Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimonoff, Jeffrey S.-
dc.contributor.authorTsai, Chih-Ling-
dc.date.accessioned2006-06-21T20:05:51Z-
dc.date.available2006-06-21T20:05:51Z-
dc.date.issued1997-
dc.identifier.urihttp://hdl.handle.net/2451/14775-
dc.description.abstractAn improved AIC-based criterion is derived for model selection in general smoothing-based modeling, including semiparametric models and additive models. Examples are provided of applications to goodness-of-fit, smoothing parameter and variable selection in an additive model and semiparametric models, and variable selection in a model with a nonlinear function of linear terms.en
dc.format.extent407682 bytes-
dc.format.mimetypeapplication/pdf-
dc.languageEnglishEN
dc.language.isoen
dc.publisherStern School of Business, New York Universityen
dc.relation.ispartofseriesSOR-97-12en
dc.subjectGoodness-of-fiten
dc.subjectKullback-Leibler discrepancyen
dc.subjectNonparametric regressionen
dc.subjectSmoothing spline regression estimatoren
dc.titleSemiparametric and Additive Model Selection Using an Improved Akaike Information Criterionen
dc.typeWorking Paperen
dc.description.seriesStatistics Working Papers SeriesEN
Appears in Collections:IOMS: Statistics Working Papers

Files in This Item:
File Description SizeFormat 
SOR-97-12.pdf398.13 kBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.