Skip navigation
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoilán, Mario-
dc.contributor.authorTruong-Hong, Linh-
dc.contributor.authorRiveiro, Belén-
dc.contributor.authorLaefer, Debra F.-
dc.date.accessioned2017-09-29T13:17:16Z-
dc.date.available2017-09-29T13:17:16Z-
dc.date.issued2018-02-
dc.identifier.citationSoilán, M., Truong-Hong, L., Riveiro, B., Laefer, D.F. (2017). Automatic extraction of road features in urban environments using dense ALS data. International Journal of Applied Earth Observation and Geoinformation, 64, 226–236, doi:10.1016/j.jag.2017.09.010en
dc.identifier.urihttp://hdl.handle.net/2451/40079-
dc.description.abstractThis paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.en
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness through the project HERMES:S3D – Healthy and Efficient Routes in Massive Open-data based Smart Cities (Ref.: TIN201346801-C4-4-R); Human Resources program FPI(Grant BES-2014-067736); Fundación Barrié (Grant holder – Ayudas a la Movilidad Internacional de Jóvenes Investigadores de Programas de Doctorado Sistema Universitario de Galicia 2016).en
dc.language.isoen_USen
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectAirborne laser scanningen
dc.subjectPoint cloud segmentationen
dc.subjectUrban modellingen
dc.subjectPavements classificationen
dc.subjectLiDARen
dc.subjectRemote sensingen
dc.titleAutomatic extraction of road features in urban environments using dense ALS dataen
dc.typePreprinten
dc.identifier.DOIhttps://doi.org/10.1016/j.jag.2017.09.010/-
prism.endingPage236en
prism.publicationNameInternational Journal of Applied Earth Observation and Geoinformationen
prism.startingPage226en
prism.volume64en
Appears in Collections:Debra Laefer's Collection

Files in This Item:
File Description SizeFormat 
Automatic extraction of road features... ALS data.pdfPre-Print1.28 MBAdobe PDFView/Open


Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.