Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHurvich, Clifford-
dc.contributor.authorLang, Gabriel-
dc.contributor.authorSoulier, Philippe-
dc.date.accessioned2008-05-25T16:27:04Z-
dc.date.available2008-05-25T16:27:04Z-
dc.date.issued2002-07-25-
dc.identifier.urihttp://hdl.handle.net/2451/26343-
dc.description.abstractWe consider semi parametric estimation of the long-memory parameter of a stationary process in the presence of an additive nonparametric mean function. We use a semi parametric Whittle type estimator, applied to the tapered, differenced series. Since the mean function is not necessarily a polynomial of finite order, no amount of differencing will completely remove the mean. We establish a central limit theorem for the estimator of the memory parameter, assuming that a slowly increasing number of low frequencies are trimmed from the estimator's objective function. We find in simulations that tapering and trimming are essential for the good performance of the estimator in practice.en
dc.languageEnglishEN
dc.language.isoen_USen
dc.publisherStern School of Business, New York Universityen
dc.relation.ispartofseriesSOR-2002-6en
dc.subjectNonparametric regressionen
dc.subjectlong-range dependenceen
dc.subjecttaperingen
dc.subjectperiodogramen
dc.titleEstimation of long memory in the presence of a smooth nonparametric trenden
dc.typeWorking Paperen
dc.description.seriesStatistics Working Papers SeriesEN
Appears in Collections:IOMS: Statistics Working Papers

Files in This Item:
File Description SizeFormat 
02-06.pdf310.91 kBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.