Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDing, Ding-
dc.contributor.authorEngle, Robert F.-
dc.date.accessioned2008-05-26T22:33:39Z-
dc.date.available2008-05-26T22:33:39Z-
dc.date.issued2001-05-
dc.identifier.urihttp://hdl.handle.net/2451/26575-
dc.description.abstractA new representation of the diagonal Vech model is given using the Hadamard product. Sufficient conditions on parameter matrices are provided to ensure the positive definiteness of covariance matrices from the new representation. Based on this, some new and simple models are discussed. A set of diagnostic tests for multivariate ARCH models is proposed. The tests are able to detect various model misspecifications by examing the orthogonality of the squared normalized residuals. A small Monte-Carlo study is carried out to check the small sample performance of the test. An empirical example is also given as guidance for model estimation and selection in the multivariate framework. For the specific data set considered, it is found that the simple one and two parameter models and the constant conditional correlation model perform fairly well.en
dc.language.isoen_USen
dc.relation.ispartofseriesFIN-01-029en
dc.subjectconditional covarianceen
dc.subjectMultivariate ARCHen
dc.subjectHadamard producten
dc.subjectM-testen
dc.titleLarge Scale Conditional Covariance Matrix Modeling, Estimation and Testingen
dc.typeWorking Paperen
Appears in Collections:Finance Working Papers

Files in This Item:
File Description SizeFormat 
FIN-01-029.pdf140.13 kBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.