Faculty Digital Archive

Archive@NYU >
Stern School of Business >
IOMS: Information Systems Working Papers >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2451/14167

Title: Variance-based Active Learning
Authors: Saar-Tsechansky, Maytal
Provost, Foster
Issue Date: 2000
Publisher: Stern School of Business, New York University
Series/Report no.: IS-00-05
Abstract: For many supervised learning tasks, the cost of acquiring training data is dominated by the cost of class labeling. In this work, we explore active learning for class probability estimation (CPE). Active learning acquires data incrementally, using the model learned so far to help identify especially useful additional data for labeling. We present a new method for active learning, BootstrapLV, which chooses new data based on the variance in probability estimates from bootstrap samples. We then show empirically that the method reduces the number of data items that must be labeled, across a wide variety of data sets. We also compare Bootstrap-LV with Uncertainty Sampling, an existing active-learning method for maximizing classification accuracy, and show not only that BootstrapLV dominates for CPE but also that it is quite competitive even for accuracy maximization.
URI: http://hdl.handle.net/2451/14167
Appears in Collections:IOMS: Information Systems Working Papers

Files in This Item:

File Description SizeFormat
IS-00-05.pdf2.31 MBAdobe PDFView/Open

Items in Faculty Digital Archive are protected by copyright, with all rights reserved, unless otherwise indicated.

 

The contents of the FDA may be subject to copyright, be offered under a Creative Commons license, or be in the public domain.
Please check items for rights statements. For information about NYU’s copyright policy, see http://www.nyu.edu/footer/copyright-and-fair-use.html 
Valid XHTML 1.0 | CSS