Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHurvich, Clifford M.-
dc.contributor.authorRay, Bonnie K.-
dc.date.accessioned2008-05-25T16:03:14Z-
dc.date.available2008-05-25T16:03:14Z-
dc.date.issued2003-05-
dc.identifier.urihttp://hdl.handle.net/2451/26331-
dc.description.abstractWe propose a new semiparametric estimator of the degree of persistence in volatility for long memory stochastic volatility (LMSV) models. The estimator uses the periodogram of the log squared returns in a local Whittle criterion which explicitly accounts for the noise term in the LMSV model. Finite-sample and asymptotic standard errors for the estimator are provided. An extensive simulation study reveals that the local Whittle estimator is much less biased and that the finite-sample standard errors yield more accurate confidence intervals than the widely-used GPH estimator. The estimator is also found to be robust against possible leverage effects. In an empirical analysis of the daily Deutsche Mark/US Dollar exchange rate, the new estimator indicates stronger persistence in volatility than the GPH estimator, provided that a large number of frequencies is used.en
dc.languageEnglishEN
dc.language.isoen_USen
dc.publisherStern School of Business, New York Universityen
dc.relation.ispartofseriesSOR-2003-5en
dc.subjectlong-range dependenceen
dc.subjectnonlinearityen
dc.subjectsemiparametric estimationen
dc.titleThe Local Whittle Estimator of Long Memory Stochastic Volatilityen
dc.typeWorking Paperen
dc.description.seriesStatistics Working Papers SeriesEN
Appears in Collections:IOMS: Statistics Working Papers

Files in This Item:
File Description SizeFormat 
03-05.pdf261.25 kBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.