Skip navigation

Drift in Transcation-Level Asset Price Models

Authors: Cao, Wen
Hurvich, Clifford
Soulier, Philippe
Issue Date: 20-Nov-2012
Publisher: Stern School of Business, New York University
Series/Report no.: ;SOR-2012-05
Abstract: We study the effect of drift in pure-jump transaction-level models for asset prices in continuous time, driven by point processes. The drift is assumed to arise from a nonzero mean in the efficient shock series. It follows that the drift is proportional to the driving point process itself, i.e. the cumulative number of transactions. This link reveals a mechanism by which properties of intertrade durations (such as heavy tails and long memory) can have a strong impact on properties of average returns, thereby potentially making it extremely difficult to determine growth rates. We focus on a basic univariate model for log price, coupled with general assumptions on durations that are satisfied by several existing flexible models, allowing for both long memory and heavy tails in durations. Under our pure-jump model, we obtain the limiting distribution for the suitably normalized log price. This limiting distribution need not be Gaussian, and may have either finite variance or infinite variance. We show that the drift can affect not only the limiting distribution for the normalized log price, but also the rate in the corresponding normalization. Therefore, the drift (or equivalently, the properties of durations) affects the rate of convergence of estimators of the growth rate, and can invalidate standard hypothesis tests for that growth rate. Our analysis also sheds some new light on two longstanding debates as to whether stock returns have long memory or infinite variance.
Appears in Collections:IOMS: Statistics Working Papers

Files in This Item:
File Description SizeFormat 
Hurvich_WP_1.pdfHurvich WP1187.34 kBAdobe PDFView/Open

Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.