Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soilán, Mario | - |
dc.contributor.author | Truong-Hong, Linh | - |
dc.contributor.author | Riveiro, Belén | - |
dc.contributor.author | Laefer, Debra F. | - |
dc.date.accessioned | 2017-09-29T13:17:16Z | - |
dc.date.available | 2017-09-29T13:17:16Z | - |
dc.date.issued | 2018-02 | - |
dc.identifier.citation | Soilán, M., Truong-Hong, L., Riveiro, B., Laefer, D.F. (2017). Automatic extraction of road features in urban environments using dense ALS data. International Journal of Applied Earth Observation and Geoinformation, 64, 226–236, doi:10.1016/j.jag.2017.09.010 | en |
dc.identifier.uri | http://hdl.handle.net/2451/40079 | - |
dc.description.abstract | This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection. | en |
dc.description.sponsorship | Spanish Ministry of Economy and Competitiveness through the project HERMES:S3D – Healthy and Efficient Routes in Massive Open-data based Smart Cities (Ref.: TIN201346801-C4-4-R); Human Resources program FPI(Grant BES-2014-067736); Fundación Barrié (Grant holder – Ayudas a la Movilidad Internacional de Jóvenes Investigadores de Programas de Doctorado Sistema Universitario de Galicia 2016). | en |
dc.language.iso | en_US | en |
dc.rights | © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Airborne laser scanning | en |
dc.subject | Point cloud segmentation | en |
dc.subject | Urban modelling | en |
dc.subject | Pavements classification | en |
dc.subject | LiDAR | en |
dc.subject | Remote sensing | en |
dc.title | Automatic extraction of road features in urban environments using dense ALS data | en |
dc.type | Preprint | en |
dc.identifier.DOI | https://doi.org/10.1016/j.jag.2017.09.010/ | - |
prism.endingPage | 236 | en |
prism.publicationName | International Journal of Applied Earth Observation and Geoinformation | en |
prism.startingPage | 226 | en |
prism.volume | 64 | en |
Appears in Collections: | Debra Laefer's Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Automatic extraction of road features... ALS data.pdf | Pre-Print | 1.28 MB | Adobe PDF | View/Open |
Items in FDA are protected by copyright, with all rights reserved, unless otherwise indicated.