Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalvet, Laurent-
dc.contributor.authorFisher, Adlai-
dc.date.accessioned2008-05-29T12:29:05Z-
dc.date.available2008-05-29T12:29:05Z-
dc.date.issued1999-02-
dc.identifier.urihttp://hdl.handle.net/2451/26894-
dc.description.abstractThis paper develops analytical methods to forecast the distribution of future returns for a new continuous-time process, the Poisson multifractal. Out model captures the thick tails and volatility persistence exhibited by many financial time series. We assume that the forecaster knows the true generating process with certainty, but only observes past returns. The challenge in this environment is long memory and the corresponding infinite dimension of the state space. We show that a discretized version of the model has a finite state space, which allows an analytical solution to the conditioning problem. Further, the discrete model converges to the continuous-time model as time scale goes to zero, so that forecasts are consistent. The methodology is implemented on simulated data calibrated to the Deutschemark/US Dollar exchange rate. Applying these results to option pricing, we find that the model captures both volatility smiles and long-memory in the term structure of implied volatilities.en
dc.language.isoen_USen
dc.relation.ispartofseriesFIN-99-017en
dc.subjectForecastingen
dc.subjectImplied Volatilityen
dc.subjectLong Memoryen
dc.subjectMultifractal Model of Asset Returnsen
dc.subjectOption Pricingen
dc.subjectPoisson Multifractalen
dc.subjectTrading Timeen
dc.subjectVolatility Smileen
dc.titleForecasting Multifractal Volatilityen
dc.typeWorking Paperen
Appears in Collections:Finance Working Papers

Files in This Item:
File Description SizeFormat 
wpa99017.pdf1.37 MBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.