “the
figures indicate large problems with software engineering projects,
and as such have had an enormous impact on information tech-
nology”. However, Cerpa and Verner [13] point out that Jørgensen
and Moløkken-Østvold [22] questioned the methodology of the
Standish Group, suggesting that “there are serious problems with
the way the Standish Group conducted their research and that the
findings were biased toward reports of failure because a random
sample of top IT executives was asked to share failure stories when
mailed confidential surveys”. Consequently, it is possible that the
reputation of failure was exaggerated, or at least not as severe as
the reports suggested.

3 Is There a Present and Future for the
Waterfall Model?

With the proliferation of Agile methodologies [23], it is reasonable
to ask whether the waterfall model still has a place in modern
software engineering practice. Evidence shows that it continues
to be used [7, 24]. A 2019 study by Andrei et al. [10] reported that
software developers applied waterfall 28.1% of the time compared
to Agile methods. Similarly, a 2020 survey conducted by the Project
Management Institute (PMI) [25], reported in its annual Pulse of
the Profession appendix [26], found that slightly more than half
of organizations (56%) continued to use traditional approaches,
including waterfall and similar structured methods (e.g., parallel or
V-model).

Although Agile methods are gaining ground [27], the persistence
of waterfall suggests that it will remain relevant. Petersen et al. [7]
note that “the model is still widely used in software industry”, citing
Raccoon [28] and adding that “some researchers are even convinced
that it will be around for a much longer period of time”. We agree
and argue that waterfall remains relevant for two reasons: first, in
projects where it aligns with project characteristics, and second, as
a foundational component within emerging hybrid methodologies
that integrate waterfall with other approaches (e.g., Agile, Scrum,
iterative, and incremental).

Some projects continue to be well matched to the waterfall model.
Mishra and Alzoubi [27] observe that “many firms are still using
the waterfall methodology since it simply works and has a suc-
cessful track record”. In other words, project suitability is critical.
Dennis et al. [29] also caution that “choosing a methodology is not
simple, because no single methodology is always best”. Wallis [30]
identifies three strengths of waterfall. First is its clear structure,
as “the model provides a well-defined and structured approach
to software development”, making it “suitable for projects with
stable and clearly defined requirements, where a sequential and

linear development process is appropriate” [30]. Second is its fo-
cus on comprehensive documentation, an advantage in contexts
requiring “regulatory compliance, knowledge transfer, and future
maintenance or enhancements” [30]. Third is its affinity for project
planning, as it demands “detailed project planning upfront”, which
“can be beneficial for managing resources, setting clear milestones,
and estimating project timelines and costs” [30]. A common ex-
planation for waterfall’s high failure rate is its misapplication to
projects poorly suited for it. For example, some teams may use it
simply because it is the only methodology they know. Wallis [30]
warns that “businesses should carefully consider whether the water-
fall model aligns with their project requirements and organizational
context”, noting that “factors such as the stability of requirements,
the need for flexibility, stakeholder involvement, and the dynamic
nature of the industry should be evaluated”. For projects with these
needs, Wallis [30] recommends Agile or iterative methodologies.
Sommerville [8] similarly cautions that “the waterfall model should
only be used when the requirements are well understood and un-
likely to change radically during system development”.

The second explanation for waterfall’s persistence is its incor-
poration into hybrid approaches. Kuhrmann et al. [31] define a
hybrid approach as “any combination of agile and traditional (plan-
driven or rich) approaches that an organizational unit adopts and
customizes to its own context needs”. Prenner et al. [32] similarly
write that “to benefit from the strengths of both approaches, soft-
ware companies often use a combination of agile and plan-based
methods, known as hybrid development approaches”. Tell et al. [33]
provide a comparable definition: “any combination of agile and
traditional approaches that an organizational unit adopts and cus-
tomizes to its own context needs”. The origins of hybrid practice
can, according to Kirpitsas and Pachidis [34], be traced to the work
of Glass [35], whose 2003 paper in IEEE Software is often cited as an
early reference. Küpper et al. [36], drawing on the work of West et
al. [37], argue that “hybrid software and systems development has
become standard in practice”. The benefits of hybrid approaches
are highlighted by Kuhrmann et al. [38], who note that “hybrid
development provides a practical balance, combining the structure
and predictability of traditional methods with the flexibility and re-
sponsiveness of agile approaches”. They further explain that “these
combinations are often not the result of deliberate planning but
instead evolve organically based on practical experience, project
needs, client demands, and regulatory requirements” [38]. This
observation is echoed by Küpper et al. [36], who reference the HE-
LENA study [31] in stating that “hybrid development approaches
are barely planned or defined in advance”. Klünder et al. [39] simi-
larly report that hybrid practices tend to emerge from a bottom-up
rather than a top-down approach.

We can obtain an overview of the hybrid landscape as it relates
to the waterfall model by examining a few key studies. Within the
scope of this paper, we focus only on hybrid models that explicitly
incorporate waterfall. The first is a systematic review conducted
in 2020 by Prenner et al. [32], who investigated how companies
organize software development processes to combine Agile and
plan-driven methods. Reviewing 24 papers, the authors concluded
that all hybrid approaches fundamentally rely on the waterfall
model, stating that “all hybrid approaches are using in some way
the phases described in Royce’s waterfall model” [32]. Prenner et

A Brief History of the Waterfall Model: Past, Present, and Future

al. [32] identified three organizational patterns: the waterfall–Agile
approach (WAA), also called Agilefall, in which Agile methods
are integrated into a waterfall structure; the waterfall–iterative
approach (WIA), also called Waterative, where smaller waterfall cy-
cles occur within iterations; and the pipeline approach (PA). Among
these, WAA is the most widely used, followed by WIA and then PA.
Combinations of approaches were also observed, such as WAA in
conjunction with WIA.

A later study in 2022, a systematic literature review by Reiff and
Schlegel [40], provides “a structured overview of the current state
of research regarding the topic”. They identify two definitions of hy-
brid: first, “a combination/mix of agile and traditional project man-
agement methodologies”, and second, “the integration of an agile
approach into existing traditional project management methodolo-
gies” [40]. The authors highlight four main hybrid models, two of
which incorporate waterfall (water-scrum-fall and waterfall–Agile).
They argue that hybrid approaches “maximize project success” and
stress their value in allowing companies to “use certain agile prac-
tices, even if there are constraints that impede the adoption of a
pure agile approach” [40]. Reiff and Schlegel [40] conclude that
“hybrid systems that enable iteration and continuous evolution
represent the future” and call for further research to establish struc-
tured frameworks and more robust evaluations of hybrid project
management methodologies. This reinforces the view that the wa-
terfall model will persist, not as a standalone methodology, but as
a component within hybrid approaches.

4 Discussion and Conclusion
As this paper has shown, the waterfall model holds a significant
place in the evolution of software and systems development. From
its conceptual roots in Benington’s [2] early processwork to Royce’s [1]
formalization, often misunderstood and oversimplified, the water-
fall model shaped how developers and organizations approached
complex projects. Although widely criticized for its rigidity and
limited ability to accommodate changing requirements [41], the
sequential structure of the model continues to offer value in spe-
cific contexts, particularly where requirements are stable and well
defined [8, 29, 42]. While the model has been closely linked to
project problems and failures [43], many of these outcomes can be
attributed to misapplication. In particular, difficulties arise when
waterfall is used in situations where requirements are unknown at
the outset or subject to rapid change. This supports the pragmatic
view expressed by Sommerville [8, 44], who advocates for context-
sensitive methodology selection rather than adherence to a single
universal model.

Despite the emergence [45], rise [46, 47], and dominance of Agile
(iterative and incremental) methodologies [23, 48], the waterfall
model maintains a foothold in industry [7, 10, 23, 25]. Recent shifts
in software engineering show the model finding renewed purpose
in hybrid approaches that blend waterfall with Agile, combining
the strengths of both traditional practices (structure and rigor) and
Agile practices (flexibility) [33]. Notable examples include Water-
Scrum-Fall [37, 49] and Scrumbanfall [50], which demonstrate how
waterfall principles have been selectively retained and integrated
into modern development workflows. These developments suggest

that the story of the waterfall model is not one of obsolescence but
of evolution.

This historical and critical reflection underscores that the value
of the waterfall model is not confined to the past. Its adaptability,
whether through selective application or hybridization, points to
an enduring relevance. The model continues to coexist alongside
modern methodologies, with its core principles offering value in
appropriate contexts. Future research should further examine con-
temporary uses of the waterfall model across projects of varying
scales to extract lessons learned; refine simulation techniques to
support evidence-based decisions around its use (see, for example,
Bassil [51] and Saravanos and Curinga [16]); and contribute to the
development of structured hybrid frameworks.

References
[1] W. W. Royce. 1987. Managing the development of large software systems: Con-

cepts and techniques. In Proceedings of the 9th International Conference on Soft-
ware Engineering, Monterey, California, USA, 328–338. IEEE Computer Society
Press.

[2] H. D. Benington. 1987. Production of Large Computer Programs. In Proceed-
ings of the 9th International Conference on Software Engineering (ICSE ’87). IEEE
Computer Society Press, Washington, DC, USA, 299–310.

[3] Iqbal H. Sarker, Faisal Faruque, Ujjal Hossen, and Atikur Rahman. 2015. A survey
of software development process models in software engineering. International
Journal of Software Engineering and Its Applications 9, 11 (2015), 55–70.

[4] Nayan B. Ruparelia. 2010. Software development lifecycle models. ACM SIGSOFT
Software Engineering Notes 35, 3 (2010), 8–13.

[5] Thomas E. Bell and Thomas A. Thayer. 1976. Software requirements: Are they
really a problem? In Proceedings of the 2nd International Conference on Software
Engineering, 61–68.

[6] Standish Group International, Inc. 1995. The CHAOS Report. Standish Group
International, Inc.

[7] Kai Petersen, Claes Wohlin, and Dejan Baca. 2009. The waterfall model in large-
scale development. In Product-Focused Software Process Improvement, 386–400.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[8] Ian Sommerville. 2011. Software Engineering (9th ed.). Addison-Wesley, Boston,
MA, USA.

[9] Ian Sommerville. 2016. Software Engineering (10th ed.). Pearson Education Lim-
ited, Harlow, United Kingdom.

[10] Bogdan-Alexandru Andrei, Andrei-Cosmin Casu-Pop, Sorin-Catalin Gheorghe,
and Costin-Anton Boiangiu. 2019. A study on using waterfall and agile methods
in software project management. Journal of Information Systems & Operations
Management (2019), 125–135.

[11] Barbee Davis. 2012. Agile Practices for Waterfall Projects: Shifting Processes for
Competitive Advantage. J. Ross Publishing.

[12] Wilfred van Casteren. 2017. The waterfall model and the agile methodologies: A
comparison by project characteristics. ResearchGate preprint. Retrieved October
4, 2025 from https://www.researchgate.net/publication/317225452

[13] Narciso Cerpa and June M. Verner. 2009. Why did your project fail? Commu-
nications of the ACM 52, 12 (December 2009), 130–134. https://doi.org/10.1145/
1610252.1610286

[14] Mohammad Yasir Kotowaroo and Roopesh Kevin Sungkur. 2022. Success and
Failure factors affecting software development projects from IT professionals’
perspective. In Soft Computing for Security Applications: Proceedings of ICSCS
2022. Springer, 757–772.

[15] Christof Ebert. 2018. 50 years of software engineering: Progress and perils. IEEE
Software 35, 5 (2018), 94–101.

[16] Antonios Saravanos and Matthew X. Curinga. 2023. Simulating the software
development lifecycle: The waterfall model. Applied System Innovation 6, 6 (2023).
https://doi.org/10.3390/asi6060108

[17] R. N. Charette. 2005. Why software fails [software failure]. IEEE Spectrum 42, 9
(September 2005), 42–49. https://doi.org/10.1109/MSPEC.2005.1502528

[18] Michael Bloch, Sven Blumberg, and Jürgen Laartz. 2012. Delivering large-scale
IT projects on time, on budget, and on value. McKinsey on Business Technology
27 (2012), 2–7.

[19] Soren Lauesen. 2020. IT project failures, causes and cures. IEEE Access 8 (2020),
72059–72067.

[20] Tom Gilb. 1985. Evolutionary delivery versus the “waterfall model”. SIGSOFT Soft-
ware Engineering Notes 10, 3 (July 1985), 49–61. https://doi.org/10.1145/1012483.
1012490

[21] J. Eveleens and C. Verhoef. 2010. The rise and fall of the Chaos report figures.
IEEE Software 27, 1 (February 2010), 30–36. https://doi.org/10.1109/MS.2009.154

https://www.researchgate.net/publication/317225452
https://doi.org/10.1145/1610252.1610286
https://doi.org/10.1145/1610252.1610286
https://doi.org/10.3390/asi6060108
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1145/1012483.1012490
https://doi.org/10.1145/1012483.1012490
https://doi.org/10.1109/MS.2009.154

Saravanos, A.

[22] Magne Jørgensen and Kjetil Moløkken-Østvold. 2006. How large are software
cost overruns? A review of the 1994 CHAOS report. Information and Software
Technology 48, 4 (April 2006), 297–301. https://doi.org/10.1016/j.infsof.2005.07.002

[23] C. Fagarasan, O. Popa, A. Pisla, and C. Cristea. 2021. Agile, waterfall and iterative
approach in information technology projects. IOP Conf. Ser.: Mater. Sci. Eng. 1169,
1 (2021), 012025. https://doi.org/10.1088/1757-899X/1169/1/012025

[24] Watts S. Humphrey and Marc I. Kellner. 1989. Software process modeling: Princi-
ples of entity process models. In Proceedings of the 11th International Conference
on Software Engineering, 331–342.

[25] PMI. 2020. Ahead of the Curve: Forging a Future-Focused Culture. Pulse of the
Profession. Retrieved April 23, 2025 from https://www.pmi.org/learning/library/
forging-future-focused-culture-11908

[26] PMI. 2020. Appendix. Pulse of the Profession. Retrieved April 23, 2025 from
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-
leadership/pulse/pmi-pulse-2020-appendix.pdf

[27] Alok Mishra and Yehia Ibrahim Alzoubi. 2023. Structured software development
versus agile software development: A comparative analysis. International Journal
of System Assurance Engineering and Management 14, 4 (August 2023), 1504–1522.
https://doi.org/10.1007/s13198-023-01958-5

[28] L. B. S. Raccoon. 1997. Fifty years of progress in software engineering. ACM
SIGSOFT Software Engineering Notes 22, 1 (1997), 88–104.

[29] Alan Dennis, Barbara HaleyWixom, and Roberta M. Roth. 2012. Systems Analysis
and Design (5th ed.). John Wiley & Sons.

[30] Julian Wallis. 2023. What is the waterfall model in software development? Re-
trieved April 27, 2025 from https://intuji.com/what-is-the-waterfall-model-in-
development/

[31] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, Paolo Tell, Vahid Garousi,
Michael Felderer, Kitija Trektere, Fergal McCaffery, Oliver Linssen, and Eckhart
Hanser. 2017. Hybrid software and system development in practice: Waterfall,
scrum, and beyond. In Proceedings of the 2017 International Conference on Software
and System Processes (ICSSP ’17). Association for Computing Machinery, New
York, NY, USA, 30–39.

[32] Nils Prenner, Carolin Unger-Windeler, and Kurt Schneider. 2020. How are hybrid
development approaches organized? A systematic literature review. In Proceed-
ings of the International Conference on Software and System Processes (ICSSP ’20).
Association for Computing Machinery, New York, NY, USA, 145–154.

[33] Paolo Tell, Jil Klünder, Steffen Küpper, David Raffo, Stephen G. MacDonell, Jürgen
Münch, Dietmar Pfahl, Oliver Linssen, and Marco Kuhrmann. 2019. What are
hybrid development methods made of? An evidence-based characterization. In
2019 IEEE/ACM International Conference on Software and System Processes (ICSSP),
105–114. IEEE.

[34] Ioannis K. Kirpitsas and Theodore P. Pachidis. 2022. Evolution towards hybrid
software development methods and information systems audit challenges. Soft-
ware 1, 3 (2022), 316–363. https://doi.org/10.3390/software1030015

[35] Robert L. Glass. 2003. The state of the practice of software engineering. IEEE
Software 20, 6 (2003), 20–21.

[36] Steffen Küpper, Andreas Rausch, and Urs Andelfinger. 2018. Towards the sys-
tematic development of hybrid software development processes. In Proceed-
ings of the 2018 International Conference on Software and System Processes (IC-
SSP ’18). Association for Computing Machinery, New York, NY, USA, 157–161.
https://doi.org/10.1145/3202710.3203158

[37] Dave West, Mike Gilpin, Tom Grant, and Alissa Anderson. 2011. Water-Scrum-
Fall is the reality of agile for most organizations today. Forrester Research. July 26,
2011. Retrieved October 4, 2025 from https://www.forrester.com/report/water-
scrum-fall/RES58861

[38] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, Paolo Tell, Kitija Trektere,
Fergal McCaffery, Vahid Garousi, Michael Felderer, Oliver Linssen, and Eckhart
Hanser. 2018. Hybrid software development approaches in practice: A European
perspective. IEEE Software 36, 4 (2018), 20–31.

[39] Jil Klünder, Philipp Hohl, Masud Fazal-Baqaie, Stephan Krusche, Steffen Küp-
per, Oliver Linssen, and Christian R. Prause. 2017. HELENA study: Reasons for
combining agile and traditional software development approaches in German
companies. In Product-Focused Software Process Improvement: 18th International
Conference (PROFES 2017), Innsbruck, Austria, November 29–December 1, 2017.
Springer, 428–434.

[40] Janine Reiff and Dennis Schlegel. 2022. Hybrid project management – A system-
atic literature review. International Journal of Information Systems and Project
Management 10, 2 (2022), 45–63.

[41] Conrad Weisert. 2003. Waterfall methodology: There’s no such thing! Retrieved
December 17, 2021 from https://www.idinews.com/waterfall.html

[42] Alan Dennis, Barbara Wixom, and David Tegarden. 2015. Systems Analysis and
Design: An Object-Oriented Approach with UML (5th ed.). John Wiley & Sons.

[43] G. R. Gladden. 1982. Stop the life-cycle, I want to get off. ACM SIGSOFT Software
Engineering Notes 7, 2 (1982), 35–39.

[44] Ian Sommerville. 1996. Software process models. ACM Computing Surveys (CSUR)
28, 1 (1996), 269–271.

[45] Subhas Misra, Vinod Kumar, Uma Kumar, Kamel Fantazy, and Mahmud Akhter.
2012. Agile software development practices: Evolution, principles, and criticisms.

International Journal of Quality & Reliability Management 29, 9 (January 2012),
972–980. https://doi.org/10.1108/02656711211272863

[46] Rashina Hoda, Norsaremah Salleh, and John Grundy. 2018. The rise and evolution
of agile software development. IEEE Software 35, 5 (2018), 58–63.

[47] Andrew Whiteley, Julien Pollack, and Petr Matous. 2021. The origins of agile
and iterative methods. The Journal of Modern Project Management 8, 3 (2021).

[48] Colin Bryar and Bill Carr. 2021. Have we taken agile too far? Harvard Business
Review. April 9, 2021. Retrieved October 4, 2025 from https://hbr.org/2021/04/
have-we-taken-agile-too-far.

[49] Georgios Theocharis, Marco Kuhrmann, Jürgen Münch, and Philipp Diebold.
2015. Is water-scrum-fall reality? On the use of agile and traditional development
practices. In Product-Focused Software Process Improvement, 149–166. Springer
International Publishing, Cham.

[50] Krunal Bhavsar, Vrutik Shah, and Samir Gopalan. 2020. Scrumbanfall: An agile
integration of scrum and kanban with waterfall in software engineering. Inter-
national Journal of Innovative Technology and Exploring Engineering (IJITEE) 9, 4
(2020), 2075–2084.

[51] Youssef Bassil. 2012. A simulation model for the waterfall software development
life cycle. arXiv preprint arXiv:1205.6904 (2012).

https://doi.org/10.1016/j.infsof.2005.07.002
https://doi.org/10.1088/1757-899X/1169/1/012025
https://www.pmi.org/learning/library/forging-future-focused-culture-11908
https://www.pmi.org/learning/library/forging-future-focused-culture-11908
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pmi-pulse-2020-appendix.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pmi-pulse-2020-appendix.pdf
https://doi.org/10.1007/s13198-023-01958-5
https://intuji.com/what-is-the-waterfall-model-in-development/
https://intuji.com/what-is-the-waterfall-model-in-development/
https://doi.org/10.3390/software1030015
https://doi.org/10.1145/3202710.3203158
https://www.forrester.com/report/water-scrum-fall/RES58861
https://www.forrester.com/report/water-scrum-fall/RES58861
https://www.idinews.com/waterfall.html
https://doi.org/10.1108/02656711211272863
https://hbr.org/2021/04/have-we-taken-agile-too-far
https://hbr.org/2021/04/have-we-taken-agile-too-far

	Abstract
	1 Introduction and Origins
	2 Perceptions of Waterfall
	2.1 Composition of Waterfall
	2.2 Reputation and Critique in Literature

	3 Is There a Present and Future for the Waterfall Model?
	4 Discussion and Conclusion
	References

