Skip navigation
Title: 

RISK MANAGEMENT AND DATA QUALITY SELECTION: AN INFORMATION ECONOMICS APPROACH

Authors: Bansal, Arun
Kauffman, Robert J.
Issue Date: Nov-1991
Publisher: Stern School of Business, New York University
Series/Report no.: IS-91-37
Abstract: Data quality has been shown to be a major determinant of the value of systems that utilize input data feeds and transform them into valuable information under a variety of business contexts. For this study, we have chosen a financial risk management context to investigate the relationship between data quality and value of risk management forecasting systems. Three attributes of data quality, frequency, response time, and accuracy, along with the cost of data are considered. Joint impacts of attributes are also considered. It is shown that an increase in report frequency results in an increase in the utility of a risk management forecasting system, but this increase is limited by the responsiveness of the hedging scheme. Frequency is shown to improve the utility of the forecasting systems in two ways: First, an increase in frequency pushes the predicted states closer to the actual states and second, an increase in frequency causes the reliability of the forecasting model to increase. A delay in response time of reports is predicted to have a greater impact on utility for high frequency reports than for low frequency reports. Finally, data inaccuracies are recommended to be the first concern of a portfolio manager before an attempt is made to increase the reporting frequency.
URI: http://hdl.handle.net/2451/14394
Appears in Collections:IOMS: Information Systems Working Papers

Files in This Item:
File Description SizeFormat 
IS-91-37.pdf6.88 MBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.