Faculty Digital Archive

Archive@NYU >
Stern School of Business >
IOMS: Information Systems Working Papers >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2451/14467

Authors: Schocken, Shimon
Issue Date: Sep-1988
Publisher: Stern School of Business, New York University
Series/Report no.: IS-88-95
Abstract: Most research on rule-based inference under uncertainty has focused on the normative validity and efficiency of various belief-update algorithms. In this paper we shift the attention to the inputs of these algorithms, namely, to the degrees of beliefs elicited from domain experts. Classical methods for eliciting continuous probability functions are of little use in a rule-based model, where propositions of interest are taken to be causally related and, typically, discrete, random variables. We take the position that the numerical encoding of degrees of belief in such propositions is somewhat analogous to the measurement of physical stimuli like brightness, weight, and distance. With that in mind, we base our elicitation techniques on statements regarding the relative likelihoods of various clues and hypotheses. We propose a formal procedure designed to (a) elicit such inputs in a credible manner, and, (b) transform them into the conditional probabilities and likelihood-ratios required by Bayesian inference systems.
URI: http://hdl.handle.net/2451/14467
Appears in Collections:IOMS: Information Systems Working Papers

Files in This Item:

File Description SizeFormat
IS-88-95.pdf4 MBAdobe PDFView/Open

Items in Faculty Digital Archive are protected by copyright, with all rights reserved, unless otherwise indicated.


The contents of the FDA may be subject to copyright, be offered under a Creative Commons license, or be in the public domain.
Please check items for rights statements. For information about NYU’s copyright policy, see http://www.nyu.edu/footer/copyright-and-fair-use.html 
Valid XHTML 1.0 | CSS