Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimonoff, Jeffrey S.-
dc.date.accessioned2006-06-21T19:52:39Z-
dc.date.available2006-06-21T19:52:39Z-
dc.date.issued1997-
dc.identifier.urihttp://hdl.handle.net/2451/14771-
dc.description.abstractThe past forty years have seen a great deal of research into the construction and properties of nonparametric estimates of smooth functions. This research has focused primarily on two sides of the smoothing problem: nonparametric regression and density estimation. Theoretical results for these two situations are similar, and multivariate density estimation was an early justification for the Nadaraya-Watson kernel regression estimator. A third, less well-explored, strand of applications of smoothing is to the estimation of probabilities in categorical data. In this paper the position of categorical data smoothing as a bridge between nonparametric regression and density estimation is explored. Nonparametric regression provides a paradigm for the construction of effective categorical smoothing estimates, and use of an appropriate likelihood function yields cell probability estimates with many desirable properties. Such estimates can be used to construct regression estimates when one or more of the categorical variables are viewed as response variables. They also lead naturally to the construction of well-behaved density estimates using local or penalized likelihood estimation, which can then be used in a regression context. Several real data sets are used to illustrate these points.en
dc.format.extent534148 bytes-
dc.format.mimetypeapplication/pdf-
dc.languageEnglishEN
dc.language.isoen
dc.publisherStern School of Business, New York Universityen
dc.relation.ispartofseriesSOR-97-3en
dc.subjectKernel estimatoren
dc.subjectLocal likelihood estimatoren
dc.subjectLocal polynomial estimatoren
dc.subjectMaximum penalized likelihood estimatoren
dc.subjectPoisson regressionen
dc.titleThree Sides of Smoothing: Categorical Data Smoothing, Nonparametric Regression, and Density Estimationen
dc.typeWorking Paperen
dc.description.seriesStatistics Working Papers SeriesEN
Appears in Collections:IOMS: Statistics Working Papers

Files in This Item:
File Description SizeFormat 
SOR-97-3.pdf521.63 kBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.