Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGreene, William-
dc.date.accessioned2008-05-19T16:53:04Z-
dc.date.available2008-05-19T16:53:04Z-
dc.date.issued2004-05-06-
dc.identifier.urihttp://hdl.handle.net/2451/26121-
dc.description.abstractRecent studies in econometrics and statistics include many applications of random parameter models. The underlying structural parameters in these models are often not directly informative about the statistical relationship of interest. As a result, standard significance tests of structural parameters in random parameter models do not necessarily indicate the presence or absence of a ‘significant’ relationship among the model variables. This note offers a suggestion on how to examine the results of estimation of a general form of random parameter model. We also extend results on computing individual level parameters in a random parameters setting and show how simulation based estimates of parameters in conditional distributions can be used to examine the influence of model covariates (marginal effects) at an individual levelen
dc.language.isoen_USen
dc.relation.ispartofseriesEC-04-08en
dc.subjectPanel dataen
dc.subjectrandom effectsen
dc.subjectrandom parametersen
dc.subjectmaximum simulated likelihooden
dc.subjectconditional meanen
dc.subjectconditional varianceen
dc.subjectmarginal effectsen
dc.subjectconfidence intervalen
dc.titleInterpreting Estimated Parameters and Measuring Individual Heterogeneity in Random Coefficient Modelsen
dc.typeWorking Paperen
Appears in Collections:Economics Working Papers

Files in This Item:
File Description SizeFormat 
4-8.pdf568.3 kBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.