Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lobel, Ilan | - |
dc.contributor.author | Dahleh, Munther | - |
dc.contributor.author | Acemoglu, Daron | - |
dc.contributor.author | Ozdaglar, Asuman | - |
dc.date.accessioned | 2009-05-01T18:47:06Z | - |
dc.date.available | 2009-05-01T18:47:06Z | - |
dc.date.issued | 2009-05-01T18:47:06Z | - |
dc.identifier.uri | http://hdl.handle.net/2451/28065 | - |
dc.description.abstract | We study the (perfect Bayesian) equilibrium of a model of learning over a general so- cial network. Each individual receives a signal about the underlying state of the world, observes the past actions of a stochastically-generated neighborhood of individuals, and chooses one of two possible actions. The stochastic process generating the neighborhoods de¯nes the network topology (social network). The special case where each individual observes all past actions has been widely studied in the literature. We characterize pure-strategy equilibria for arbitrary stochastic and deterministic social networks and characterize the conditions under which there will be asymptotic learning|that is, the conditions under which, as the social network becomes large, individuals converge (in probability) to taking the right action. We show that when private beliefs are unbounded (meaning that the implied likelihood ratios are unbounded), there will be asymptotic learning as long as there is some minimal amount of \expansion in observations". Our main theorem shows that when the probability that each individual observes some other individual from the recent past converges to one as the social network becomes large, un- bounded private beliefs are su±cient to ensure asymptotic learning. This theorem there- fore establishes that, with unbounded private beliefs, there will be asymptotic learning in almost all reasonable social networks. We also show that for most network topologies, when private beliefs are bounded, there will not be asymptotic learning. In addition, in contrast to the special case where all past actions are observed, asymptotic learning is possible even with bounded beliefs in certain stochastic network topologies. | en |
dc.description.sponsorship | NYU, Stern, Center for Digital Economy Research | en |
dc.format.extent | 475124 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | en |
dc.relation.ispartofseries | CeDER-09-01 | en |
dc.subject | information aggregation | en |
dc.subject | learning | en |
dc.subject | social networks | en |
dc.subject | herding | en |
dc.subject | information cascades | en |
dc.title | Bayesian Learning in Social Networks | en |
dc.type | Article | en |
Appears in Collections: | CeDER Working Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
socialnetworks.pdf | 463.99 kB | Adobe PDF | View/Open |
Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.